CUMULATIVE IMPACT & CARRYING CAPACITY STUDY (CIA&CCS) OF BEAS SUB BASIN IN HIMACHAL PRADESH

FINAL REPORT

January 2019

Prepared for:

MINISTRY OF ENVIRONMENT, FOREST AND CLIMATE CHANGE GOVERNMENT OF INDIA

Indira Paryavaran Bhavan, Jorbagh Road, New Delhi - 110 003

Prepared by:

R. S. Envirolink Technologies Pvt. Ltd. 402, BESTECH CHAMBER COMMERCIAL PLAZA, B-BLOCK, SUSHANT LOK-I, GURGAON

PH. +91-124-4295383, <u>www.rstechnologies.co.in</u>

CONTENTS	PAGE NO.
CONTENTS	PAGI

Exec	Executive Summary		1-26
СНА	PTER 1: INTRO	DUCTION	
1.1	BACKGROUND		1.1
1.2	SCOPE OF WOR	RK	1.2
	1.2.1 Baselin	e Data	1.3
	1.2.2 Impact	Assessment	1.4
1.3	OUTCOME OF T	THE STUDY	1.5
1.4	BROAD WORK	PLAN & APPROACH	1.6
1.5	OUTLINE OF PR	RESENT REPORT	1.7
CHAF	PTER 2: HYDRO	POWER DEVELOPMENT IN BEAS BASIN	
2.1	HYDROPOWER	POTENTIAL	2.1
2.2	HYDROPOWER	PROJECTS IN BEAS BASIN	2.1
2.3	ENVIRONMENT	CLEARANCE STUTUS	2.5
2.4	PROJECT DESC	RIPTION	2.6
CHAF	PTER 3: METHO	DOLOGY	
3.1	GENERAL		3.1
3.2	DATA COLLECT	TON	3.1
	3.2.1 Seconda	ry Data Collection	3.1
	3.2.2 Primary	Data Collection	3.1
3.3	GENERATION C	OF THEMATCI LAYERS	3.2
3.4	STUDY AREA (BEAS BASIN) DEMARCATION	3.3
3.5	LANDUSE/ LAN	DCOVER MAPPING	3.3
3.6	FOREST TYPES		3.6
3.7	COMMUNITY S	TRUCTURE	3.6
	3.7.1 Samplin	g Locations and Methodology	3.6
3.8	FAUNAL ELEME	NTS	3.10
3.9	AQUATIC ECOL	OGY	3.11
	3.9.1 Samplin	g Locations & Schedule	3.11
	3.9.2 Methodo	logy	3.13
	3.9.2.1	Physico-chemical Parameters	3.13
	3.9.2.2	Sampling of Phytoplankton, Phytobenthos and	
		Zooplankton	3.13
	3.9.2.3	Identification of Diatoms and Zooplankton	3.15
	3.9.2.4	Sampling & Identification of Macro-invertebrates	

	(Zoobenthos)	3.16
	3.9.3 Physico-Chemical Water Quality Index	3.16
	3.9.4 Biological Water Quality Index	3.18
3.10	FISH AND FISHERIES	3.19
CHAI	PTER 4: BASIN CHARACTERISTICS	
4.1	INTRODUCTION	4.1
4.2	BEAS RIVER BASIN - STUDY AREA	4.1
	4.2.1 Beas River Drainage System	4.2
	4.2.1.1 Major Tributaries of Beas River	4.2
4.3	GLACIERS & LAKES IN BEAS BASIN	4.6
4.4	TOPOGRAPHY & RELIEF	4.6
4.5	SLOPE	4.10
4.6	SOILS	4.12
4.7	BEAS SUB-BASINS	4.20
	4.7.1 Beas I Sub-basin	4.23
	4.7.2 Beas II Sub-basin	4.27
	4.7.3 Malana Sub-basin	4.29
	4.7.4 Parbati Upper Sub-basin	4.32
	4.7.5 Sainj Sub-basin	4.35
	4.7.6 Parbati Lower Sub-basin	4.37
	4.7.7 Tirthan Sub-basin	4.39
	4.7.8 Beas III Sub-basin	4.40
	4.7.9 Uhl Sub-basin	4.42
	4.7.10 Beas IV Sub-basin	4.46
	4.7.11Beas V Sub-basin	4.49
CHAI	PTER 5: HYDRO-METEOROLOGY	
5.1	INTRODUCTION	5.1
	5.1.1 Kullu District	5.1
	5.1.2 Mandi District	5.5
	5.1.3 Kangra District	5.8
	5.1.4 Hamirpur District	5.11
	5.1.5 Rainfall Scenario of Beas Basin using TRMM Data	5.13
5.2	WATER DISCHARGE AND AVAILABILITY	5.15
CHAI	PTER 6: ECOLOGICAL ASPECTS - TERRESTRIAL	
6.1	LAND USE/ LAND COVER	6.1
	6.1.1 Forest Cover in Beas Basin	6.1
6.2	FOREST TYPES	6.3

	6.2.1	Group 5 ⁻	Tropical Dry Deciduous Forest	6.6
	6.2.2	Group 9 9	Sub-tropical Pine Forest	6.6
	6.2.3	Group 12	Himalayan Moist Temperate Forest	6.7
	6.2.4	Group14	Sub-alpine Forest	6.10
	6.2.5	Group 15	Moist Alpine Scrub	6.11
	6.2.6	Group16	Dry Alpine Scrub	6.11
6.3	FLORIS	STICS		6.11
	6.3.1	Taxonom	ic Diversity	6.12
		6.3.1.1	Angiosperms	6.13
		6.3.1.2	Gymnosperms	6.13
		6.3.1.3	Pteridophytes	6.14
		6.3.1.4	Bryophytes	6.16
	6.3.2	Rare, End	dangered and Threatened (RET) Plant Species	6.16
	6.3.3	Endemic	Plant Species	6.19
	6.3.4	Medicinal	& Economically Important Plants	6.21
	6.3.5	Floristic F	Profile across the Basin	6.24
	6.3.6	Communi	ity Structure	6.25
		6.3.6.1	Density of Trees	6.26
		6.3.6.2	Dominance	6.27
		6.3.6.3	Species Diversity	6.34
6.4	FAUNA	L RESOU	RCES	6.35
	6.4.1	Mammals	5	6.36
	1	6.4.1.1	Conservation Status	6.36
		6.4.1.2	Sub-basin wise Mammals Distribution	6.38
	6.4.2	Avi-fauna	a e e e e e e e e e e e e e e e e e e e	6.39
	1	6.4.2.1	Birds in Beas Basin	6.39
	6.4.3	Butterflie	S	6.43
	6.4.4	Herpetofa	auna	6.44
		Reptiles		6.44
	6.4.6	Amphibia		6.44
6.5	PROTE	CTED ARI	EAS	6.46
			nalayan National Park Conservation Area (GHNPCA)	6.47
			otected Areas	6.48
6.6	IMPOR'	TANT BIR	RDING AREAS	6.50
	6.6.1	Criteria fo	or Identification of Important Birding Areas	6.50
СНА	PTER 7:	ECOLOG	GICAL ASPECTS - AQUATIC	
7.1	WATER	QUALIT	Y	7.1
7.2	Physico	o-Chemic	al Water Quality	7.1
	7.2.1	Beas I Su	ıb-basin	7.7

	7.2.2 Beas II Sub-basin	7.10
	7.2.3 Parbati Upper Sub-basin	7.15
	7.2.4 Malana Sub-basin	7.18
	7.2.5 Parbati Lower Sub-basin	7.21
	7.2.6 Sainj Sub-basin	7.25
	7.2.7 Beas III Sub-basin	7.28
	7.2.8 Uhl Sub-basin	7.32
	7.2.9 Beas IV sub-basin	7.35
	7.2.10Beas V Sub-basin	7.38
7.3	Biological Characteristics	7.42
	7.3.1 Phytoplankton	7.42
	7.3.2 Phytobenthos	7.44
	7.3.3 Zooplankton	7.45
	7.3.4 Macro-Invertebrates	7.46
	7.3.5 Water Quality Assessment	7.48
	7.3.5.1 WQI (Water Quality Index)	7.58
7.4	Fishes	7.61
	7.4.1 Beas Drainage System Characteristics	7.62
	7.4.2 Fish Species Diversity	7.63
	7.4.3 Conservation Status	7.66
	7.4.4 Fish Migration & Spawning	7.67
	7.4.5 Potential Streams for Spawning and Breeding in Beas basin	7.69
	7.4.6 List of Streams for Fish Conservation, GoHP	7.70
	7.4.7 Trout Streams	7.70
	7.4.8 Mahseer Streams	7.71
	7.4.9 Commercial Fisheries	7.72
СНА	PTER 8: ENVIRONMENTAL FLOWS	
8.1	INTRODUCTION	8.1
8.2	CURRENT NORMS BEING FOLLOWED FOR ENVIRONMENTAL FLOW	8.1
8.3	DESCRIPTION OF VARIOUS METHODOLOGIES FOR E-FLOW	8.2
	8.3.1 Hydrological Methodologies	8.2
	8.3.2 Hydraulic Rating Methodologies	8.6
	8.3.3 Habitat Simulation or Micro-Habitat Modeling Methodologies	8.7
	8.3.4 Holistic Methodologies	8.7
	8.3.4.1 The Building Block Methodology (BBM)	8.8
	8.3.4.2 The Downstream Response to Imposed Flow	
	Transformations Methodology	8.8
8.4	ADOPTED METHODOLOGY TO ESTABLISH ENVIRONMENTAL FLOW	8.9
	8.4.1 Basics of Environmental Flow Assessment Methods	8.9

8.5	HYDRO-DYNAMIC MODELING	8.10
	8.5.1 MIKE 11 Model	8.10
	8.5.2 Hydropower Projects considered for e flow assessment/Modelin	g 8.11
	8.5.3 Discharge Data	8.13
	8.5.4 River cross sections	8.16
	8.5.5 Manning's roughness coefficient	8.16
	8.5.6 MIKE 11 Model set up	8.17
	8.5.7 Model outputs	8.20
8.6	ENVIRONMENTAL FLOW ASSESSMENT	8.30
8.7	ENVIRONMENTAL FLOW RELEASE RECOMMENDATIONS	8.32
СНА	PTER 9: CUMULATIVE IMPACT ASSESSMENT	
9.1	INTRODUCTION	9.1
	FOREST COVER	9.2
9.3	BIOLOGICAL RICHNESS	9.4
9.4	SUB-BASIN-WISE IMPACT ASSESSMENT	9.7
	9.4.1 Beas I Sub-basin	9.7
	9.4.1.1 Forest Cover and Forest Types	9.7
	9.4.1.2 Biodiversity Profile	9.11
	9.4.2 Beas II Sub-basin	9.14
	9.4.2.1 Forest Cover and Forest Types	9.14
	9.4.2.2 Biodiversity Profile	9.17
	9.4.3 Malana Sub-basin	9.19
	9.4.3.1 Forest Cover	9.19
	9.4.3.2 Biodiversity Profile	9.21
	9.4.4 Parbati Lower Sub-basin	9.22
	9.4.4.1 Forest Cover	9.22
	9.4.4.2 Biodiversity Profile	9.23
	9.4.5 Parbati Upper Sub-basin	9.24
	9.4.5.1 Forest Cover and Forest Types	9.24
	9.4.5.2 Biodiversity Profile	9.28
	9.4.6 Sainj Sub-basin	9.30
	9.4.6.1 Forest Cover & Forest Types	9.30
	9.4.6.2 Biodiversity Profile	9.32
	9.4.7 Tirthan Sub-basin	9.33
	9.4.7.1 Forest Cover & Forest Types	9.33
	9.4.7.2 Biodiversity Profile	9.37
	9.4.8 Beas III Sub-basin	9.38
	9.4.8.1 Forest Cover & Forest Types	9.38
	9.4.8.2 Biodiversity Profile	9.40

	9.4.9 Uhl Sub-basin	9.41
	9.4.9.1 Forest Cover & Forest Types	9.41
	9.4.9.2 Biodiversity Profile	9.47
	9.4.10 Beas IV Sub-basin	9.48
	9.4.10.1 Forest Cover & Forest Types	9.49
	9.4.10.2 Biodiversity Profile	9.52
	9.4.11 Beas V Sub-basin	9.54
	9.4.11.1 Forest Cover & Forest Types	9.54
	9.4.11.2 Biodiversity Profile	9.56
9.5	IMPACT OF CASCADE DEVELOPMENT	9.57
	9.5.1 Longitudinal Profile of Beas River	9.58
	9.5.2 Longitudinal Profile of Parbati River	9.58
	9.5.3 Longitudinal Profile of Malana Nala	9.59
	9.5.4 Longitudinal Profile of Uhl River	9.59
CHAP	PTER 10: CONSLUSIONS & RECOMMENDATIONS	
10.1	INTRODUCTION	10.1
10.2	SUSTAINABLE AND OPTIMAL WAYS OF HYDROPOWER DEVELOPMENT	10.1
	10.2.1 Preclusion of projects	10.1
	10.2.2 Recommendations made for Nakhtan HEP (460 MW) in draft repo	rt 10.3
10.3	ENVIRONMENTAL FLOW RELEASE RECOMMENDATIONS	10.3
10.4	REVIEW OF DRAFT REPORT AND FINALIZATION OF RECOMMENDATIONS	BY
	EAC	10.5
	10.4.1 Outcome of 13 th EAC meeting	10.5
	10.4.2 Outcome of 15 th EAC meeting	10.6
	10.4.3 Outcome of 19 th EAC meeting	10.8
	10.4.4 Outcome of 20 th EAC meeting	10.10
10.5	CONCLUSIONS	1012

BIBLIOGRAPHY 1-5

LIST OF TABLES

Table 2.1: Total Hydropower Potential of Beas Basin	2.1
Table 2.2: Hydropower Projects in Beas Basin	2.2
Table 2.3: Status of Environment Clearance	2.5
Table 2.4: Salient Features of Malana I (86 MW)	2.7
Table 2.5: Salient Features of Toss (20 MW)	2.8
Table 2.6: Salient Features of Allain Duhangan (192 MW)	2.9
Table 2.7: Salient Features of Sarbari-II (5.4 MW)	2.11
Table 2.8: Salient Features of Beas Kund (9 MW)	2.12
Table 2.9: Salient Features of Malana II (100 MW)	2.14
Table 2.10: Salient Features of Neugal (15 MW)	2.16
Table 2.11: Salient Features of Parbati III (520 MW)	2.17
Table 2.12: Salient Features of Baragaon (24 MW)	2.19
Table 2.13: Salient Features of Patikari (16 MW)	2.20
Table 2.14: Salient Features of Baner-II (6 MW)	2.22
Table 2.15: Salient Features of Pong Dam (396 MW)	2.23
Table 2.16: Salient Features of Satluj Link (990 MW)	2.24
Table 2.17: Salient Features of Sainj (100 MW)	2.25
Table 2.18: Salient Features of Fozal (6 MW)	2.27
Table 2.19: Salient Features of Lambadug (25 MW)	2.28
Table 2.20: Salient Features of Lower Uhl (13 MW)	2.30
Table 2.21: Salient Features of Parbati II (800 MW)	2.31
Table 2.22: Salient Features of Uhl III (13 MW)	2.33
Table 2.23: Salient Features of Balargha (9 MW)	2.35
Table 2.24: Salient Features of Uhl (14 MW)	2.36
Table 2.25: Salient Features of Sarsadi-II (9 MW)	2.37
Table 2.26: Salient Features of Palchan Bhang (9 MW)	2.38
Table 2.27: Salient Features of Uhl Khad (14 MW)	2.39
Table 2.28: Salient Features of Bhang (9 MW)	2.41
Table 2.29: Salient Features of Sharni (9.6 MW)	2.42
Table 2.30: Salient Features of Sarsadi (9.6 MW)	2.43
Table 2.31: Salient Features of Nakhtan (460 MW)	2.44
Table 2.32: Salient Features of Thana Plaun (191 MW)	2.46
Table 2.33: Salient Features of Triveni Mahadev (96 MW)	2.48

Table 2.34: Salient Features of Dhaulasidh (66 MW)	2.50
Table 2.35: Salient Features of Parbati (12 MW)	2.52
Table 2.36: Salient Features of Hurla-I (9.4 MW)	2.53
Table 2.37: Salient Features of Jari (12 MW)	2.55
Table 2.38: Salient Features of Raison (18 MW)	2.57
Table 2.39: Salient Features of Kilhi Bahl (7.5 MW)	2.59
Table 2.40: Salient Features of Malana-III (30 MW)	2.60
Table 2.41: Salient Features of Jobrie (12 MW)	2.61
Table 2.42: Salient Features of Larji (126 MW)	2.62
Table 3.1: Sampling sites and their locations for vegetation sampling in Beas	
Basin	3.8
Table 3.2: No. of quadrats studied for each vegetation component	3.9
Table 3.3: Details of sampling locations for the collection of data on aquatic	
Ecology	3.14
Table 4.1: Area falling under different Elevation zones in the Beas Basin	4.6
Table 4.2: Area falling under different Slope Categories in the Beas Catchment	
in Himachal Pradesh	4.10
Table 4.3: Description and Area under different Soil Units in Beas Basin	4.12
Table 4.4: Characteristics of Sub-basins of Beas river basin	4.20
Table 5.1: Average Monthly Rainfall (mm) of Kullu District	5.2
Table 5.2: Average Monthly Rainfall (mm) at different locations in Kullu District	5.3
Table 5.3: Maximum and Minimum Temperature (0C) at different locations in	
Kullu District	5.3
Table 5.4: Average Monthly Rainfall (mm) of Mandi District	5.6
Table 5.5: Maximum and Minimum Temperature (0C) at different locations in	
Mandi District	5.6
Table 5.6: Average Monthly Rainfall (mm) of Kangra District	5.8
Table 5.7: Maximum and Minimum Temperature (0C) at Dharamshala	5.9
Table 5.8: Average Monthly Rainfall (mm) of Hamirpur District	5.11
Table 5.9: Maximum and Minimum Temperature (0C) at Hamirpur, 2010	5.12
Table 6.1: Area under different Forest cover categories in Himachal Pradesh	6.1
Table 6.2: Area under different forest cover classes in four districts covering	
Beas basin	6.3
Table 6.3: Area under different forest cover classes in Beas basin (2015 Data)	6.3
Table 6.4: Area under different forest types in Beas basin	6.4

Table 6.5: Forest Types found in the Beas Basin	6.4
Table 6.6: Summary of number plants species in Beas basin	6.12
Table 6.7: List of dominant angiospem families along with number of species	6.13
Table 6.8: List of Gymnosperms reportedly found in Beas basin	6.13
Table 6.9: List of Pteridophytes reportedly found in Beas basin	6.14
Table 6.10: List of Bryophytes reportedly found in Beas basin	6.16
Table 6.11: RET species reported from Beas basin and their conservation	
status based upon BSI Red Data Book	6.17
Table 6.12: RET species occurring in Beas basin according to H.J. Chowdhery	
(1999). In: Mudgal, V. & Hajra, P.K.	6.17
Table 6.13: RET species occurring in Beas basin according to CAMP' Workshop	by
FRLHT 2010 held at Shimla	6.17
Table 6.14: Plant species found in Beas basin listed in Red List of Plants by IUC	CN
(2017-2)	6.18
Table 6.15: List of plant species endemic to Western Himalaya and Himachal	
Pradesh and found in Beas basin	6.19
Table 6.16: List of important plant species used for medicinal purposes	6.21
Table 6.17: Floristic profile of different sub-basins	6.24
Table 6.18: Sampling locations for phytosociological studies	6.25
Table 6.19: Density of trees (no./ha) recorded at different sampling sites	6.27
Table 6.20: IVI of dominant shrub species at different sampling sites	6.31
Table 6.21: IVI of dominant shrub species at different sampling sites	6.33
Table 6.22: Shannon Weiner Diversity Index computed at different sampling sites	s 6.35
Table 6.23: List of mammals reportedly found in Beas basin and their conserva	ition
status	6.36
Table 6.24: Sub-basin wise mammalian species richness	6.38
Table 6.25: Conservation status of birds reported from Beas basin	6.39
Table 6.26: Sub-basin wise bird species richness	6.41
Table 6.27: Sub-basin wise number of butterfly species richness	6.43
Table 6.28: List of herpetofauna reported from Beas basin	6.44
Table 6.29: Sub-basin wise herpetofaunal species richness in Beas river basin	6.46
Table 6.30: List of Protected Areas located within Beas Basin and status of	
ESZ Notifications*	6.46
Table 6.31: List of IBAs identified in Beas basin	6.51
Table 7.1: Tolerance Limits for Inland Surface Waters (as per IS:2296:1982)	7.1
Table 7.2: Drinking Water Quality Standards (as per IS:10500:2012)	7.2

Table 7.3: Details of water sampling sites and their location the different projection	ects
in Beas basin	7.4
Table 7.4: List of phytoplankton species found at different sampling sites in St	udy
Area	7.42
Table 7.5: Total number of Phytoplankton species recorded during various sea	sons
at different sampling sites	7.43
Table 7.6: Total number of Phytobenthos species recorded during vaious sease	ons
in different sampling sites	7.44
Table 7.8: Cumulative list of Zooplankton found at different sampling sites in s	study
area	7.45
Table 7.9: Total number of Zooplankton species recorded during various seaso	ons at
different sampling sites	7.46
Table 7.10: List of macro-invertebrates found at different sampling locations	7.46
Table 7.11: Total number of Macro-invertebrates species recorded during variety	ous
seasons at different sampling sites	7.48
Table 7.12: Seasonal variation in Total alkalinity, sulphates and heavy metals	at
different sampling sites in Beas basin	7.53
Table 7.13: List of Fishes reported from Beas basin	7.63
Table 7.14: Fish Production (in MT) in Beas basin	7.72
Table 8.1: Environment Management Classes	8.6
Table 8.2: HEPs considered for e-flow assessment	8.11
Table 8.3: Manning's roughness coefficient	8.17
Table 8.4: Environment Flow Release Recommendation	8.33
Table 9.1: Temporal change in different forest cover classes in Beas basin	9.3
Table 9.2: Area under different Biological Richness Index categories in Beas ba	asin9.
Table 9.3: Area under different categories of Fragmentation Index and Disturbation	ance
Index in Beas basin	9.6
Table 9.4: Temporal Forest cover change from 2005 to 2015 in Beas I sub-base	sin 9.7
Table 9.5: Area under different Biological Richness Index categories in Beas I	
sub-basin	9.11
Table 9.6: Area under different categories of Fragmentation Index and Disturbar	
Index in Beas I sub-basin	9.11
Table 9.7: Temporal Forest cover change from 2005 to 2015 in Beas II sub-basis	
Table 9.8: Area under different Biological Richness Index categories in Beas II	
sub-basin	9.17
Table 9.9: Area under different categories of Fragmentation Index and Disturbar	ıce

Index in Beas II sub-basin	9.17
Table 9.10: Forest cover changes from 2005 to 2015	9.19
Table 9.11: Area under different Biological Richness Index categories in	
Malana sub-basin	9.20
Table 9.12: Area under different categories of Fragmentation Index and	
Disturbance Index in Malana sub-basin	9.20
Table 9.13: Forest cover changes from 2005 to 2015	9.22
Table 9.14: Area under different Biological Richness Index categories in	
Parbati Lower sub-basin	9.23
Table 9.15: Area under different categories of Fragmentation Index and	
Disturbance Index in Parbati Lower sub-basin	9.23
Table 9.16: Forest cover change from 2005 to 2015	9.25
Table 9.17: Area under different Biological Richness Index categories in	
Parbati Upper sub-basin	9.28
Table 9.18: Area under different categories of Fragmentation Index and	
Disturbance Index in Parbati Upper sub-basin	9.28
Table 9.19: Forest cover changes from 2005 to 2015	9.30
Table 9.20: Area under different Biological Richness Index categories in Sainj	
sub-basin	9.31
Table 9.21: Area under different categories of Fragmentation Index and	
Disturbance Index in Sainj sub-basin	9.32
Table 9.22: Forest cover changes from 2005 to 2015	9.33
Table 9.23: Area under different Biological Richness Index categories in Tirthan	1
sub-basin	9.37
Table 9.24: Area under different categories of Fragmentation Index and	
Disturbance Index in Tirthan sub-basin	9.37
Table 9.25: Forest cover changes from 2005 to 2015	9.38
Table 9.26: Area under different Biological Richness Index categories in Beas II	ΙI
sub-basin	9.39
Table 9.27: Area under different categories of Fragmentation Index and	
Disturbance Index in Beas III sub-basin	9.39
Table 9.28: Forest cover changes from 2005 to 2015	9.41
Table 9.29: Area under different Biological Richness Index categories in Uhl	
sub-basin	9.46
Table 9.30: Area under different categories of Fragmentation Index and	
Disturbance Index in Uhl sub-basin	9.46

Table 9.31: Forest cover changes from 2005 to 2015	9.49
Table 9.32: Area under different Biological Richness Index categories in Beas IV	1
sub-basin	9.50
Table 9.33: Area under different categories of Fragmentation Index and	
Disturbance Index in Beas IV sub-basin	9.50
Table 9.34: RET bird species reported from Beas IV sub-basin	9.53
Table 9.35: Forest cover changes from 2005 to 2015	9.55
Table 9.36: Area under different Biological Richness Index categories in Beas V	
sub-basin	9.56
Table 9.37: Area under different categories of Fragmentation Index and	
Disturbance Index in Beas V sub-basin	9.56
Table 9.38: Summary of length of affected river stretch and free-flowing between	en
cascade of two projects on Beas river and its tributaries	9.64
Table 10.1: Environment Flow Release Recommendations for Projects with	
Installed Capacity > 25 MW	10.4

LIST OF FIGURES

Figure 2.1: Map showing locations of Hydro-power projects in Beas Basin	2.4
Figure 2.2: Layout Plan of Allain Duhangan HEP	2.10
Figure 2.3: General Layout Plan of Beas Kund SHEP	2.13
Figure 2.4: Layout Plan of Malana II HEP	2.15
Figure 2.5: General Layout plan of Parbati III HEP	2.18
Figure 2.6: General Layout of Patikari SHEP	2.21
Figure 2.7: General Layout plan of Sainj HEP	2.26
Figure 2.8: General Layout of Lambadug HEP	2.29
Figure 2.9: General Layout plan of Parbati II HEP	2.32
Figure 2.10: General Layout plan of Uhl III HEP	2.34
Figure 2.11: General Layout plan of Uhl Khad SHEP	2.40
Figure 2.12: General Layout plan of Nakhtan HEP	2.45
Figure 2.13: General Layout Plan of Thana Plaun HEP	2.47
Figure 2.14: General Layout plan of Triveni Mahadev HEP	2.49
Figure 2.15: General Layout plan of Dhaulasidh HEP	2.51
Figure 2.16: General Layout plan of Hurla-I SHEP	2.54
Figure 2.17: General Layout map of Jari SHEP	2.56
Figure 2.18: General Layout plan of Raison HEP	2.58
Figure 3.1: Survey of India toposheets at 1:50000 coverage of Beas basin	3.3
Figure 3.2: False Colour Composite (FCC) generated from Landsat ETM+	
data of 2004	3.4
Figure 3.3: False Colour Composite (FCC) generated from Sentinel-2 April	
2017 data	3.5
Figure 3.4: Sampling sites/locations for terrestrial ecology in Beas basin	3.12
Figure 3.5: Location of Sampling sites for Aquatic Ecology in Beas basin	3.17
Figure 4.1: Map showing location of Beas basin in Himachal Pradesh	4.2
Figure 4.2: Map of Beas basin showing districts and drainage	4.5
Figure 4.3: Area under different elevation zones in Beas basin	4.7
Figure 4.4: Digital Elevation Map (DEM) of Beas river basin in Himachal Prade	esh 4.8
Figure 4.5: Relief map of Beas basin	4.9
Figure 4.6: Slope map of Beas river basin in Himachal Pradesh	4.11
Figure 4.7: Area (percent) under different slope categories in Beas river basis	า
in Himachal Pradesh	4.12

Figure 4.8: Soil Map of Beas Basin as per data from NBSS & LUP	4.19
Figure 4.9: Map of Beas basin showing sub-basins	4.22
Figure 4.10: Drainage map of Beas I sub-basin	4.23
Figure 4.11: DEM of Beas I Sub-basin	4.24
Figure 4.12: Drainage map of Beas II Sub-basin	4.27
Figure 4.13: DEM of Beas II Sub-basin	4.28
Figure 4.14: Drainage map of Malana Sub-basin	4.29
Figure 4.15: DEM of Malana Sub-basin	4.30
Figure 4.16: Drainage map of Parbati Upper and Sainj sub-basins	4.33
Figure 4.17: DEM of Parbati Upper sub-basin	4.33
Figure 4.20: DEM of Sainj Sub-basin	4.36
Figure 4.18: Drainage Map of Parbati Lower sub-basin	4.38
Figure 4.19: DEM of Parbati Lower sub-basin	4.38
Figure 4.21: Drainage map of Tirthan Sub-basin	4.39
Figure 4.22: DEM of Tirthan Sub-basin	4.40
Figure 4.23: Drainage map of Beas III Sub-basin	4.41
Figure 4.24: DEM of Beas III Sub-basin	4.41
Figure 4.25: Drainage map of Uhl Sub-basin	4.43
Figure 4.26: DEM of Uhl Sub-basin	4.44
Figure 4.27: Drainage map of Beas IV Sub-basin	4.46
Figure 4.28: DEM of Beas IV Sub-basin	4.47
Figure 4.29: Drainage map of Beas V Sub-basin	4.50
Figure 4.30: DEM of Beas V Sub-basin	4.50
Figure 5.1: Rainfall Scenario of Beas Basin	5.14
Figure 6.1: Forest cover map of Beas Basin based upon FSI data (2015)	6.2
Figure 6.2: Forest /Vegetation type map of Beas basin based upon IIRS data	6.5
Figure 6.3: Importance Value Index of dominant tree species at sampling sites	
V1 - V11	6.28
Figure 6.4: Importance Value Index of dominant tree species at sampling sites	
V12 - V20	6.28
Figure 6.5: Importance Value Index of dominant tree species at sampling sites V21 – V26	6.29
Figure 6.6: Importance Value Index of dominant tree species at sampling sites	
V27 – V32	6.29
Figure 6.7: Importance Value Index of dominant tree species at sampling sites V33 – V40	6.29

Figure 6.8: Importance Value Index of dominant tree species at sampling sites	
V41 - V47	6.30
Figure 6.9: Importance Value Index of dominant tree species at sampling sites	
V48 – V52	6.30
Figure 6.10: Importance Value Index of dominant tree species at sampling site	S
V53 – V60	6.30
Figure 6.11: Distribution of mammals in Beas basin along the elevational gradient	6.38
Figure 6.12: Distribution and migratory habit of birds in Beas basin	6.42
Figure 6.13: Distribution of butterfly species in Beas basin along the elevational	ıl
gradient	6.43
Figure 6.14: Map showing Protected areas and National Parks in Beas basin	6.48
Figure 7.1: Seasonal variation in Water temperature, pH and DO in Beas I	
Sub-basin	7.7
Figure 7.2: Seasonal variation in Total suspended solids, Turbidity, Total dissolve	d
solids and Electrical conductivity in Beas I sub-basin	7.8
Figure 7.3: Seasonal variation in Total hardness, Calcium, Magnesium and Chloric	des
in Beas I sub-basin	7.9
Figure 7.4: Seasonal pattern in values of Nitrates, Phosphates, Potassium and	
Sodium in Beas I Sub-basin	7.10
Figure 7.5: Seasonal pattern in BOD, COD and Total Coliforms in Beas I Sub-basi	n7.10
Figure 7.6: Seasonal variation in Water temperature, pH and DO at different	
sampling sites in Beas II sub-basin	7.11
Figure 7.7: Seasonal variation in Total suspended solids and turbidity at different	ent
sampling sites in Beas II sub-basin	7.12
Figure 7.8: Seasonal variation in Total Dissolved Solids and Electrical conductivity	ı in
Beas II sub-basin	7.12
Figure 7.9: Seasonal variation in Total hardness, Calcium, Magnesium and Chloric	des
in Beas II sub-basin	7.13
Figure 7.10: Seasonal variation in Nitrates, phosphates, potassium and sodium d	ata
in Beas II sub-basin	7.14
Figure 7.11: Seasonal variation in BOD, COD and Total Coliforms in Beas II sul	o-
basin	7.14
Figure 7.12: Seasonal variation in Water temperature, pH and DO at different	
sampling sites in Parbati Upper Sub-basin	7.15
Figure 7.13: Seasonal variation in Total suspended solids, turbidity, total dissolv	ed .
solids and Electrical conductivity at different sampling sites in Parh:	ati

7.16
7.17
7.17
7.18
7.19
ed
7.19
7.20
at
7.21
7.21
7.22
ed .
7.23
7.23
at
7.24
7.25
7.25
lved
j
7.26
7.27
֓֡֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֜֓֜֓֓֓֜֓֜֓

Figure 7.30:	Seasonal variation in Phosphate, Nitrate, Potassium and Sodium	
	concentration at different sampling sites in Sainj Sub-basin	7.27
Figure 7.31:	Seasonal variation in BOD, COD and Total Coliforms at different	
	sampling sites in Sainj Sub-basin	7.28
Figure 7.32:	Seasonal variation in Water temperature, pH and DO at different	
	sampling sites in Beas III Sub-basin	7.29
Figure 7.33:	Seasonal variation in Total suspended solids, Turbidity, Total dissolve	ed
	solids and Electrical conductivity at different sampling sites in Beas I	II
	sub-basin	7.30
Figure 7.34:	Seasonal variation in Total hardness, Calcium, Magnesium and	
	Chlorides in Beas III Sub-basin	7.30
Figure 7.35:	Seasonal variation in Phosphate, Nitrate, Potassium and Sodium a	t
	different sampling sites in Beas-III Sub-basin	7.31
Figure 7.36:	Seasonal variation in BOD, COD and Total Coliforms at different	
	sampling sites in Beas III Sub-basin	7.32
Figure 7.37:	Seasonal variation in Water temperature, pH and DO at different	
	sampling sites in Uhl Sub-basin	7.32
Figure 7.38:	Seasonal variation in Total suspended solids, Turbidity, Total dissolve	ed
	solids and Electrical conductivity at different sampling sites Uhl su	b-
	basin	7.33
Figure 7.39:	Seasonal variation in Total hardness, Calcium, Magnesium and	
	Chlorides in Uhl Sub-basin	7.34
Figure 7.40:	Seasonal variation in Phosphate, Nitrate, Potassium and Sodium	
	concentrations at different sampling sites in Uhl Sub-basin	7.34
Figure 7.41:	Seasonal variation in BOD, COD and Total Coliforms at different	
	sampling sites in Uhl Sub-basin	7.35
Figure 7.42:	Seasonal variation in Water temperature, pH and DO at different	
	sampling sites in Beas IV Sub-basin	7.36
Figure 7.43:	Seasonal variation in Total suspended solids, Turbidity, Total dissolve	ed
	solids and Electrical conductivity at different sampling sites in Beas I	V
	sub-basin	7.36
Figure 7.44:	Seasonal variation in Total hardness, Calcium, Magnesium and	
	Chlorides in Beas IV Sub-basin	7.37
Figure 7.45:	Seasonal variation in Phosphate, Nitrate, Potassium and Sodium a	t
	different sampling sites in Beas-IV Sub-basin	7.38
Figure 7.46:	Seasonal variation in BOD, COD and Total Coliforms at different	

	sampling sites in Beas IV Sub-basin	7.38
Figure 7.47:	Seasonal variation in Water temperature, pH and DO at different	
	sampling sites in Beas-V Sub-basin	7.39
Figure 7.48:	Seasonal variation in Total suspended solids, Turbidity, Total dissolve	ed
	solids and Electrical conductivity at different sampling sites in Beas-V	,
	sub-basin	7.40
Figure 7.49:	Seasonal variation in Total hardness, Calcium, Magnesium and	
	Chlorides in Beas-V Sub-basin	7.40
Figure 7.50:	Seasonal variation in Phosphate, Nitrate, Potassium and Sodium	
	concentrations at different sampling sites in Beas-V Sub-basin	7.41
Figure 7.51:	Seasonal variation in BOD, COD and Total Coliforms at different	
	sampling sites in Beas-V Sub-basin	7.42
Figure 7.52:	DO and pH in Beas river and its tributaries during pre-monsoon,	
	monsoon and winter seasons in different sub-basins	7.49
Figure 7.53:	TDS and Turbidity in Beas river and its tributaries during pre-	
	monsoon, monsoon and winter seasons in different sub-basins	7.50
Figure 7.54:	Chlorides, Total hardness and Magnesium in Beas river and its	
	tributaries during pre-monsoon, monsoon and winter seasons in	
	different sub-basins	7.52
Figure 7.55:	BOD, COD and Total Coliforms in Beas river and its tributaries duri	ng
	pre-monsoon, monsoon and winter seasons in different sub-basins	7.53
Figure 7.56:	WQI in Beas river and its tributaries during pre-monsoon, monsoon	n
	and winter seasons in different sub-basins	7.60
Figure 7.57:	BMWP Score in Beas river and its tributaries during pre-monsoon,	
	monsoon and winter seasons in different sub-basins	7.60
Figure 7.58:	ASPT Scores in Beas river and its tributaries during pre-monsoon,	
	monsoon and winter seasons in different sub-basins	7.61
Figure 7.59:	Fisheries map of Beas basin	7.68
Figure 8.1: L	ocation of various surveyed river cross sections	8.18
Figure 8.2: A	A typical view of surveyed river cross section considered for hydro-	
	dynamic modeling	8.19
Figure 9.1: E	Broad Eco-zones identified in Beas basin	9.2
Figure 9.2: N	Map showing forest cover in the years 2005 and 2015 based upon	
F	SI data	9.4
Figure 9.3: E	Biological Richness Index map of Beas basin	9.5
Figure 9.4: F	Fragmentation Index map of Beas basin	9.6

Figure	9.5: [Disturbance Index map of Beas basin	9.6
Figure	9.6: F	Forest cover map for the year 2005 and 2015 of Beas I Sub-basin	9.8
Figure	9.7: F	Forest type map of Beas-I sub-basin	9.9
Figure	9.8: E	Biological Richness Index map of Beas-I sub-basin	9.9
Figure	9.9: F	ragmentation Index map of Beas-I sub-basin	9.10
Figure	9.10:	Disturbance Index map of Beas-I sub-basin	9.10
Figure	9.11:	Forest cover map for the year 2005 and 2015 of Beas II Sub-basin	9.14
Figure	9.12:	Forest type map of Beas-II, Malana and Parbati Lower sub-basins	9.15
Figure	9.13:	Biological Richness Index map of Beas-II, Malana and Parbati	
		Lower sub-basins	9.16
Figure	9.14:	Fragmentation Index map of Beas-II, Malana and Parbati Lower	
		sub-basins	9.16
Figure	9.15:	Disturbance Index map of Beas-II, Malana and Parbati Lower	
		sub-basins	9.17
Figure	9.16:	Forest cover map for the year 2005 and 2015 of Malana Sub-basir	9.20
Figure	9.17:	Forest cover map for the year 2005 and 2015 of Parbati Lower	
		Sub-basin	9.22
Figure	9.18:	Forest cover map for the year 2005 and 2015 of Parbati Upper	
		Sub-basin	9.25
Figure	9.19:	Forest type map of Parbati Upper and Sainj sub-basins	9.26
Figure	9.20:	Biological Richness Index map of Parbati Upper and Sainj sub-basins	9.26
Figure	9.21:	Fragmentation Index map of Parbati Upper and Sainj sub-basins	9.27
Figure	9.22:	Disturbance Index map of Parbati Upper and Sainj sub-basins	9.27
Figure	9.23:	Forest cover map for the year 2005 and 2015 of Sainj sub-basin	9.31
Figure	9.24:	Forest cover map for the year 2005 and 2015 of Tirthan sub-basin	9.34
Figure	9.25:	Forest type map of Tirthan and Beas III sub-basins	9.35
Figure	9.26:	Biological Richness Index map of Tirthan and Beas III sub-basins	9.35
Figure	9.27:	Fragmentation Index map of Tirthan and Beas III sub-basins	9.36
Figure	9.28:	Disturbance Index map of Tirthan and Beas III sub-basins	9.36
Figure	9.29:	Forest cover map for the year 2005 and 2015 of Beas III Sub-basin	9.39
Figure	9.30:	Forest cover map for the year 2005 and 2015 of Uhl Sub-basin	9.42
Figure	9.31:	Forest type map of Uhl sub-basin	9.43
Figure	9.32:	Biological Richness Index map of Uhl sub-basin	9.44
Figure	9.33:	Fragmentation Index map of Uhl sub-basin	9.45
Figure	9.34:	Disturbance Index map of Uhl sub-basin	9.46
Figure	9.35:	Forest cover map for the year 2005 and 2015 of Beas IV Sub-basin	9.49

Figure 9.36: Forest type map of Beas IV and Beas V sub-basins	9.50
Figure 9.37: Biological Richness Index map of Beas IV and Beas V sub-basins	9.51
Figure 9.38: Fragmentation Index map of Beas IV and Beas V sub-basins	9.51
Figure 9.39: Disturbance Index map of Beas IV and Beas V sub-basins	9.52
Figure 9.40: Forest cover map for the year 2005 and 2015 of Beas V Sub-basin	9.55
Figure 9.41: Longitudinal Profile of Beas River	9.60
Figure 9.42: Longitudinal Profile of Parbati River	9.61
Figure 9.43: Longitudinal Profile of Malana Nala	9.62
Figure 9.44: Longitudinal Profile of Uhl River	9.63

LIST OF ANNEXURES

Annexure II:	List of Angiosperms	1-33
Annexure II:	List of Medicinal Plants reported from the Beas Basin	34-41
Annexure III:	Community Structure	42-126
Annexure IV:	Distribution and Conservation status of Mammalian fauna	
	in different sub-basins	127-128
Annexure V:	List of Avi-fauna found in Beas basin based upon secondary	
	Data	129-152
Annexure VI:	Sub basin wise distribution of butterflies and their	
	habit and conservation status in Beas Basin	153-158
Annexure VII:	Physico-Chemical characteristics of water at different	
	sampling sites in the Study Area	159-191
Annexure VIII:	Policy regarding ensuring minimum flow of water in	
	Hydro Electric Projects	192-193
Annexure IX:	NGT Order on E-flow dated August 09, 2017	194-196
Annexure X:	Minutes of 13 th Meeting of the Expert Appraisal Committee	
	dated April 27 th 2018	197-201
Annexure XI:	Minutes of 15 th Meeting of the Expert Appraisal Committee	
	dated June 28 th 2018	202-206
Annexure XII:	Minutes of 19 th Meeting of the Expert Appraisal Committee	
	dated October 26 th 2018	207-212
Annexure XIII:	Minutes of 20 th Meeting of the Expert Appraisal Committee	
	dated November 27 th 2018	213-215

CIA&CCS- Beas Basin in HP Executive Summary

EXECUTIVE SUMMARY

1 BACKGROUND

Directorate of Energy, Government of Himachal Pradesh undertook the task of conducting Cumulative Environmental Impact Assessment (CEIA) Study for Beas river basin in Himachal Pradesh with an objective to assess the cumulative impacts of hydropower development in the basin. In the meantime, MoEF&CC has taken over all the river basin/carrying capacity studies being conducted by Central/State agencies and therefore, all reports were submitted directly to MoEF&CC. RS Envirolink Technologies Pvt. Ltd. (RSET), Gurgaon has been awarded the study based on techno-commercial bidding. Expert Appraisal Committee (EAC) for River Valley and Hydroelectric Projects of Ministry of Environment & Forests (MoEF&CC) approved the Terms of Reference (TOR) for the study. The study was initiated during February 2016, an inception report was submitted in June 2016 to capture the progress made during first four months of the study period and a Rapid CIA report was submitted in November 2016, which captured progress in first 8 months. The draft report was discussed and appraised in 4th meeting of the Expert Appraisal Committee for River Valley and Hydroelectric Projects held on 12th April 2017, wherein a visit to the study area by a sub-committee of EAC was suggested, which was made during April 2018 and post visit the outcome was discussed in EAC meeting during the same month. Recommendations were discussed in detail and it was decided to share the recommendations with the state government and thereafter the final report will be discussed in EAC. Directorate of Energy, Government of Himachal Pradesh, on receipt of recommendations, has shared their views/observations on the recommendations and made a presentation during EAC meeting of June 2018. During presentation, EAC sought further information from state government to justify their observations and matter was discussed in subsequent EAC meetings of October and November 2018. EAC finally concluded all the discussions on Beas River Basin study and directed the Consultant to update/finalize the basin study report, keeping in view the matter discussed and recorded in various EAC meetings. The present report is the final report prepared by incorporating recommendations finalised by EAC in consultation with state government of Himachal Pradesh.

2 HYDROPOWER PROJECTS IN BEAS BASIN

Beas Basin in Himachal Pradesh has 4877.70 MW of power potential (for > 5 MW projects), distributed among 51 hydropower projects spread throughout the basin (**Table 1 and Figure 1**). Out of these 51 projects, 22 projects are commissioned (total installed capacity 2820.90 MW), 5 are under construction (total installed capacity 947 MW), 20 are at various stages of investigations (total installed capacity 1028.90 MW) and 4 are yet to be allotted.

Out of proposed 24 projects, many of which are under different stages of survey and investigation, only 4 projects have installed capacity of more than 50 MW i.e. requiring environment clearance as category "A" projects; two are with installed capacity greater than 25 MW but less than 50 MW i.e. environment clearance is applicable under category "B" and remaining 18 projects are less than 25 MW of installed capacity i.e. environment clearance is not applicable.

CIA&CCS- Beas Basin in HP

Table 1: Hydropower Projects in Beas Basin

Table 1: Hydropower Projects in Beas Basin					· · ·
S. No. Name of Project		Capacity	Developer	Status	Year of
		(MW)			Commiss
1	Beas Sutlej Link	990	Bhakra Beas Management Board	Commissioned	-ioning 1977
2	Parbati-III HEP 520		NHPC Limited	Commissioned	2014
3			Bhakra Beas Management Board	Commissioned	1978-83
4	Allain Duhangan HEP	192	AD Hydro Power Ltd.	Commissioned	2010
5	Larji HEP	126	HPPCL	Commissioned	2006
6	Uhl-I (Shanan) HEP	110	Punjab State Power Corporation	Commissioned	1923
7	Malana-II HEP	100	Everest Power Pvt. Ltd.	Commissioned	2012
8	Sainj HEP	100	HPPCL	Commissioned	2017
9	Malana-I HEP	86	Malana Power Company Ltd.	Commissioned	2001
10	Uhl-II (Bassi) HEP	66	HPSEB	Commissioned	1970-81
11	Baragaon SHEP	24	Kanchanjunga Hydro Power Ltd.	Commissioned	2015
12	Patikari SHEP	16	Patikari Hydro Electric Project Ltd.	Commissioned	2008
13	Neugal SHEP	15	Om Hydropower Ltd.	Commissioned	2013
14	Baner SHEP	12	HPSEB	Commissioned	1996
15	Khauli SHEP	12	HPSEB	Commissioned	2007
16	Gaj SHEP	10.5	HPSEB	Commissioned	1996
17	Toss SHEP	10	Toss Mini Hydel Power Project	Commissioned	2008
18	Beas Kund SHEP	9	Kapil Mohan and Associates	Commissioned	2012
19	Binwa SHEP	6	HPSEB	Commissioned	1984
20	Baner-II SHEP	6	Podigy Hydro Power Pvt. Ltd.	Commissioned	2015
21	Sarbari-II SHEP	5.4	DSL Hydrowatt Ltd.	Commissioned	2010
22	Balargha SHEP	9	Sandhya Hydro Power Projects	Commissioned	2018
23	Parbati-II HEP	800	NHPC Limited	Under Construction	2010
24	Uhl III HEP	100	HPSEB	Under Construction	
25	Lambadug HEP	25	KU Hydro Power Pvt. Ltd.	Under Construction	
26	Lower Uhl SHEP	13	Trident Power Systems Ltd.	Under Construction	
27	Fozal SHEP	9	Fozal Power Pvt. Ltd.	Under Construction	
28	Nakthan HEP	460	HPPCL	Under S&I	
29	Thana Plaun HEP	191	HPPCL	Under S&I	
30	Triveni Mahadev HEP	96	HPPCL	Under S&I	
31	Dhaulasidh HEP	66	Satluj Jal Vidyut Nigam Ltd.	Under S&I	
32	Malana-III HEP	30	BMD Pvt. Ltd.	Under S&I	
33	Raison SHEP	18	HPSEB	Under S&I	
34	Uhl SHEP	14	Puri Oil Mills Ltd.	Under S&I	
35	Uhl Khad SHEP	14	Kharnal Hydro Electric Project P Ltd.	Under S&I	
36	Parbati SHEP	12	Manimahesh Power Private Ltd.	Under S&I	
37	Jari SHEP	12	WIL Power Projects Ltd.	Under S&I	
38	Jobrie SHEP	12	Green Infra Limited	Under S&I	
39	Sharni SHEP	9.6	Sharni Hydro Power Pvt. Ltd.	Under S&I	
40	Sarsadi SHEP	9.6	Himshakti Power Pvt. Ltd.	Under S&I	
41	Hurla-I SHEP	9.4	Hurla Valley Power Pvt. Ltd.	Under S&I	
42	Sarsadi-II SHEP	9	Aroma Colonisers Pvt. Ltd.	Under S&I	
43	Palchan Bhang SHEP	9	Palchan Bhang Power Pvt. Ltd.	Under S&I	
44	Bhang SHEP	9	Bhang Hydel Power L.L.P.	Under S&I	
45	Kilhi Bahl SHEP	7.5	Puri Oil Mills Ltd.	Under S&I	
46	Makori	20.80	Sai Engineering Foundation	Under S&I	
47	Bhujling	20.00	Sai Engineering Foundation	Under S&I	
48	Kanda Pattan	40.00		Yet to be allotted	
49	Manalsu	21.90		Yet to be allotted	
50	Seri Rawla	13.00		Yet to be allotted	
51	Khauli II	6.00		Yet to be allotted	
	Total	4877.70			

CIA&CCS- Beas Basin in HP

Figure 1: Map showing locations of Hydro-power Projects in Beas Basin

3 STUDY METHODOLOGY

To undertake Cumulative Impact Assessment and Carrying Capacity Study (CIA&CCS) of Beas river basin vis-à-vis proposed hydropower development in Himachal Pradesh, it was essential to establish the present environment setting in the basin on which impacts of development can be predicted and strategy for sustainable development can be formulated. Scoping for the study has set the requirement of extensive baseline data to be collected. Extensive baseline surveys were carried out for data collection, sampling and analysis. Additionally, data was collected from secondary sources, collated and analyzed. Entire data collection and analysis work was undertaken scientifically based on the pre-defined methodology and following the terms of reference issued by the department. The data on baseline status of various environmental parameters in the study area was collected through primary surveys for three seasons as specified in the approved TOR. Baseline data collection, compilation and analysis was followed by cumulative impact assessment and formulation of recommendation for sustainable hydropower development in the basin. Environmental flow release assessment was another major component of the scope and based on the hydro-meteorological assessment of the basin in general and for the locations of hydropower projects in particular, the exercise was undertaken using hydro-dynamic modelling for hydropower projects locations.

4 BASIN CHARACTERISTICS

More than 90% of the drainage system of Himachal Pradesh is a part of Indus river system with Jhelum, Chenab, Ravi, Beas and Sutlej its tributaries. Beas basin in comprised of Beas river drainage catchment in Himachal Pradesh. Beas happens to be a principal tributary of Sutlej river in India. Beas basin is flanked in the north by drainage catchment of Ravi and Chenab rivers and in the south by Sutlej river. Beas river originates from Beas Kund at Rohtang Pass at an elevation of 13,050 feet (3,978 m) and flows for a length of about 470 km before joining the Sutlej River at Harike Pattan south of Amritsar in Punjab. After the confluence of two source streams viz. Beas Kund and Beas Rishi at Palchan village, the river is known as Beas. The river after passing through Manali town traverses dense evergreen forested slopes and enters the town of Kullu. At Bhuntar Beas river is joined by Parbati river on its left bank which is a major tributary. The river flows in north-south direction up to Larji and then turns west up to Pandoh diversion dam. It is fed by number of streams in this stretch up to Pandoh. In addition to Parbati river major tributaries of Beas River upstream of Pandoh are Sainj, Tirthan river and Bakhli Khad joining from the east; Sanjoin, Manalsu, Fozal and Sarbari from the west. After Pandoh, Beas river flows in northerly direction and is joined by Uhl river on its right bank along its course. After this it again turns westward up to Mandi where it takes northerly turn again to be joined by Rana Khad on its right bank. It then enters Kangra valley near Sandhol. In Kangra valley Binwa, Neugal, Banganga, Gaj and Dehar are the major streams joining from the north and Kunah, Maseh, Son, Khairan Man from south. The northern and eastern tributaries of the Beas receive water from the melting snow and are perennial whereas the southern tributaries are seasonal. After leaving Himachal Pradesh the river enters plains of Punjab at Talwara and joins Sutlej at Harike Pattan.

The Study Area covered as a part of the Beas Basin is comprised of part of Beas river catchment falling within Himachal Pradesh i.e. Beas river catchment from its origin at Rohtang Pass up to Pong Dam at the inter-state boundary with Punjab. The total catchment area of Beas river in Himachal Pradesh is about 12591 sq km and its length in the study area is about 274 km. Drainage map of the study area i.e. Beas river basin in Himachal Pradesh was prepared from Survey of India Toposheets at 1:50000 scale as base map along with satellite data.

Beas basin is characterized by rugged topography with high ridges and peaks, with higher reaches covered with glaciers, and massive ice and snowfields. The elevation in the basin varies from high of 6619m to a low of 325m. In order to understand the relief profile of the basin it has been divided into 600m elevation zones. In order to understand the terrain morphology Digital Elevation Model (DEM) of the basin was prepared from SRTM 30m data. More than 70% of the catchment area lies below elevation of 3000 m and about 21% of the area lies between 3000 and 4800m elevation zone. Slope map of the basin was also generated using SRTM 30m data. First of all, a Digital Terrain Model (DTM) of the area was prepared, which was then used to generate a slope map. More than 32% of Beas river basin area in Himachal Pradesh is characterized by steep slopes while around 33% area is having moderately steep slopes. Soil map of the study area has been produced using soil maps collected from National Bureau of Soil Survey & Land use Planning (NBSS & LUP), Nagpur.

For the convenience of study and analysis of various physical and biological parameters and their interpretation, entire Beas basin in India has been delineated into 11 sub-basins comprised of major tributaries and covering varied domains as well as hydroelectric projects as given in **Table 2**.

Table 2: Characteristics of Sub-basins of Beas river basin

No	Sub- basin	Altitudinal Range (m)	Projects	Status	River/Stream	Area (sq km)
			Beas Kund	Commissioned	Beas Kund Nala	
	Beas I		Palchan Bhang	Proposed	Kothi Nala	
1	Sub-	1671-6002	Bhang	Proposed	Beas River	618.35
	basin		Jobrie	Proposed	Jobrie & Allain Nala	
			Allain Duhangan	Commissioned	Allain & Duhangan Nala	
	Beas II		Baragaon	Commissioned	Sanjoin & Bijara Nala	
2	Sub-	1168-4927	Fozal	Under Construction	Fozal Nala	798.21
	basin	1100-4927	Raison	Proposed	Beas	798.21
	Dasiii	Dasiii	Sarbari II	Commissioned	Sarbari Khad]
	Malana Sub- basin		Malana I	Commissioned	Malana Nala	158.04
3		1427-5756	Malana II	Commissioned	Malana Nala	
			Malana III	Proposed	Malana Nala	
			Nakthan	Proposed	Tosh Nala & Parbati River	
	Parbati		Toss	Commissioned	Tosh Nala]
4	Upper Sub- basin	1427-6619	Jari	Proposed	Parbati River	1437.11
			Balargha	Commissioned	Parbati River	1
			Parbati II	Under Construction	Parbati River	
			Parbati	Proposed	Parbati River	
	Parbati Lower	arbati	Sharni	Proposed	Parbati River	
5		1168-3721	Sarsadi	Proposed	Parbati River	137.02
5	Sub- basin	1100-3721	Sarsadi II	Proposed	Parbati River	137.02

No	Sub- basin	Altitudinal Range (m)	Projects	Status	River/Stream	Area (sq km)	
6	Sainj		Sainj	Under Construction	Sainj River		
	Sub-	1168-5673	Parbati III	Commissioned	Sainj River	1108.37	
	basin		Hurla I	Proposed	Hurla Nala		
7	Tirthan Sub- basin	1168-5201	-	-	-	685.25	
	Beas III	- 798-3346	Patikari	Commissioned	Bakhli Khad		
8	Sub-		Pandoh	Commissioned	Beas River	703.44	
	basin		Larji	Commissioned	Beas River		
			Lambadug	Under Construction	Lambadug Khad		
	Uhl Sub- basin	657-5171	Uhl	Proposed	Uhl River		
			Uhl I (Shanan)	Commissioned	Uhl River		
9			Uhl II (Bassi)	Commissioned	Rana & Neri Khad	1711.71	
			Uhl III	Under Construction	Rana & Neri Khad		
			Lower Uhl	Under Construction	Uhl River	-	
			Uhl Khad	Proposed	Uhl River		
	Beas IV Sub- basin	Sub- 414-4907	Gaj	Commissioned	Gaj Khad		
			Khauli	Commissioned	Khauli Khad		
			Baner	Commissioned	Baner Khad		
10			Neugal	Commissioned	Neugal Nala	3644.10	
10			Baner II	Commissioned	Baner Khad		
			Binwa	Commissioned	Binwa Khad		
			Kilhi Bahl	Proposed	Binwa & Awa Nala		
			Pong Dam	Commissioned	Beas River		
11	Beas V Sub- basin	Sub- 325-2039	Triveni Mahadev	Proposed	Beas River	1589.19	
' '			Dhaulasidh	Proposed	Beas River] 1369.19	
			Thana Plaun	Proposed	Beas River		

5 HYDROMETEOROLOGY

For hydro meteorological assessment of the Beas basin, data pertaining to rainfall and discharge was collected from various secondary sources. Project specific water availability information was collected from various project developers through Directorate of Energy, Government of Himachal Pradesh. Data was used for hydro-dynamic modelling carried out for project specific environment flow assessment.

6 TERRESTRIAL BIODIVERSITY

6.1 Forest Cover in Beas Basin

Major part of Beas river basin is comprised of the Beas river system traversing the districts of Kullu, Mandi, Hamirpur and Kangra of Himachal Pradesh. According to total forest cover as per Forest Survey of India (2015) Mandi has the maximum forest cover (42.43%), while Kangra has 36.03%.

According to forest cover map of the basin non-forest constitutes main land use in the basin and accounts for more than 60.60% of the entire Beas basin area. Very Dense forest constitutes 9.31% while Moderately Dense forest covers 17.79% of the total area.

6.2 Forest Types

The forests in the Beas basin, the study area are covered under four administrative Circles viz. Kullu, Hamirpur, Dharamshala and Mandi. Entire study area falls under 11 Forest Divisions with Kullu and Parbati Forest Divisions under Kullu Circle; Suket, Mandi, Nachan and Joginder Nagar under Mandi Circle, Dharamshala, Nurpur and Palampur under Dharamshala Circle and Dehra under Hamirpur Circle.

According to 'A Revised Survey of the Forest Types of India' by Champion and Seth (1968) forests in the basin are represented by 7 major Groups and 22 forest types viz. 5B/C2 Northern Dry Mixed Deciduous forest, 9C1a: Himalayan sub-tropical pine forest 9/C1b: Upper or Himalayan Chir Pine Forest 9/ C1/DS1: Himalayan sub-tropical scrub 9/C1/DS2: Sub tropical Euphorbia scrub 10/C1a Olea cuspidata Scrub forest 12/C1a: Ban Oak Forests (Quercus incana) 12/C1b: Moru Oak Forest (Q. dilatata) 12/C1b: (a, b) DS1/Oak scrub 12/C1c: Moist Deodar Forests 12/C1d: Western Mix Coniferous Forest 12/C1e: Moist Temperate deciduous forests 12/C1f: Low-level blue pine forest (Pinus wallichiana) 12/C2a: Kharsu Oak forest (Quercus semecarpifolia) 12/C2b: Himalayan upper oak-fir forest 12/DS1: Montane Bamboo brakes 12/DS3: Himalayan Temperate pastures 12/C1/DS2: Himalayan temperate secondary scrub 14/C1a: West Himalayan Sub Alpine fir forest 14C1b: West Himalayan Sub Alpine Birch/fir forests 15C1: Birch-Rhododendron scrub forest 15/C3: Alpine Pasture 16C1: Dry alpine scrub.

6.3 Floristics

Bio-geographically, the study area i.e. Beas basin is situated in the Biogeographic zone- 2A of North West Himalaya (Rodgers *et al.*, 1988). The entire area is comprised of complex hill system with elevation ranging from 325 m to about 6620 m, traversed throughout by several rivers and rivulets.

The flora of the study area covers the vast canvas of Himalayan ecosystem along an altitudinal gradient, a meeting ground of cold deserts of trans Himalayan region to the temperate and alpine Himalayan flora. At lower altitudes, there are forests of pine and at higher altitudes the presence of oak-rhododendron forests with horse chestnuts and maples. The temperate zone has coniferous forest of cedar, fir and spruce. The alpine areas harbor herbaceous flora like species of *Aconitum*, *Corydalis*, *Delphinium*, *Gentiana*, *Meconopsis*, *Pedicularis*, *Primula*, *Saxifraga*, etc. At higher elevations, the flora is of the cold desert type with prominence of species of *Astragalus*, *Caragana*, *Ephedra*, *Juniperus* and stunted *Hippophae* and rhododendrons. In the present study 1727 species of plants have been documented from the study area. A brief overview of number of plant species in various taxonomic groups.

GROUP	Families	Genera	Species	Total no. of species
Angiosperms				
Dicots	133	600	1263	
Monocots	29	165	318	
Total	162	765	1581	1727
Gymnosperms	3	7	14	
Pteridophytes	18	36	113	
Bryophytes	11	12	19	

6.4 Rare, Endangered, Threatened (RET) and Endemic Plant Species

In Beas basin, there are 14 plant species that are under different threat categories as per Red Data Book of Plants published by Botanical Survey of India. According to Red-list Status of candidate species as per Shimla Conservation Assessment Management Prioritisation (CAMP) December, 2010 by Foundation for Revitalisation of Local Health Traditions (FRLHT), 41 species are found in Beas basin. However according to IUCN (Ver. 2017-2) only 107 species have been assessed for their conservation status globally and most of them are listed in 'Least Concern' category and only 8 are in VU category, 2 in Near Threatened, 4 each in Critically Endangered and Endangered category.

Of 84 plant species endemic to North West Himalaya (Included here are the Himalaya above about 1000 m in the area westward of the Kali Gandaki River Gorge in Central Nepal - Jain & Rao, 1983; Kanai, 1963; Rau, 1974) and Himachal Pradesh (Chaudhery, 1999) 64 species are reported from Beas basin.

6.5 Medicinal & Economically Important Plants

This region harbours a wide range of medicinal plants used in Ayurvedic, Homoeopathic and Unani medicines or used by the local people. In the present study 146 plant species have been documented which are used for various medicinal purposes in the basin.

6.6 Floristic Profile across the Basin

To understand the vegetation profile across the basin i.e. in different sub-basins species richness was documented. According to this species richness ranges from 94 to 171 with maximum in the Parbati Upper sub-basin and minimum in Beas I. Important trees of this basin are *Taxus wallichiana*, *Cedrus deodara*, *Pinus wallichiana*, *Picea smithiana*, *Abies pindrow*. It is home to large number of medicinal plants also. Uhl sub-basin is another biodiversity rich due to diverse habitats congenial for growth of different species. Dominant trees of Uhl sub-basin are *Aegle marmelos*, *Bauhinia variegata*, *Cinnamomum tamala*, *Neolitsea umbrosa*, *Mallotus philippensis* and *Sapium insigne*. At lower to mid elevations *Pinus roxburghii* is a very common species. However, with the increasing altitude montane Himalayan species become more prominent and lowland species are rare or absent. Beas I and Beas II sub-basins located in the high altitudinal zone are mainly comprised of coniferous species like *Abies pindrow*, *Cedrus deodara*, *Picea smithiana* and *Pinus wallichiana*.

As already discussed in previous section on medicinal plants large number of medicinal plants are found in the basin owing diverse habitats and elevation range. Some of the important medicinal plants like *Aconitum chasmanthum*, *A. heterophyllum*, *Arnebia benthami*, *Dactylorhiza hatagirea*, *Dioscorea deltoidea*, *Ephedra gerardiana*, *Ferula jaeschkeana*, *Nardostachys grandiflora*, *Picrorhiza kurroa*, *Rheum australe*, etc. are found in higher altitude areas of Beas I, Beas II, Parbati Upper, Sainj and Tirthan sub-basins.

6.7 Community Structure

The phytosociological studies were carried out for the analysis of community structure coverings all three season (pre-monsoon, monsoon and winter). The sampling for the same was conducted at the 60 locations.

6.7.1 Density of Trees

Upper catchment of Beas basin (Manali-Kullu) is comprised of temperate forest. *Pinus wallichiana*, *Cedrus deodara*, *Picea smithiana* and *Corylus colurna* were dominant tree species in these forests and are found in association with *Aesculus indica*, *Acer caesium*, *Alnus nepalensis*, *Celtis australis*, *Ulmus villosa*, *Fraxinus floribundus*, *Populus ciliata*, *Juglans regia*, *Quercus semecarpifolia*, *Salix fragilis*, *Salix tetrasperma*, *Ilex dipyrena* and *Betula utilis*.

In the middle stretch covering area between Kullu to Mandi forest is comprised of temperate to sub-tropical forest type. *Pinus wallichiana*, *Cedrus deodara Quercus semecarpifolia*, *Salix fragilis* and *Betula alnoides* are dominant at higher elevations in temperate areas, while at lower elevations *Adina cordifolia*, *Bauhinia variegata*, *Bombax ceiba*, *Celtis australis*, *Dalbergia sissoo*, *Mallotus philippensis*, *Rhus succedanea*, *Ficus palmata*, *Grewia optiva*, *Morus alba*, *Toona hexandra*, *Albizia* sp., *Boehmeria rugulosa*, *Phoebe lanceolata*, *Populus ciliata*, etc. are common.

The area downstream of Mandi up to Pong Dam forest is generally classified under tropical forest type. Tree component is mainly comprised mainly of Syzygium cumini, Albizia lebbeck, Albizia chinensis, Boehmeria rugulosa, Delonix regia, Dalbergia sissoo, Sapium insigne, Bombax ceiba, Adina cordifolia, Eucalyptus citriodora, Mallotus philippensis, Lannea grandis, Bombax ceiba, Azadirachta indica, etc.

The density of trees varied from site to site. The overall tree density throughout the study area ranged from minimum of 120 number of trees/ha to maximum of 530 trees/ha. Highest tree density was recorded at sampling site located near diversion site of Fozal HEP (left bank of Fozal Nala) and Sampling site located near the Diversion weir of Khauli Khad HEP, where *Pinus roxburghii*, *Quercus* spp. and *Bauhinia variegata* are the dominant species followed by sampling site located upstream of Uhl-I HEP barrage site (Right Bank of Ulh river) and lowest density of tree species were recorded at sampling site located in proposed project area of Jobrie HEP (right bank of Allain Nala).

Dominance

Among the trees *Pinus wallichiana*, *Cedrus deodara*, *Picea smithiana* and *Fraxinus floribunda* are the most frequent occurring species. *Cedrus deodara* was the most dominant species in temperate zone covering area of Upper catchment of Beas river up to Kulu, Malana Nala, Parbati river, Upper catchment of Uhl river areas. Pure stands of *Cedrus deodara* were recorded with high IVI values at most of the sites. *Pinus wallichiana* were the other dominant trees of the forests in this region. However, *Juglans regia* and *Picea smithiana* were also found dominant at some places. While at lower elevation comprising of temperate and sub-tropical region *Pinus wallichiana* was more commonly found at higher elevation ridges while species of *Quercus*, *Pinus roxburghii*, *Alnus nepalensis*, *Celtis australis* are dominant in tropical forests. In the tropical region of Beas basin *Dalbergia sissoo*, *Populus ciliata*, *Adina cordifolia*, *Bombax ceiba*, *Albizia* spp., *Eucalyptus citriodora*, *Mallotus philippensis*, *Lannea grandis* show frequent distribution with high IVI value. In all 91 species of trees were recorded from different sites.

During the field surveys 128 species of shrubs were recorded, species like *Rhododendron* anthopogon, Rosa webbiana, and Juniperus communis with other species like *Ephedra vulgaris*, Cotoneaster bacillaris, Sorbaria tomentosa, Berberis jaeschkeana, Berberis lycium, Artemisia nilagirica and Berberis aristata, were the most dominant shrub species in temperate region of Beas basin. Sorbaria tomentosa, Artemisia nilagirica and Berberis aristata were dominant at sites located at lower elevations in all seasons whereas Rosa webbiana, Berberis lycium and Rhododendron campanulatum were dominant at sites located at higher elevations.

In the middle stretch of Beas basin where vegetation is of temperate and sub-tropical forest type Berberis aristata, Debregeasia longifolia, Boehmeria platyphylla, Leucosceptrum canum, Maesa chisia, Melocalamus compactiflorus, Oxyspora paniculata, Sarcococca saligna, Colebrookea oppositifolia Indigofera gerardiana Debregeasia longifolia are the dominant shrub species with IVI values more than 50. At the lower elevations comprised of sub-tropical and tropical forest type Lantana camara, Murraya koenigii and Justicia adhatoda are the dominant shrub species with high IVI values. Predominant shrub species recorded from the study are in the lower catchment of Beas river are Boehmeria macrophylla, Caryopteris odorata, Debregeasia salicifolia, Urtica dioica, Desmodium elegans, Woodfordia fruticosa, etc.

In all 250 species of herbs were recorded during field surveys. Gentiana kurroo, Iris kemaonesis, Poa alpina, Dactylis glomerata, Thymus serpyllum, Bistorta macrophylla, Axyris hybrida, Senecio chrysanthemoides, Origanum vulgare, Ageratum conyzoides, Artemisia nilagirica, Argemone mexicana, Achyranthes aspera, Anaphalis contorta, Nepeta ciliaris, Urena lobata, Datura stramonium, Fragaria vesca, Micromeria biflora, Mentha longifolia, Eragrostis pilosa, Buddleja asiatica, Curcuma aromatica, Parthenium hysterophorus, Cyperus rotundus and Chrysopogon fulvus were found dominant at different sampling sites with each of them having IVI of more than 30. In general species like Artemisia maritima, Gentiana kurroo, Ageratum conyzoides and Argemone mexicana were the most dominant species at most of the sites during the surveys.

6.7.2 Species Diversity

To understand the species richness Shannon Weiner Diversity was calculated for trees, shrubs and herbs. Amongst trees the diversity Index ranged from low of 1.17 at sampling site V22 located near power house site of Sarbari II HEP to highest at sampling site V54 at sampling site located at left bank of Pong dam reservoir (2.82).

Among shrubs, highest diversity Index was recorded at sampling site V31 in the downstream of Dam site of Parbati III HEP (3.14) followed by sampling site V28 (3.13) in the Upstream of Sainj HEP Dam site and lowest at sampling site V4 located near proposed project area of Jobrie HEP (left bank of Alain Nala) (1.37).

Diversity of herb species shows seasonal variation in the study area. Maximum Diversity for herbs was recorded during monsoon season varied from lowest 2.27 at sampling site V-14 located near to the proposed Dam site of Nakthan HEP and highest value of diversity was recorded from sampling site V59 (3.17) located near to the proposed Dam site of Dhaulasidh HEP. During premonsoon season sampling, species diversity of herbs varied from lowest 1.75 at sampling site V14 (Near proposed power site of Nakthan HEP) and highest 2.98 at sampling site (Site V35) located

near to the diversion site of proposed Uhl HEP. During winter season sampling the Diversity Index ranged from lowest of 1.91 (at Site V1) to highest of 2.83 (at Site V59).

6.8 Faunal Resources

6.8.1 Mammals

According to data compiled from secondary sources like published literature and Forest Working Plans and Wildlife management plan of Protected Areas and the forest and wildlife divisions, 40 mammalian species are reportedly found in the Beas basin. Family Bovidae is the largest family represented by 6 species while Viverridae is represented by 4 species, Felidae, Muridae, Mustelidae, Cervidae and Cercoitecidae having 3 species.

6.8.1.1 Conservation Status

According to IWPA (1972) Nine species of mammals are included in Schedule-I according to WPA 1972, 14 species in Schedule-II and rest of the species are either under Schedule-III, IV or V species. Six species have restricted distribution inhabiting higher elevations of the basin.

According to IUCN Red List (2017-2), 11 species are listed under different threat categories of which 2 species are under Endangered category viz. *Panthera uncia* and *Moschus chrysogaster* (*Moschus moschiferus*), 4 are under Vulnerable category viz. *Panthera pardus*, *Capricornis sumatraensis*, *Rusa unicolor* and *Ursus thibetanus* while 5 species are listed as Near Threatened category. Rest of the 29 species of mammals reported from the basin are under Least Concern (LC) category.

Among these threatened species Snow Leopard, Musk Deer, Serow, and Himalayan tahr are confined to upper reaches of the basin.

6.8.1.2 Sub-basin-wise Mammals Distribution

Species richness in different sub-basins ranges from 30 to 36 species with maximum in sub-basin Beas IV and minimum in sub-basin Beas I (refer **Table 3**). There is not much variation in the species richness along the elevational gradient, however it is slightly higher at middle elevations i.e. between 1800 and 2100 m. The sub-basins in lower reaches like Beas IV, Beas V, Uhl, etc. harbour more species as compared to the sub-basins located in upper reaches like Beas I, Beas II, Malana and Parbati. The species like Rhesus Macaque (*Macaca mulatta*), Common Leopard (*Pathera pardus*), Jungle Cat (*Felis chaus*), Jackal (*Canis aureus*) and Common Otter (*Lutra lutra*) are widely distributed throughout the basin. Upper reaches of the basin harbour species with relatively restricted distribution and threatened species. The species confined to the upper reaches are Snow Leopard (*Panthera uncia*), Brown Bear (*Ursus arctos*), Blue Sheep (*Pseudois nayur*), Siberian Ibex (*Capra sibirica*), Himalayan Tahr (*Hemitragus jemlahicus*) and Musk Deer (*Moschus chrysogaster*). All species are categorised either under IUCN Redlist (2017-2) or Schedule I category or under both categories.

Mammalian species confined to the foothills and lower reaches include Indian Fox (*Vulpes bengalensis*), Hyaena (*Hyaena hyaena*), Common Mongoose (*Herpestes edwardsii*), Common Palm Civet (*Paradoxurus hermaphrodites*), and Sambar (*Cervus unicolor*).

Table 3: Sub-basin wise mammalian species richness

Sub-basins	Total species richness	No. of RET species	No. of Schedule I species
Beas I	30	8	6
Beas II	33	7	6
Malana	31	8	7
Parbati Upper	31	9	8
Parbati Lower	32	8	8
Sainj	33	8	8
Tirthan	33	8	8
Beas III	31	8	5
Uhl	35	8	8
Beas IV	36	8	7
Beas V	33	5	4

6.8.2 Birds in Beas Basin

In the present study **625 species** of birds belonging to 23 Orders and **96 families** have been documented from the basin.

According to this list, Muscicapidae with 53 species is the largest family in the basin followed by Accipitridae with 44 species and Anatidae with 24 species of birds.

Out of 625 species of birds 64 species have not been evaluated by IUCN Redlist (2017-2) while 511 have been listed in Least Concern category. Fifty species have been listed under different threat categories of IUCN (2017-2) and WPA Schedules. Five species have been listed as Critically Endangered category (White-rumped Vulture, Slender-billed Vulture, Red-headed Vulture, Sociable Lapwing and Great Indian Bustard) while 6 species (Steppe Eagle, Egyptian Vulture, Greater Adjutant, Saker Falcon, Red-necked Falcon and Lesser Florican) are listed as Endangered in IUCN Redlist.

According to WPA (1972) 22 species have been listed as Schedule-I species and 8 species are endemic to Himalaya are reported from the basin.

Pong Dam lake is the richest area in terms of bird species diversity where 415 species of birds have been reported and is home to number of wintering species.

Species richness in different sub-basins ranges from 117 to 418 with minimum in Beas sub-basin I and maximum in Beas sub-basin IV (refer Table 4). Maximum number of bird species reported from Beas IV sub-basin is owing to the presence of Pong Dam Lake which is a suitable wintering habitat for migratory birds. Bar-headed geese is one of the most dominant waterfowl species that is found in Pong Dam lake. Majority of the species are generalists while a few of them are confined to upper reaches (Himalayan Snowcock - Tetraogallus himalayensis, Monal Pheasant - Lophophorus impejanus, Horned Lark - Eremophila alpestris, Himalayan Yellow-billed Chough-Pyrrhocorax graculus, Himalayan Red-billed Chough - Pyrrhocorax pyrrhocorax, Western Greenish Leaf-Warbler - Phylloscopus trochiloides, etc. and lower reaches (Grebs, Herons, Storks, Egrets, Ducks, etc). In general, species richness decreases along the elevational gradients, the sub-basin extends from lower reaches harbour relatively high species richness.

CIA&CCS- Beas Basin in HP Executive Summary

Considerably high species richness in Beas sub-basin IV is attributed to the presence of a large wetland - Pong dam reservoir which is home of many aquatic bird species.

Table 4: Sub-basin wise bird species richness

Sub-basins	Total species	No. of threatened	No. of Schedule I
Sub busins	richness	species	species
Beas I	117	4	7
Beas II	123	4	7
Malana	121	4	7
Parbati Upper	120	4	7
Parbati Lower	123	4	7
Sainj Khad	123	4	7
Tirthan	123	4	6
Beas III	136	7	7
Uhl	137	7	7
Beas IV	418	21	5
Beas V	145	3	1

Endemic Species

The species that are endemic to Western Himalaya and found in Beas basin are White-throated Tit (Aegithalos niveogularis), Western Tragopan (Tragopan melanocephalus), Cheer Pheasant (Catreus wallichi), Spectacled finch (Callacanthis burtoni), Orange Bullfinch (Pyrrhula aurantiaca), Kashmir flycatcher (Ficedula subrubra), Kashmir nuthatch (Sitta cashmirensis), Tytlers' leaf warbler (Phylloscopus tytleri) and Brooks's Leaf-Warbler (Phylloscopus subviridis).

Nearly 66% of the total bird species in Beas basin are residents. Of the total resident bird 14.5% species perform local movement and 13.5% are seasonal migrants. About 25% of the total bird species are summer and winter visitors, which perform their movement for breeding purpose. The passage migrant species include Pale Grasshopper-Warbler, Lesser Whitethroat, Yellow Wagtail, Brambling, Black-headed Bunting and Red-headed Bunting.

The wetland of Pong dam reservoir (Pong Dam Lake Wildlife Sanctuary) in the basin (Beas subbasin IV) provides a good niche for the migratory birds. As many as 418 bird species have been recorded from the Pong dam reservoir area only according to Status Paper on Pong Wetland published by Randhawa (2014) under HP State Centre on Climate Change. Many migratory birds like Bar Headed Geese (Anser indicus), Northern Pintail (Anas acuta), Common Pochard (Aythya farina), Red Necked Grebe (Podiceps grseigena), Mallard (Anas platyrhynchos), etc. visit this site in winter from trans-Himalayan region.

6.8.3 Butterflies

Total 150 species of butterflies in the Beas river basin have been documented. Species richness in different sub-basins ranges from 76 to 137 with minimum in Beas sub-basin I and maximum in Beas sub-basin IV (refer **Table 5**). Majority of the species are common in distribution in all sub-basin while a few of them are restricted to upper reaches (Red Apollo - *Parnassius charltonius*, Common Blue Apollo - *Parnassius hardwickei*, Painted Lady- *Vanessa cardui*, Mountain Argus - *Erebia shallada*) and lower reaches (Spangle-*Papilio protenor*, Tawny Mime-*Chilasa agestor*, Psyche - *Leptosia nina nina*, Common Jezebel - *Delias eucharis*, Pale Hedge Blue - *Heliophorus epicles*, Common Baron - *Euthalia*

CIA&CCS- Beas Basin in HP Executive Summary

aconthea, Common Jester - Symbrenthia hippoclus, Common Bush Brown - Mycalesis perseus, Dark Blue Tiger - Tirumala septentrionis etc).

Table 5: Sub-basin wise number of butterfly species richness

Sub-basins	Total species richness	No. of Threatened species	No. of Schedule I species
Beas I	76	0	0
Beas II	79	0	0
Malana	84	0	0
Parbati Upper	84	0	0
Parbati II	82	0	0
Sainj Khad	84	0	0
Tirthan	84	0	0
Beas III	135	0	1
Uhl	137	0	1
Beas IV	136	0	1
Beas V	120	0	1

Conservation Status: Out of 150 species inventoried for Beas river basin, only 5 species, viz. Bath White (Pontia daplidice), Small Grass Yellow (Eurema brigitta), Peacock Pansy (Junonia almanac), Yellow Pansy (Junonia hierta) and Common Crow (Euploea core) are assessed under the IUCN Redlist (2017-2) and listed under 'Least Concern' category. Similarly, only a few species are included in the list of scheduled species as per IWPA (1972). Only one species - Common Pierrot (Castalius rosimon) in Beas river basin is included in Schedule I. A total of 8 species like Common Yellow Swallowtail (Papilio machaon), Regal Apollo (Parnassius charltonius), Common Onyx (Horaga onyx), Pea Blue (Lampides boeticus), Common Beak (Libythea lepita), Danaid Eggfly (Hypolimnas misippus), Veined Labyrinth (Lethe pulaha), Common Fiorester (Lethe insana insane) are listed in Schedule II.

6.8.4 Herpetofauna

Total 59 species are reported from the Beas basin of which 51 species are of reptiles and 8 species are of amphibians (**Table 6**).

6.8.4.1 Reptiles

Reptilian fauna is comprised of 51 species belonging to 12 families. Colubridae is the largest family represented by sixteen species followed by Agamidae, Scincidae and Geoemydidae with 5 species each. IUCN Red List (2017-2) has kept Indian Rock Python (*Python molurus*), Spotted Pond Turtle (*Geoclemys hamiltonii*) and Gangetic Soft-shell Turtle (*Nilssonia gangetica*) under Vulnerable category. Eleven species are under Least Concern category and rest of the species are yet not evaluated under IUCN Red List (2017-2).

6.8.4.2 Amphibia

From the Beas basin 8 species of Amphibians are reported which belong to 4 families, which comprises of toads and frogs. Bufonidae is the largest family with 3 species.

Table 6: Sub-basin wise herpetofaunal species richness in Beas river basin

Sub-basins	Total species richness	No. of Threatened species	No. of Schedule I species
Beas I	26	1	0
Beas II	28	1	0
Malana	27	1	0
Parbati Upper	27	1	0
Parbati Lower	28	1	0
Sainj Khad	29	1	0
Tirthan	29	1	0
Beas III	32	2	1
Uhl	32	2	1
Beas IV	38	4	2
Beas V	30	4	2

Conservation Status: Most of the assessed species are listed in 'Least Concern' category. Only Tiny Frog is categorised under 'Vulnerable' category. Tiny Frog is widely distributed in the basin. Under the Schedule list of IWPA (1972) only Indian Flapshell Turtle are included under Schedule I. It is confined to the Shivalik hills (Beas IV and V) of the basin.

6.9 Protected Areas

There are 10 Wildlife Sanctuaries and 3 National Parks in the basin covering an area of 3236 sq km (Table 7).

Table 7: List of Protected Areas located within Beas Basin and status of ESZ Notifications*

S.	PROTECTED AREAS	Area	Status of ESZ Notification
No.		(Sq km)	
Wildl	ife Sanctuaries		
1	Dhauladhar Wildlife Sanctuary	982.86	Draft Notification (13/01/2016)
2	Kanawar Wildlife Sanctuary	107.29	Draft Notification (28/04/2016)
3	Khokhan Wildlife Sanctuary	14.94	Draft Notification (04/03/2016)
4	Manali Wildlife Sanctuary	29.00	Draft Notification (04/03/2016)
5	Sainj Wildlife Sanctuary**	90.00	-
6	Pong Dam Lake Wildlife Sanctuary	207.59	Draft Notification (17/11/2016)
7	Tirthan Wildlife Sanctuary**	61.00	-
8	Shikari Devi Wildlife Sanctuary	29.94	Draft Notification (04/03/2016)
9	Nargu Wildlife Sanctuary	132.37	Draft Notification (08/03/2016)
10	Kais Wildlife Sanctuary	12.61	Draft Notification (24/04/2016)
Natio	nal Parks		
11	Great Himalayan National Park**	754.40	-
12	Khirganga National Park**	710.00	Draft Notification (25/07/2016)
13	Indrakilla National Park	104.00	Final Notification Issued
			(17.01.2018)
Great	: Himalayan National Park	1615.40	Draft Notification (22/08/2016)
Conse	ervation Area (GHNPCA)**		

^{*}http://envfor.nic.in/content/esz-notifications

^{**} Great Himalayan National Park Conservation Area includes Sainj WLS, Tirthan WLS, Great Himalayan National Park and Khirganga National park

6.10 Important Birding Areas

BirdLife International is the world's largest nature conservation partnership. It identifies Important Birding Areas worldwide for conservation action. The Bombay Natural History Society (BNHS) is the BirdLife Partner for India and is responsible for coordinating the IBA programme in the country. Of the 467 IBAs identified so far in India, 191 are Wildlife Sanctuaries, 52 are National Parks, 23 are Tiger Reserves and one is a Conservation Reserve (Birdlife International, 2017). India's IBAs are host to 75 species of globally threatened birds of which eight are Critically Endangered, 10 are Endangered and 57 are Vulnerable. A total of 199 IBAs (almost 43%) are located outside the Protected Area Network (PAN) and have no official protection. In Himachal Pradesh 27 IBAs have been and of these 24 are sanctuaries and 2 are national parks and only one is non-protected area (Islam and Rahmani, 2004). In Beas basin 9 IBAs have been identified based upon the criteria defined by Birdlife International. Most of the IBAs harbor critically endangered Western tragopan and Vulnerable Cheer pheasant.

IBA Site Important Species* IBAs Criteria Code IN-HP-04 Dhauladhar Wildlife Sanctuary A1, A2 Western tragopan Western tragopan, IN-HP-08 Great Himalayan National Park A1, A2 Cheer pheasant Western tragopan, IN-HP-09 Kais Wildlife Sanctuary A1, A2 Cheer pheasant Western tragopan, IN-HP-11 Kanawar Wildlife Sanctuary A1, A2 Cheer pheasant Western tragopan, IN-HP-16 Manali Wildlife Sanctuary A1, A2, A3 Cheer pheasant IN-HP-17 Nargu Wildlife Sanctuary A3 White-rumped IN-HP-19 Pong Dam Lake Wildlife Sanctuary A1, A4iii vulture, Slenderbilled vulture Shikari Devi Wildlife Sanctuary IN-HP-24 A1, A2, A3 Cheer pheasant IN-HP-27 | Tirthan Wildlife Sanctuary Western tragopan A1, A2, A3

Table 8: List of IBAs identified in Beas basin

Owing to rich avi-faunal diversity Pong dam reservoir has been declared as Ramsar site in 2002 spread over an area of 156.62 sq km. Pong dam lake is an important wintering ground for waterfowl. IBA report on Himachal Pradesh states that concentration of wintering waterfowl population has sharply increased over the years especially the populations of Northern Pintail, Bar-headed Geese, Common Teal, Eurasian Wigeon, Common Pochard and Great Cormorant. The report also says that almost 20% of Bar-headed Geese population occurs in Pong Dam only. No other IBA site in India holds such a large population of this species. The status paper on Pong dam has reported 415 species of birds from the Pong Dam lake. Pong Dam Lake also known as Maharana Pratap Sagar was declared Ramsar site on 19.8.2002 by Ramsar Convention.

7 AQUATIC ECOLOGY

7.1 Water Quality Assessment

Both physico-chemical and biological water quality of Beas river and its major tributaries was assessed at 59 locations in the entire Beas basin.

^{*}Western tragopan, White-rumped vulture and Slender-billed vulture are Critically Endangered; Cheer pheasant is Vulnerable

7.1.1 Physico-chemical Water Quality

The analysis of most of the physico-chemical parameters in general revealed that there is hardly any significant variation in most of the parameters most of them are within prescribed CPCB standards. The absence of heavy metals is mainly attributed to absence of heavy industries in the basin except for medium and small enterprises in towns like Kullu, Mandi and Kangra comprising mainly of Agro and Food Processing, mechanical and engineering based, wood, woollen items, and wooden based industries and main exportable items are fabric and ayurvedic medicines (Source: Industrial Profile of Kullu, Mandi and Kangra towns). Main economic activities are comprised of tourism and its related activities. Being hilly and mountainous region industries have not developed in the basin. The heavy metals in Beas river and its tributary streams are either Not Detectable or Below Detectable Limits.

In order to make an overall assessment of water quality of Beas river and its tributary streams water quality indices like WQI (Water Quality Index) based upon 9 different water quality parameters was used. WQI at majority of sampling sites in different sub-basins during all seasons ranges from Good to Excellent as the values in general range between 70 and 94 which indicates that water quality based upon above parameters is largely Good or Excellent. Only at some of the sampling sites in Parbati Lower (Parbati, Sharni and Sarsadi HE projects areas is in Medium category. It was also seen that BOD values were higher than the normal range and Total Coliforms were also on high side presumably due to discharge of untreated discharge of domestic sewage directly into Beas river where towns like Manali, Kullu and Mandi.

7.1.2 Biological Water Quality

For assessing biological water quality an index of BMWP (Biological Monitoring Working Party) was used which is indicative of biological richness of a particular river/stream based upon type of Macro-invertebrates inhabiting the particular stream.

BMWP score varied from lowest value of 24 to highest value of 144. Water quality during monsoon in general was Poor to Good in most of water sampling sites in Parbati Lower, Uhl, Sainj, Beas III, Beas IV and Beas V sub-basins. Water quality however was in Good category during winters at all the above sites. Water quality scenario was almost similar to winters in pre-monsoon season at all these sites. At majority of the sampling sites water quality is in 'Very Good' category at sampling sites located in Parbati Upper and Parbati Lower sub-basins especially during pre-monsoon and winters.

7.2 Fishes

Beas drainage system in Himachal Pradesh is spread over a length of more than 900 km, which is comprised of 274 km of Beas river and about 626 km of tributaries (Sehgal, 1983). Important from view point of fishes are Baner, Binwa, Neugal, Dehar, Awa, Banganga, Gaj, Manuni, Parbati, Patlikuhl, Sainj, Suketi, Tirthan and Uhl. Northern and eastern tributaries are perennial, and snow fed while southern tributaries are seasonal. Coldwater streams are characterized by high transparency and dissolved oxygen. Major cold-water fishes belong to Cyprinidae, Cobitidae and Sisoridae and these fishes are small in size. Most of the hill stream fishes live at the bottom or on the banks due to low water current than the main Beas river.

Fishes living in torrential tributary streams have special organs for attachment. These fishes thrive in the hilly streams and have bottom dwelling habits.

Based upon the data compiled various secondary sources cited above fish fauna in the Beas basin is comprised of 84 species belonging to 14 families. Cyprinidae is the largest family represented by 43 species followed by Cobitidae and Sisoridae with 11 species each. As many as 57 species have been reported from Pong Dam reservoir itself. The conservation status of fish species was assessed with the help of IUCN Redlist, Conservation Assessment and Management Plan (CAMP) Workshops Report (1998) and Threatened Freshwater Fishes of India by National Bureau of Fish Genetic Resources, Lucknow (NBFGR, 2010) (refer **Table 9**).

Out of 84 species 77 are native/indigenous while remaining 7 fish viz. Amblypharyngodon mola (Mola Carplet), Hypophthalmichthys molitrix (Silver Carp), Ctenopharyngodon idella (Grass carp), Carassius auratus (Gold Fish), Cyprinus carpio (Common Carp), Salmo trutta fario (Brown Trout) and Oncorhynchus mykiss (Rainbow Trout) are exotic. Fish diversity decreases along the elevational gradient, thus lower reaches of basin/sub-basins harbour relatively high species richness.

Rich fish fauna of Beas IV sub-basin can be attributed to the presence of Pong Dam reservoir at the foot of the basin and many perennial tributaries like Baner Khad, Gaj Khad and Dehar Khad. These tributaries are considered as sanctuaries of fish. Baner is one of the known spawning ground of *Tor putitora* (Golden Mahseer). The seeds of Golden mahseer had been collected by Joshi (1980) from Baner Khad successfully. The sub-basins like Uhl, Beas III and Beas IV extend in lower reaches are dominated by carp fishes like *Labeo* spp., *Tor putitora*, *Catla catla* (Main river) and minor carp like *Barilius* spp., *Puntius* spp., *Nemacheilus* spp., etc. (in tributaries). Sub-basins in upper reaches like Beas I, Beas II, Sainj Khad, Tirthan, Parbati I, Parbati II and Malana II are dominated by Snow Trout (*Schizothorax richardsonii*). However, due to regular introduction of Brown Trout (*Salmo trutta fario* and Rainbow Trout (*Onchorhynchus myskiss*), the native populations have been adversely affected and some of the river stretches are dominated by these exotic trout.

Table 9: Distribution of fish species in Beas Basin and their conservation status

			No. of	No of R	ET Species
Sub-basin	Projects	River/Stream	Fish species	IUCN	CAMP
	Beas Kund	Beas Kund Nala			
	Palchan Bhang	Kothi Nala/Beas river			
Beas I	Bhang	Beas River	11	1	3
Deas I	Jobrie	Jobrie & Allain Nala Allain & Duhangan Nala			3
	Allain Duhangan				
	Baragaon	Sanjoin & Bijara Nala			
Beas II	Fozal	Fozal Nala	22	4	E
Deas II	Raison	Beas	22 1		5
	Sarbari II	Sarbari Khad			
	Malana I	Malana Nala			
Malana	Malana II	Malana Nala	17	1	3
	Malana III	Malana Nala			
	Nakthan	Tosh Nala & Parbati	12		

	Tosh	Tosh Nala				
	Jari	Parbati			3	
Parbati	Balargha	Parbati		1		
Upper	Parbati II	Parbati	1			
	Parbati	Parbati				
Db+:	Sharni	Parbati				
Parbati	Sarsadi	Parbati	20	1	3	
Lower	Sarsadi II	Parbati				
	Sainj	Sainj				
Sainj	Parbati III	Sainj	20	1	4	
	Hurla I	Hurla Nala				
Tirthan	-	Tirthan	18	1	4	
	Patikari	Bakhli Khad				
Beas III	Pandoh	Beas	22	2	13	
	Larji	Beas				
	Lambadug	Lambadug Khad				
	Uhl	Uhl				
	Uhl I (Shanan)	Uhl				
Uhl	Uhl II (Bassi)	Rana & Neri Khad	24 2		13	
	Uhl III	Rana & Neri Khad			l	
	Lower Uhl	Uhl			1	
	Uhl Khad	Uhl				
	Gaj	Gaj Khad				
	Khauli	Khauli Khad		2		
	Baner	Baner Khad				
D 1\/	Neugal	Neugal Khad			22	
Beas IV	Baner II	Baner Khad	57		22	
	Binwa	Binwa Khad				
	Kilhi Bahl	Binwa & Awa Nala	1			
	Pong Dam	Beas	1			
	Triveni Mahadev	Beas				
Beas V	Dhaulasidh	Beas	41	2	17	
	Thana Plaun	Beas]			

7.2.1 Conservation Status

Out of 84 fish species reported from the basin, 70 species have been evaluated by IUCN Redlist and 59 species are under Least Concern category. Under the IUCN redlist 8 species have been included in different threat categories. Only one species *Tor putitora* is listed as Endangered, 4 species are listed as Near Threatened viz. *Bagarius bagarius*, *Hypophthalmichthys molitrix*, *Tor tor* and *Wallagu attu*. CAMP (1998) have evaluated 63 species and a total of 29 species are categorised as 'Vulnerable', 'Endangered' and 'Critically Endangered' species out of which 6 are Endangered and 21 are under 'Vulnerable' category. Two species namely *Glyptothorax garhwali* and *Glyptothorax stolickae* are listed as Critically Endangered and are confined to the lower reaches of Beas basin and prefer to inhabit lower reaches of Beas river tributaries. Fifteen species have been included in list of frsehwater threatened fishspecies of India by NBFGR, out of which 4 are listed as Endangered while 11 species are listed under Vulnerable category. *Amblyceps mangois*, *Tor mosal*, *Tor putitora* and *Tor tor* have been listed as Endangered species.

7.2.2 Fish Migration & Spawning

The migration of fish in Himalayan rivers are generally attributed to their spawning habit. In Beas basin, two species viz. *Tor putitora* and *Tor tor* are relatively long-distance migratory

species, which ascend and spawn in tributaries. *Tor putitora* is periodic and specific in migration and spawning and span in tributaries of mid elevations while *Tor tor* spawns in low land tributaries. Sehgal (1990) stated that prior to construction of Pandoh dam, *Tor putitora* used to migrate in Beas river up to Sultanpur and Kullu but Pandoh dam has hampered its migration and presently it is restricted to downstream of Pandoh dam only.

Clupisoma garua is another long-distance migratory fish. It performs upstream migration during July to September and downstream migration in October-November.

Labeo dero and Schizothorax richardsonii (Snow trout) are medium distance migratory species. Labeo dero is known to migrate upstream from March to August and it comes down in September. Snow trout performs upstream migration from March to May and moves downstream during November-December.

7.2.3 Existing and Potential Streams for Spawning and Breeding in Beas basin

Snow trout in Beas river migrates upstream during breeding where the temperature is less. It is known to breed twice, in the summer (May-June) and in (July-October), in the shallow water along the bank of the streams (Sharma, 2010) up to November. Juni stream (a left bank tributary of Beas, upstream of Pandoh dam) once was one of the potential spawning ground of *Tor putitora* but due to construction of Pandoh dam, the population of Golden mahseer has disappeared from this tributary.

Existing Trout Streams

Barot is one of the important areas in Beas basin where trout farming is done. Some of the finest fishing spots are located at Luhandi, Puran hatchery, Lachkkandi, Tikkar, Balh and Kamand in this sub-basin. Besides Barot the entire stretch of Beas river from Pandoh Dam to Aut on the Mandi-Manali national highway is also considered good for trout fishing.

Tributaries like **Sarbari, Sanjoin and Phojal** offers ideal habitats for trout and provides ample opportunities for fishing. Sainj and Tirthan rivers which form a tri-junction with Beas river about 100m downstream near Larji are also known trout streams.

Beas river from Manali to Bhuntar provides some excellent pools for fishing especially at Patlikuhl, Katrain and Raison. Trout hatcheries have also been developed at Patlikuhl and Bathad.

Parbati river another large tributary is also suitable habitat for trout in Parbati Lower subbasin and is famous for trout fishing at places like **Kasol**.

Potential Trout Sites

- i) Uhl Khad (1500 m)
- ii) Khauli (1160 m)
- iii) Arnodi Khad (1090 m)
- iv) Sukhad Khad (975 m)
- v) Khoti Nala (990 m)

vi) Poon Nala (990 m)

All the above-mentioned streams can be classified as Type-A streams and harbor good populations of snow trouts.

The streams with lot of shaded area with dense vegetation are favorable for the breeding of trout fish. Highly oxygenated water i.e. high DO values and rapid current are pre-requisite for the fish. It has been found that an alkaline pH, high DO with water velocity more than 1.8 m/s is the most suitable habitats for snow trout.

Existing Mahseer Streams

- a) Sari Marog
- b) The stretch between Harsi Pattan and Nadaun
- c) Kuru
- d) Dehra and Pong Dam Reservoir
- e) Larji

Potential Mahseer Sites

- vii) Binwa Khad (810 m)
- viii) Rana Khad (860 m)

Himachal Government has specifically declared Tirthan river as an angling reserve and not to allow any hydropower project on this river as well as its tributaries in order to maintain its aquatic biodiversity. Every year fingerlings of brown as well as rainbow trout are stocked in this river by the department.

8 CUMULATIVE IMPACT ASSESSMENT

As Beas basin harbours rich biodiversity, for Cumulative Impact assessment, the biologically rich areas were spatially identified for the purpose of conservation and saving the existing gene pool from extinction. It is evident from the fact that more than 48% of the basin area is under Very High and High Richness Index category. These areas are mainly located in upper Beas catchment, Parbati, Sainj and Tirthan river catchments and higher elevations in catchments of Baner Khad, Neugal Khad, Binwa Khad, Uhl river which drain the southern slopes of Dhauladhar range.

In addition to Biological Richness Index, Fragmentation Index map as well as Disturbance Index maps of the basin were also prepared to delineate areas with where landscape fragmentation has occurred over the years due to various developmental activities and urbanisation. Biotic disturbance attributes like proximity to roads and human settlements along with landscape parameters are combined to generate Disturbance Index.

For overall CIA Forest cover change, type of forest encountered, Fragmentation Index and Disturbance Index categories in different sub-basins, along with ecological attributes of floral and faunal elements both terrestrial as well as aquatic, sub-basin wise ecological assessment of all the above parameters was made.

9 ENVIRONMENTAL FLOWS

For establishing environment flow requirement of the rivers, habitat simulations or microhabitat modeling methodologies has been used. Flow regime was established by dividing annual occurrence into three distinct seasons/periods i.e. Peak, lean and remaining/other months. Flow simulation study was carried out using one dimensional mathematical model MIKE 11 developed by Danish Hydraulic Institute of Denmark.

There are 51 hydro projects in the Beas river basin, out of which 19 projects are with installed capacity of 25 MW or more i.e. projects which are covered under EIA notification and can be studied for environment flow assessment by habitat simulation and hydraulic modelling. Smaller projects (less than 25 MW installed capacity) do not give good results when subjected to modelling and therefore for all such projects environment flow is recommended based on present norms of EAC/MoEF&CC. Out of 19 projects, considered for modelling study, 10 are commissioned projects, 3 are under construction, 5 are under different stages of survey & investigations and one, Kanda Pattan, is a newly identified and yet to be allotted project. Downstream of Pong dam is outside the study area and therefore it was not considered for environment flow assessment. Similarly, Uhl II (Basi) is tailrace development of Uhl I without any additional diversion and therefore, the water release from Uhl I will remain in Uhl river and no additional release is considered from Uhl II. For Uhl III, in the absence of discharge data, assessment could not be carried out. Similarly, for Kanda Pattan, no discharge data is available and therefore, modeling could not be carried out.

Flow simulations have been carried out for 10%, 15%, 20%, 25%, 30%, 40%, 50% and 100% releases of the average discharge for each of above three scenarios for the identified projects. Various key parameters for establishing habitat requirement have been calculated which include water depth, flow velocity and top width of waterway. Average discharge values for each study period was derived from 90% dependable year discharge series at each location, as discussed under hydro-meteorology section. Initial critical stretch of the river, immediate downstream of diversion structure is represented by 8-10 cross sections for each project and used in the modeling exercise. Manning's roughness coefficient for different type of channels as suggested by Chow, 1959, was used.

Output data was analysed for environmental flow assessment with a view to meet the needs of dominant fish species with larger habitat requirement. A minimum depth requirement of 40 cm and 50 cm is considered for trout and mahseer zones respectively to assess the environmental flow requirement in lean season. Higher depth is considered for intermediate period and monsoon period to ensure mimicking of natural discharge pattern. For intermediate period in Mahseer zone, a depth range of 60-75 cm is considered and for monsoon season a depth range of 85-100 cm is considered. Similarly, for intermediate period in trout zone, a depth range of 55-65 cm is considered and for monsoon season in trout zone, a depth range of 70-80 cm is considered as minimum requirement. However, some exceptions are considered, as many of the times, in small tributaries even in natural conditions such depths are not available. In such cases, recommendations are made to ensure that even during lower discharges giving lower depths and widths of water in the rivers, a part of it is maintained in the river as environment

flow in such a manner that reduction in depth is restricted to about 50% of the natural river depth.

Keeping in view the EAC/MoEF&CC's requirement of minimum release in lean season as 20%, monsoon/peak season as 20-30% and other months also as 20-25%; calculated based on average discharge in four leanest months in 90% dependable year, the same is considered as the overriding criteria even if the modeling exercise is suggesting that a lower discharge can meet the depth requirement. For Dam Toe power houses, where intermediate river stretch is very small, continuous release from the turbines can be used as the contribution towards environmental flow.

Based on the above criteria, environmental flow requirements are established for each project separately and final recommendations for the projects assessed by modeling exercise is tabulated below (**Table 10**). Values are given in percentage as per the prevalent norms, however, for the purpose of implementation absolute values (in cumec) should be used wherever, there is discrepancy.

For Uhl III and Kanda Pattan, in the absence of discharge data, assessment could not be carried out, therefore, it is recommended that Uhl III and Kanda Pattan maintains 20%, 30% and 25% of the average respective values of their 90% dependable year discharge (Year should be picked up from approved DPR used for project design) for lean, monsoon and other months as defined in the table.

For remaining 32 projects i.e. projects with less than 25 MW installed capacity, environment flow should be maintained based on the percentage of average values of discharge in lean, monsoon and other months based on 90% dependable year discharge series (year should be picked up from approved DPR used for project design) and following recommendations should be adopted:

- Lean Season (December to March): 20% of average discharge in lean season in 90% DY
- Monsoon/Peak Season (June to September): 30% of average discharge in monsoon/peak season in 90% DY
- Remaining 4 months (October, November, April and May): 25% of average discharge in these months in 90% DY

Table 10: Environment Flow Release Recommendation

S. No. Project River (Affected Stretch)			Recommended	E-flow as % of a 90% DY	verage discharge in	Recommended E-flow (cumec)		
3. NO.	Project	River (Affected Stretch)	Lean Season	Peak Season	Other Months	Lean Season	Peak Season	Other Months
1	Beas Satlej Link	Beas River (25 km)	20	15	15	18.99	64.72	25.74
2	Parbati-III	Sainj River (13.7 Km)	20	15	15	1.51	8.46	2.83
3	Allain Duhangan	Allain (9.2 Km)	20	15	15	0.42	2.43	0.85
		Duhangan (5 Km)	20	15	20	0.15	0.96	0.4
4	Larji	Beas River (5.65 Km)	20	15	15	11.42	64.06	21.45
5	Uhl-I	Uhl River (40 Km)	20	15	15	0.44	2.37	1.11
6	Malana-II	Malana Nala (5.2 Km)	20	15	15	0.52	2.56	1.20
7	Sainj	Sainj River (9 Km)	20	15	15	0.71	3.34	1.61
8	Malana-I	Malana Nala (2.32 Km)	20	15	15	0.49	3.32	1.24
9	Uhl II	Tailrace of Uhl I	-	-	-	-	-	-
10	Pong Dam	Beas	-	-	-	-	-	-
11	Parbati-II	Parbati River (5.28 Km)	20	15	15	2.99	16.3	3.79
		Jigrai Nala (0.8 Km)	20	30	25	0.2	1.16	0.54
		Jiwa Nala (8.2 Km)	20	30	25	1.19	6.2	2.53
		Hurla Nala (12 Km)	20	30	25	0.57	3.12	1.28
12	Lambadug	Lambadug (6.3 Km)	20	15	15	0.25	1.28	0.6
13	Uhl III*	Rana Khad	20	30	25			
		Neri Khad	20	30	25			
14	Nakthan	Tosh (4.4 Km)	25	20	20	0.93	5.24	1.99
		Parbati (8.9 Km)	25	20	20	1.42	7.84	2.94
15	Thana Plaun	Beas River (12.7 Km)	20	15	15	5.05	46.62	11.64
16	Triveni Mahadev	Beas River (5.5 Km)	20	15	15	5.62	54.05	14.49
		Binwa Khad (3.2 Km)	20	15	15	0.93	4.6	1.5
17	Malana-III	Malana Nala (3.35 Km)	20	15	15	0.31	2.02	0.94
18	Dhaulasidh	Beas River (37 Km)	20	30	20	6.24	90.79	8.10
19	Kanda Pattan	Beas River (8 Km)	20	30	25			

10 CONCLUSIONS AND RECOMMENDATIONS

Recommendations made on the draft report were reviewed by EAC during visit to Beas basin on April 12-14, 2018. Post visit, the basin study report was discussed in detail during the 13th EAC meeting held on April 27, 2018 where EAC concluded that MoEF&CC will discuss the report with state government of Himachal Pradesh and thereafter the final report will be discussed in EAC again for final appraisal and recommendation. After receiving the output of Beas basin study and minutes of 13th EAC meeting, Directorate of Energy, Government of Himachal Pradesh attended the 15th EAC meeting and inter-alia, made a detailed presentation on the recommendation of the study report. EAC sought additional information from GoHP and matter was further discussed in EAC in 19th and 20th meeting, held during October and November 2018 respectively. Thereafter, Beas basin study has been updated, incorporating all the discussions and recommendations made by EAC and the additional data submitted by Government of Himachal Pradesh. The final set of recommendations are:

- 1. Jobrie HEP (12 MW) will be developed as two independent projects one with diversion on Allain Nala and will be of 6 MW installed capacity and another with diversion on Jobrie Nala and will be of 2 MW installed capacity. All the components including pondage for both the projects will be outside the boundary of Inderkilla WLS and its Eco-sensitive Zone (ESZ) with the exception of 2 MW project on Jobrie Nala, which can be developed in ESZ only if permitted by the ESZ notification.
- 2. Manalsu HEP (21.9 MW) falling within Manali WLS will undergo Wildlife Clearance as per Wildlife Protection Act. Based on the assessment by the State Board of Wildlife that whether the portion of the project coming in the WLS is a permissible activity and accordingly, Wildlife Clearance should be obtained from the Standing Committee on National Board of Wildlife.
- 3. Bujling HEP (20 MW) Location of Bujling HEP will be changed/project component revised to ensure that all the components including pondage will be outside the boundary of Dhauladhar WLS as well as ESZ of Dhauladhar WLS as and when it is notified.
- 4. Makori HEP (20.8 MW) Project is recommended for dropping and therefore the allotment of project will be cancelled.
- 5. Palchan Bhang HEP (9 MW), Bhang HEP (9 MW), Seri Rawla (7 MW), Raison (18 MW) will be developed as planned.
- 6. Four projects on Parbati River viz. Parbati HEP (12 MW), Sharni HEP (9.6 MW), Sarsadi HEP (9.60 MW) & Sarsadi-II HEP (9 MW) are dropped. The stretch of Parbati river from the confluence of Malana Nala with Parbati up to confluence of Parbati river with Beas river, will have only two projects HEP I (15 MW) and HEP II (20 MW). These projects will be so located to ensure that a minimum of 1 Km of river stretch will flow free between FRL and TWL of projects in cascade. As the both the projects are less than 25 MW installed capacity, environment flow release will be maintained as 20% in lean season, 30% in peak season and 25% in remaining months. Percentage calculations will be made based on the 90% dependable year discharge data used for the project design/power potential calculation in DPR.

7. Nakthan HEP (460 MW) will be re-designed with diversion on Parbati river only. Tip of the submergence of revised Nakthan HEP will be outside the Eco-Sensitive Zone of Khirganga National Park.

- 8. Installed capacity of present Tosh HEP will be increased from 10 MW to 20 MW and it will be termed as Tosh I HEP. Upstream of Tosh I HEP, Tosh II HEP and Tosh III HEP can be developed, however, it is to be ensured that:
 - a. TWL of Tosh II HEP will be at least 1 Km upstream of FRL of Tosh I HEP and
 - b. TWL of Tosh III HEP will be at least 1 Km upstream of FRL of Tosh II HEP and
 - c. FRL of Tosh III HEP will be outside the ESZ of Khirganga National Park and
 - d. All three projects will follow environment flow release norms i.e. 20% in lean season, 30% in peak season and 25% in remaining months. Percentage calculations will be made based on the 90% dependable year discharge data used for the project design/power potential calculation in DPR.
- 9. Kanda Pattan HEP will be developed on Beas river between Thana Plaun HEP and Triveni Mahadev HEP, however it is to be ensured that:
 - a. FRL of Kanda Pattan on Beas river will be at least 1 Km downstream of TWL of Thana Plaun HEP and
 - b. TWL of Kanda Pattan on Beas Rvier will be at least 1 Km upstream of FRL of Triveni Mahadev HEP and
 - c. the project will follow environment flow release norms i.e. 20% in lean season, 30% in peak season and 25% in remaining months. Percentage calculations will be made based on the 90% dependable year discharge data used for the project design/power potential calculation in DPR.
- 10. Environment Flow Release Recommendations

Environment flow release recommendations will be implemented for all the projects i.e. operational projects, under construction projects and projects being planned/designed or are under survey & investigation stage.

E-flow is recommended for 19 projects as given in **Table 10** shall be adopted. For remaining projects, i.e. projects with less than 25 MW installed capacity, irrespective of their stage of implementation environment flow release recommendations shall be 20% in lean season, 30% in peak season and 25% in other months.

Calculations for environment flow release in lean season should be based on average of 4-6 leanest months discharge in 90% dependable year. Calculations for environment flow release in peak season should be based on average peak season discharge for 4 months in 90% dependable year i.e. June to September. Calculations for environment flow release remaining 2-4 months (non-peak and non-lean period) should be based on average discharge in 90% dependable year in remaining months.

CHAPTER-1

INTRODUCTION

1.1 BACKGROUND

Directorate of Energy, Government of Himachal Pradesh undertook the task of conducting Cumulative Environmental Impact Assessment (CEIA) Study for Beas river basin in Himachal Pradesh with an objective to assess the cumulative impacts of hydropower development in the basin. In the mean time, MoEF&CC has taken over all the river basin/carrying capacity studies being conducted by Central/State agencies and therefore, all reports were submitted directly to MoEF&CC. RS Envirolink Technologies Pvt. Ltd. (RSET), Gurgaon has been awarded the study based on techno-commercial bidding. Expert Appraisal Committee (EAC) for River Valley and Hydroelectric Projects of Ministry of Environment & Forests (MoEF&CC) approved the Terms of Reference (TOR) for the study. The study was initiated during February 2016 and was scheduled to be completed in 15 months time with the draft report due in 8 months and the draft final report in 15 months from the issue date of work order i.e. 22/02/2016. (As per revised time frame approved in 93rd Meeting of the Expert Appraisal Committee (EAC) for River Valley and Hydroelectric Projects held on 2nd May, 2016). An inception report was submitted in June 2016 to capture the progress made during first four months of the study period. The report focused on proposed approach and methodology to be adopted for the study so that it can be reviewed for its content and direction; and correction can be applied, if required. Thereafter Rapid CIA report was submitted in November 2016, which captured progress in first 8 months. The report covered primary & secondary data collection on various environmental attributes along with description of basin characteristics and planned hydro development etc. The same was discussed and appraised in 4th meeting of the Expert Appraisal Committee for River Valley and Hydroelectric Projects held on 12th April, 2017, wherein a visit to the study area by a sub-committee of EAC was suggested. A visit to Beas basin was made by a sub-committee of EAC during April 2018 and post visit the outcome was discussed in EAC meeting during the same month. Recommendations were discussed in detail and it was decided to share the recommendations with the state government and thereafter the final report will be discussed in EAC. Directorate of Energy, Government of Himachal Pradesh, on receipt of recommendations, has shared their views/observations on the recommendations and made a presentation during EAC meeting of June 2018. During presentation, EAC sought further information from state government to justify their observations and matter was discussed in subsequent EAC meetings of October and November 2018. EAC finally concluded all the discussions on Beas River Basin study and directed the Consultant to update/finalize the basin study report, keeping in view the matter discussed and recorded in various EAC meetings. The final Beas RBS report shall be placed again in the EAC meeting/s for finalization of the various recommendations therein.

1.2 SCOPE OF WORK

The basin study envisages providing optimum support for various natural processes and allowing sustainable development undertaken by its inhabitants. The same is determined in terms of the following:

- Inventorisation and analysis of the existing resource base and its production, consumption and conservation levels.
- Determination of regional ecological fragility/sensitivity based on geo-physical, biological, socio economic and cultural attributes.
- Review of existing and planned developments as per various developmental plans and records.
- Evaluation of impacts on various facets of environment due to existing and planned hydro power project developmental activities vis-à-vis development activities other than hydro.
- Suggest a road map of sustainable way of development of various projects & HEPs in the basin.

The basin study also envisages a broad framework of environmental action plan to mitigate the adverse impacts on environment, which is in the form of:

- · Preclusion of an activity
- Infrastructure development
- Modification in the planned activity
- Implementation of set of measures for amelioration of adverse impacts.

The basin study is a step beyond the EIA, as it incorporates an integrated approach to assess the impacts due to various developmental projects.

The scope of work has been defined by Directorate of Energy based on approved Terms of Reference by EAC and same is being followed for the study. The Study Area to be covered as a part of the Basin falling in the State of Himachal Pradesh from its origin at Beas Kund near Rothang Pass up-to upstream of Pong Dam. The study area is comprised of area from Beas Kund HEP to Pong Dam at the inter-state boundary.

1.2.1 Baseline Data

The study is based on secondary as well as primary data collection, as discussed below:

Secondary Data

Environmental	Source	Parameters for Data Collection		
Component				
Meteorology	IMD	• Rainfall, temperature wind, humidity etc.		
Water Resources	Directorate of	Drainage characteristics of the basin		
	Energy, HPPCL, CWC,	Water sharing agreements		
	Water Availability	Sediment load		
	Studies, Other	Perennial sources of water and their designated		
	studies/reports	usages		
Water Quality	State	 Water quality, human settlement, sewage 		
	Government/Municip	p generated and mode of collection, conveyance		
	alities	treatment and disposal of sewage		
Flora	Working Plans of	Forest types		
	Forest Divisions,	General vegetation pattern and floral diversity		
	Forest Department,	Economically important species		
	Published Reports,	• Rare, Endangered and Threatened floral		
	Literature, Research	species		
	articles/other	Endemic floral species, if any		
	studies and reports,	 Location of wildlife sanctuaries, national parks, 		
	Red Data Book	biosphere reserves if any, in the study area		

es beas basin in in		Tinat Report: Chapter
Environmental Component	Source	Parameters for Data Collection
	(IUCN)	
Fauna	Forest Department, Literature study/other studies and reports, Red Data list published by International Union for Conservation of Nature (IUCN)	 Inventory of Birds (residents, migratory), land animals including mammals, reptiles, amphibians, fishes etc RET faunal species as per the categorization of IUCN Red Data list and Indian Wildlife Protection Act, 1972. Endemic faunal species Existence of barriers and corridors for wild animals, if any
Fish	Fisheries Department, other studies and reports	 Presence of major fish species Inventory of migratory fish species & migratory routes of various fish species Presence of major breeding and spawning sites.

Primary Data

Environmental		No. of	Parameters for Data Collection
Component	Frequency	Samples	
Water Quality	Once per month for 12 months	59	 pH, Dissolved Oxygen (DO), Electrical Conductivity (EC), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Total Alkalinity, Total Hardness, Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand(COD), Nitrates, Chlorides, Sulphates, Phosphates, Sodium, Calcium, Magnesium, Potassium, Iron, Manganese, Zinc, Cadmium, Lead, Copper, Mercury, Chromium, Total Coliform
Flora	Mapping for 3 seasons (pre-monsoon, monsoon and post-monsoon)	60	 Forest type and density, bio-diversity in the study area. Comprehensive checklist of flora (Angiosperms, Gymnosperms, Lichens, Pteridophytes, Bryophytes, Fungi, Algae etc.) with Botanical and local name. Importance Value Index of the dominant species at various sampling locations. Frequency, Abundance and Density of each species of Trees, Shrubs and Herbs at representative sampling sites Listing of plants of genetically, biologically, economical and medicinal importance. Major forest produce, if any, and dependence of locals on the same in the forests observed in the study area.
Fauna	Simultaneously with ecological survey	60	 Identification of faunal species by indirect observations of mammals - tracks, droppings (scale), claw marks and calls, etc. and also by direct observation techniques
Aquatic Flora and Fauna	Once per month for 12 months	59	 Assessment of biotic resources with special reference to primary productivity, zooplanktons, phytoplanktons, benthos, macrophytes, macro-invertebrates and fishes in the study area. Population densities and diversities of phytoplanktons, zooplanktons, benthos, macrophytes, macro-invertebrates and fish

Environmental Component	Sampling Frequency	No. of Samples	Parameters for Data Collection
Compension			shall be estimated. • Diversity indices of these ecological groups should also be calculated separately.
Aquatic Flora and Fauna	Once per month for 12 months	59	 Fish composition Migratory route of migratory fishes Spawning & breeding grounds of fish species, if any, should be identified.

Projects' Data

As discussed above, primary and secondary data on environmental component are collected, collated and analysed as part of the scope. Directorate of Energy, Government of Himachal Pradesh has provided basic information and data about the existing, under execution and planned projects in the Beas basin in Himachal Pradesh. During the period the study, more project specific information was collected from individual project developers and list is updated wherever required. Updated list of projects and their status is discussed in next chapter.

1.2.2 Impact Assessment

The key aspects to be covered are listed below:

- Modification in hydrologic regime due to diversion of water for hydropower generation.
- Depth of water available in river stretches during lean season and its assessment of its adequacy vis-a-vis various fish species.
- Length of river stretches with normal flow due to commissioning of various hydroelectric projects due to diversion of flow for hydropower generation.
- Impacts on discharge in river stretches during monsoon and lean seasons due to diversion of flow for hydropower generation.
- Impacts on water users in terms of water availability and quality
- Impacts on aquatic ecology including riverine fisheries as a result of diversion of flow for hydropower generation.
- Assessment of maintaining minimum releases of water during lean season to sustain riverine ecology, maintain water quality and meet water requirement of downstream users.
- Impact due to loss of forests
- Impact on RET species & impacts on economically important plant species.
- Impacts due to increased human interference
- Impacts due to agricultural practices.
- Study the impact of cascade development and make recommendations on the requirement of free flowing stretch between two projects. Ecological inventory and geomorphology for different stretches of river to be delineated.
- Information on river stretch affected and forest area affected by each project needs to be modified to include additional details of catchment area; total forest area of the sub basin and the area getting affected and total river length, stretch affected and free flowing.
- Undertake environmental flow release assessment for the entire year i.e. covering lean, nonlean non- monsoon and monsoon periods, based on methodology such as BBM and make recommendations for each stretch.

- Hydro Dynamic Study for assessment of Environmental flow release should be linked with the fauna, habitat requirement for assessment of environmental flow releases for entire year.
- Modelling study carried out to assess the impact of peaking discharge should be concluded with recommendations for mitigation of such impacts.
- Sampling sites, forest cover and forest type should be listed and illustrated sub-basin wise.
 Endemic species of fishes in the sub basin may be tabulated.
- Downstream impact study shall be done up to the end of the Study Area.
- Impact of sand mining, boulder mining, etc. need to be included in the study.
- Impact on overall balance of sediment due to construction of a number of projects needs to be included in the report.
- The main objective of the study is to bring out the impacts of dams being planned on the main river and its tributaries. At the end of the Report there shall be a separate Chapter synthesizing the results of each component so that a holistic picture of impacts could be emerged which should lead to Recommendations.
- Impact assessment shall also include "Impacts due to construction of approach roads for the HEPs".
- Source of secondary information used in the report/to be used in the report shall be revealed and credit given accordingly.
- Detailed maps of each Sub-Basin have to be provided separately for each parameter such as forest cover, forest type, vegetation, location of sampling sites, etc. For each forest type it will be appropriate to give altitudinal range (for some it is given), its location in Beas Sub-Basin in separate maps.
- For betterment of analysis, it may be appropriate to categorize dams as Operational/ Under Construction/ EC, Scoping, Not Allotted yet, this will facilitate decision making on dropping of any dam, if it is required from environmental angle.

1.3 OUTCOME OF THE STUDY

The key outcomes of the study would be to:

- Provide sustainable and optimal ways of hydropower development of Beas River, keeping in view of the environmental setting of the basin.
- Assess requirement of environmental flow for the entire year i.e. covering lean, non-lean non- monsoon and monsoon periods with actual flow, depth and velocity at different levels.
- Management of impact and mitigation measures.
- Recommend preclusion of HEPs found expedient for safeguard of riverine ecology.

Study would cover the following aspects and explore issues mentioned below:

- Flow Regime
- Flood Plain including wetlands
- Aquatic ecology
- River Morphology
- Sediment Transportation/erosion and deposition
- Impact on human activities and livelihood

- Considering the total length of the main river in the basin and the HEPs already existing and planned for future development, how many more HEPs may be allowed to come up? In other words, how much of the total length of the river that may be tunnelled inclusive of the tunnelling requirement of all the projects that have been planned for development so that the integrity of the river is not grossly undermined.
- Downstream impact and what may be criteria for downstream impact study for individual HEP in terms of length of the river downstream to the tail water discharge point and what may be the parameters of such a study.
- What criteria the EAC may adopt in restricting the river reach for hydropower development. Alternatively, what should be the clear river length of uninterrupted flow between the reservoir tip at FRL of a downstream Project and the tail water discharge point of the immediate upstream project
- Scientific assessment of the e-flow for 3 different seasons that must be maintained in the downstream of a dam /barrage and based on such a procedure. The exercise, following techniques such as BBM or equivalent may be worked-out for all HEPs.
- For peaking power generation, what extent of diurnal flow variation may be considered safe for the aquatic life. There are examples where the release is drastically reduced during the long time for reservoir filling and the huge discharge flows through the river during the few hours of peak power generation. This is detrimental to the aquatic environment of the downstream stretch of the river. This aspect is to be analysed and suitable approach be recommended.
- What are the design/feature modification required for existing/operating plans to make them environmentally & ecologically sustainable
- The status of compliance of Environmental Clearance condition with respect to sanctioned Projects may have to brought-out in the report.

1.4 BROAD WORK PLAN & APPROACH

As the basin level environmental impact assessment study of Beas basin in Himachal Pradesh, needs to be completed in 15 months time frame, work plan has been prepared to ensure several activities progress simultaneously. Primary data collected for terrestrial and aquatic flora and fauna cannot be representative especially for short term studies; therefore, stress has also been placed on collection of secondary data on these components, wherever available; to be augmented by the primary data collected in different seasons. Following major tasks have been identified to complete the work in time:

Secondary data collection from Directorate of Energy, Government of Himachal Pradesh,
Himachal Pradesh Power Corporation Ltd. (HPPCL), Indian Meteorological Department
(IMD), Central Water Commission (CWC), Forest and Fisheries Department. This included
data on precipitation, flow and sediment, status of planned and allotted projects in the

basin, forest working plans, wildlife sanctuaries/national parks and other protected areas in the basin and their management plans, fish fauna.

- Secondary data was collected from different published sources and literature survey.
 This included forest types, flora, fauna and fisheries; their conservation status i.e. Rare,
 Endangered & Threatened (RET), Schedule species as per Indian Wildlife (Protection) Act (WPA), etc.
- Procured satellite data from NASA portals, forest cover from Forest Survey of India (FSI) data, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) Version 2 data and digital maps; to prepare base maps, longitudinal sections of river stretches, slope maps, drainage maps, forest cover maps, etc.
- Primary Data collection was done as per the pre-defined frequency. Study teams
 collected data on various parameters viz. water quality, flora, fauna, fisheries, aquatic
 ecology, etc. at different sampling locations.
- Environmental flow requirement was assessed using standard methodologies like hydrological or habitat simulation and hydro-dynamic modelling or holistic approach depending upon the suitability and requirement. To assess environmental flow requirements for different projects' stretches, a flow simulation studies were carried out using 10 daily flow series (CWC approved wherever applicable) in one dimensional mathematical model MIKE 11. Flow simulations to be carried out for 10%, 15%, 20%, 25%, 30%, 40%, 50% and 100% releases of the average discharge in 90% dependable year flow series of the respective hydro electric projects.
- Provide sustainable and optimal ways of hydropower development of Beas River, keeping in view of the environmental setting of the basin.

1.5 OUTLINE OF PRESENT REPORT

CIA report has been presented in following sections. Briefly, these sections cover following:

- **Chapter 1**: Introduction; covers general introduction of the study, outcomes expected outcomes of the study, study area and brief work approach and plan.
- **Chapter 2**: Hydropower Development in Beas Basin; provides information of existing, under construction and planned hydro power development in Beas river basin of Himachal Pradesh.
- **Chapter 3:** Methodology adopted for generating baseline data on various terrestrial as well as aquatic environmental parameters and description of sampling locations for terrestrial and aquatic ecology and analysis of each environmental parameter.
- **Chapter 4:** Basin Characteristics; defines catchment characteristics of the study area supplemented by primary survey data gathered during field survey in study area, details of sub-basin wise base data, thematic layers produced etc.
- **Chapter 5:** Hydro-meteorology provides data on flows and meteorological observations with the help of primary as well as secondary level information.
- **Chapter 6:** Environmental baseline data for terrestrial ecology covers information on forest types, floristic and faunal diversity of study area through secondary sources and primary survey data

CIA&CCS- Beas Basin in HP

Final Report: Chapter 1

Chapter 7: Environmental baseline data for aquatic ecology covers physico-chemical and biological characteristics as well as information of fish and fisheries from primary and secondary sources

Chapter 8: Environmental flow analysis: This chapter covers literature survey for different available methodologies nationally or internationally for environmental flow assessment and outcomes of hydro-dynamic modelling in respect of various projects.

Chapter 9: Cumulative Impact Assessment

Chapter 10: Conclusions & Recommendations

Chapter-2

Final Report: Chapter 2

HYDROPOWER DEVELOPMENT IN BEAS BASIN

2.1 HYDROPOWER POTENTIAL

Himachal Pradesh, with five major rivers flowing through the state, has about a quarter of India's total potential hydropower resources. These five major rivers are Beas, Ravi, Satluj, Yamuna and Chenab. Total identified hydropower potential in the state is 27436 MW; out of which 10460.47 MW is under operation, 2438.24 MW is under construction; 9510.70 MW is under various stages of survey & investigation; and remaining 5026.59 MW is yet to be taken up (source: Directorate of Energy, Government of HP, abstract of Power as updated on June 2017).

History of hydropower development in Beas basin goes way back to 1923 when Shanan Power station (Uhl I - 110 MW) was commissioned as first megawatt scale project of country and later Uhl II (60 MW) got commissioned during 1970-71. Largest project of the basin i.e. Pandoh Dam, commonly known as Beas Satluj link project of 990 MW was commissioned in 1977. Another major project of the basin, Pong Dam (396 MW) was conceived way back in 1927, however after final design approval, construction work started in 1961 and project got commissioned during 1978-83 period.

77.25% of hydropower potential of the Beas basin has already been established through operational (57.83%) and under construction projects (19.42%); the cumulative impact assessment study has kept this in view along with the impacts of proposed future development in the basin. The basin study is aimed at assessing the cumulative or aggregate ecological impact of all the HEPs planned or under execution on aquatic fauna and flora, biodiversity of the riverine ecosystem and surrounding areas and ecological integrity.

2.2 HYDROPOWER PROJECTS IN BEAS BASIN

Directorate of Energy, Government of Himachal Pradesh has assessed the total potential of Beas basin as 4099.60 MW as given in Table 1 of TOR and same is reproduced as **Table 2.1** below. In addition, they have also mentioned 5 projects at Table 8 of the TOR, which were under allotment at that time.

Table 2.1: Total Hydropower Potential of Beas Basin

Sr. No.	HEP Category	No. of Projects	Capacity (MW)
1	Commissioned HEPs	19	2718.50
2	Under Construction HEPs	07	1068.00
3	Under Clearance HEPs	12	888.20
4	Under Investigation HEPs	05	70.90
5 Foregone HEPs		03	354.00
	Total	46	4099.60

During the study period, the information/status of hydropower projects was updated and the final list of 51 projects (> 5 MW) were prepared as the total hydropower potential of the Beas basin. The same is given at **Table 2.2** below. Projects locations are shown in **Figure 2.1**.

Beas Basin in Himachal Pradesh has 4877.70 MW of power potential (for > 5 MW projects), distributed among 51 hydropower projects spread throughout the basin. Out of these 51 projects, 22 projects are commissioned (total installed capacity 2820.90 MW), 5 are under construction (total installed capacity 947 MW), 20 are at various stages of investigations (total installed capacity 1028.90 MW) and 4 are yet to be allotted.

Out of proposed 24 projects, many of which are under different stages of survey and investigation, only 4 projects have installed capacity of more than 50 MW i.e. requiring environment clearance as category "A" projects; two are with installed capacity greater than 25 MW but less than 50 MW i.e. environment clearance is applicable under category "B" and remaining 18 projects are less than 25 MW of installed capacity i.e. environment clearance is not applicable.

Table 2.2: Hydropower Projects in Beas Basin

S. No.	Name of Project	Capacity (MW)	Developer	Status	Year of Commiss- ioning
1	Beas Satluj Link	990	Bhakra Beas Management Board	Commissioned	1977
2	Parbati-III HEP	520	NHPC Limited	Commissioned	2014
3	Pong Dam	396	Bhakra Beas Management Board	Commissioned	1978-83
4	Allain Duhangan HEP	192	AD Hydro Power Ltd.	Commissioned	2010
5	Larji HEP	126	Himachal Pradesh State Electricity Board	Commissioned	2006
6	Uhl-I (Shanan) HEP	110	Punjab State Power Corporation Limited	Commissioned	1923
7	Malana-II HEP	100	Everest Power Pvt. Ltd.	Commissioned	2012
8	Sainj HEP	100	HPPCL	Commissioned	2017
9	Malana-I HEP	86	Malana Power Company Ltd.	Commissioned	2001
10	Uhl-II (Bassi) HEP	66	Himachal Pradesh State Electricity Board	Commissioned	1970-81
11	Baragaon SHEP	24	Kanchanjunga Hydro Power Ltd.	Commissioned	2015
12	Patikari SHEP	16	Patikari Hydro Electric Project Ltd.	Commissioned	2008
13	Neogal SHEP	15	Om Hydropower Ltd.	Commissioned	2013
14	Baner SHEP	12	Himachal Pradesh State Electricity Board	Commissioned	1996
15	Khauli SHEP	12	Himachal Pradesh State Electricity Board	Commissioned	2007
16	Gaj SHEP	10.5	Himachal Pradesh State Electricity Board	Commissioned	1996
17	Toss SHEP	10	Toss Mini Hydel Power Project Commission		2008
18	Beas Kund SHEP	9	Kapil Mohan and Associates Commissioned		2012
19	Binwa SHEP	6	Himachal Pradesh State Electricity Board	Commissioned	1984
20	Baner-II SHEP	6	Podigy Hydro Power Pvt. Ltd.	Commissioned	2015

4877.70

Total

CIA&CCS- Beas Basin in HP

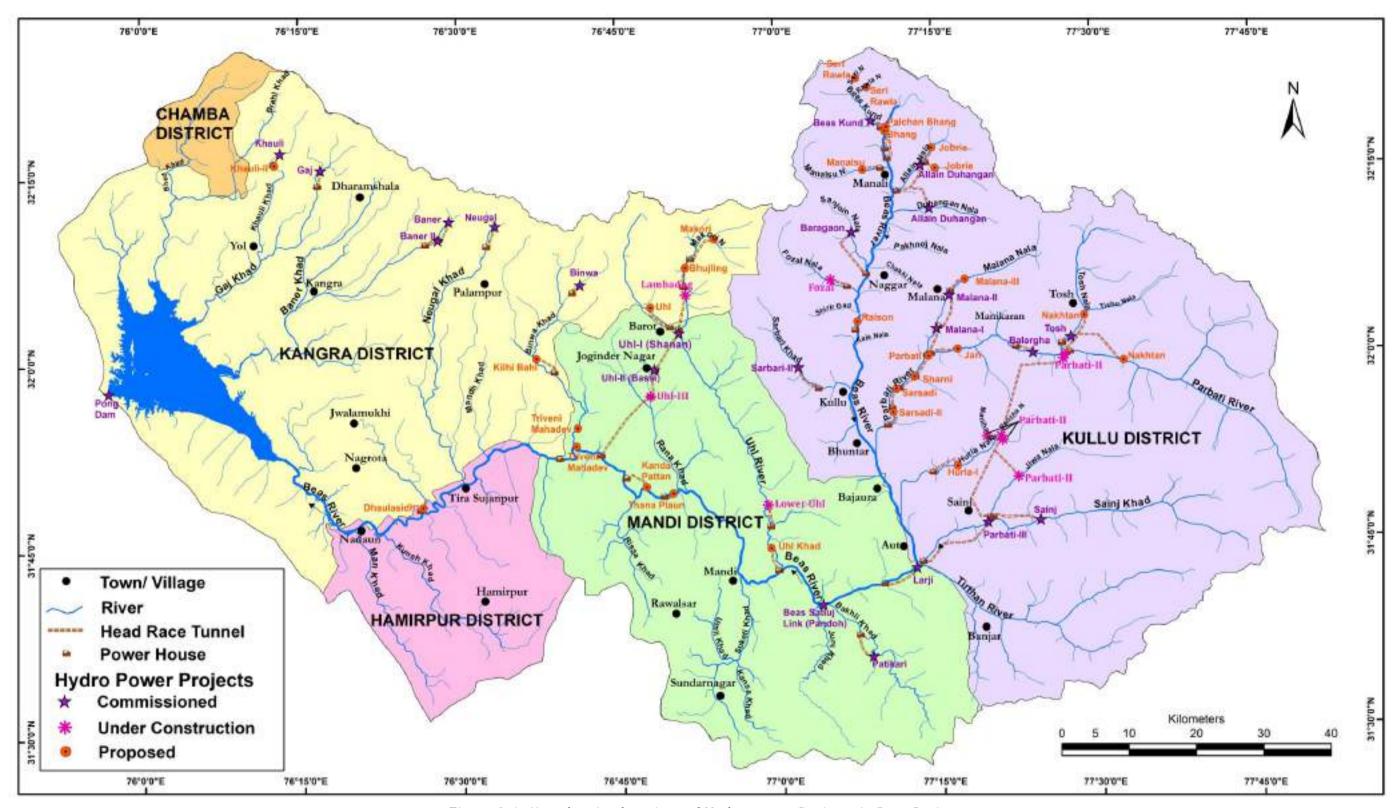


Figure 2.1: Map showing locations of Hydro-power Projects in Beas Basin

CIA&CCS- Beas Basin in HP Final Report: Chapter 2

2.3 ENVIRONMENT CLEARANCE STATUS

As can be seen from the above discussion and **Table 2.2**; there are only six projects left in the entire basin which require environment clearance under EIA Notification. Out of total 51 Projects, 19 projects are with installed capacity of 25 MW or greater which get covered under EIA notification. Out of these 10 projects are commissioned, 3 projects are under construction viz., Parbati II, Uhl III and Lambadug an remaining 6 projects are under various stages of survey and investigation.

Status of environment clearance of under-construction and proposed projects was reviewed and is given at **Table 2.3**.

Table 2.3: Status of Environment Clearance

Project		Status of Environment Clearance	
Darbati II HED (900 MM)	Under	EC granted vide letter No. J-12011/34/2001-IA-I	
Parbati II HEP (800 MW)	Construction	dated 04/06/2001	
LIN III (100 MM)	Under	EC granted vide letter No. J-12011/19/2002-IA-I	
Uhl III (100 MW)	Construction	dated 15/11/2002	
Lambadug (25 MW)	Under Construction	 EC letter Not Available in Public Domain; neither shared by developer Discussed in EAC meeting on 16/08/2007 and 2 22/08/2008; project was recommended for Example subject to submission of certain information. No further details/copy of EC letter is available for review; however it is clear that EC letter must have been issued under EIA notification of 2006 with 10 years validity and would have required extension in 2018. 	
Nakhtan (460 MW)	Under S&I	Discussed for Environment Clearance in 91st meeting of EAC held on 8-9/02/2016. Diversion of Tosh Nalla have been objected to by the Toss Mini Hydel Power Project, developer of commissioned Tosh HEP and the matter is sub-judice. EAC recorded that "the matter is Sub-judice, a decision in this regard shall be taken only after the Courts Directions". Project is being re-configured and may have to go for fresh/amendment of scope and environment clearance.	
Thana Plaun (191 MW)	Under S&I	Project was presented for environment clearance befor EAC during June 2018; however, EAC noted that the baseline data is more than 3 years old, therefor recommended collection of one season fresh baseline data before the project can be considered for environment clearance.	
Triveni Mahadev (96 MW)	Under S&I	Scoping Clearance issued for 78 MW installed capacity vide letter No. J-12011/12/2011-IA-I dated 29.11.2012. Scoping for enhanced capacity of 96 MW is yet to be	

Project		Status of Environment Clearance
		applied for.
Dhaulasidh (66 MW)	Under S&I	EC granted vide MoEF&CC Letter No. J-12011/15/2010-IA-I dated 21/02/2013
Kanda Pattan	Yet to be allotted	
Malana-III (30 MW)	Under S&I	Scoping Clearance approved by SEIAA in its 15 th meeting held on May 21, 2013. Letter/further information not available.

2.4 PROJECTS DESCRIPTION

Efforts have been made to collect the data of all the projects in the basin. Data have been sourced from Directorate of Energy as well as by contacting project promoters so that all the relevant information required to make basin level impact assessment can be compiled for data analysis. In addition, minutes of meeting of Expert Appraisal Committee (EAC) of Ministry of Environment, Forest & Climate Change (MOEF&CC) or State Expert Appraisal Committee (SEAC) of Himachal Pradesh have also been referred to for the meetings where Beas projects have been considered for TOR or EC.

Project descriptions compiled in the form of salient features have been collected for Malana-I, Tosh, Allain Duhangan, Sarbari-II, Beas Kund, Malana-II, Neogal, Parbati III, Baragaon, Baner-II, Pong Dam, Beas Satluj Link (Pandoh), Sainj, Fozal, Lambadug, Lower Uhl, Parbati II, Balargha, Uhl, Sarsadi II, Palchan Bhang, Uhl Khad, Bhang, Sharni, Sarsadi, Nakhtan, Thana Plaun, Triveni Mahadev, Dhaulasidh, Parbati, Hurla-I, Jari, Raison, Kilhi Bahl, Malana III and Jobrie SHEPs. Information collected is compiled in the form of Salient Features of each project and is given from **Table 2.4** to **2.42**. For the remaining projects, locations and proposed installed capacities are available; this data was used during basin wise impact assessment, however their salient features could not be made available by the concerned agencies.

LOCATION	, ,
District	Kullu
Name of River	Malana Nala
HYDROLOGY	
Catchment area at diversion site (km²)	178.50
Design Discharge (m³/s)	21
DIVERSION STRUCTURE	
Туре	Barrage
FRL (masl)	1893
MDDL (masl)	1879
Average Bed level (masl)	1889
Live Storage (ha-m)	24.9
HEADRACE TUNNEL	
Туре	D Shaped, Concrete Lined
Diameter (m)	2.85
Length (km)	2.80
Number	1
SURGE SHAFT	
Туре	Open at Top, Restricted Orifice
Diameter (m)	5
Height (m)	72
PENSTOCK	
Туре	Surface
Number	1
Diameter (m)	2.2 (1.5m beyond bifurcation)
Length (m)	580 (8m beyond bifurcation)
POWERHOUSE	
Туре	Surface
Installed Capacity (MW)	86
Rated Head (m)	480
Tail water level (masl)	1385.5
TURBINE	
Туре	Pelton, Vertical Axis
Numbers	Two
Rated Output	43 MW each
POWER BENEFITS	
90% Dependable Energy (GWh)	370.93
PROJECT COST	
Capital Cost (US\$)	70 million
Year of Commissioning/ Completion	
Commercial Operation Date (COD)	05-07-2001

Table 2.5: Salient Features of Tosh (20 MW)

LOCATION	1
	IV.II.
District Name of Biran	Kullu
Name of River	Tosh Nala
HYDROLOGY	202.00
Catchment area at diversion site (km²)	382.00
Design Discharge (m³/s)	15
DIVERSION STRUCTURE	
Type	Trench Weir
FSL (masl)	2480
HFL (masl)	2483.5
HEADRACE TUNNEL-I (From Weir to Intake Tank)	
Туре	D Shaped
Diameter (m)	3.6
Length (m)	135.63
HEADRACE TUNNEL-II (From Shingle Flushing)	
Туре	Circular
Diameter (m)	1.8
Length (m)	130.04
HEADRACE TUNNEL-III	
Туре	D Shaped
Diameter (m)	3
Length (m)	33.17
HEADRACE TUNNEL-IV (From Balancing Reservoir to Surge	
Shaft)	
Туре	Circular
Diameter (m)	2
Length (m)	157.75
SURGE SHAFT	
Туре	Circular
Diameter (m)	5.4
Depth (m)	13.9
PENSTOCK	
Number	Two
Diameter (m)	1.5 (Main), 1.2 (After Bifurcation)
Total Length (m)	900
POWERHOUSE	
Туре	Surface
Installed Capacity (MW)	20MW
Designed Net Head (m)	173.75
Tail water level (masl)	2284
TURBINE	
Type	4 Jet Vertical Shaft Pelton
Numbers	Four
Rated Output	5 MW each
POWER BENEFITS	J MIT CUCII
75% Dependable Energy (MU)	117.1
PROJECT COST	11/.1
Capital Cost (Rs)	88.197 Crore
Capital Cost (NS)	00.17/ CIUIE

Table 2.6: Salient Features of Allain Duhangan (192 MW)

LOCATION			
District	Kullu		
Name of River	Allain Nala	Duhangan Nala	
HYDROLOGY			
Catchment area at diversion site	128.90	66.2	
(km²)	18.9	7.9	
Design Discharge (m³/s) DIVERSION STRUCTURE	18.9	7.9	
	Daws to	Trench Weir	
Type	Barrage		
Maximum Water Level (masl)	2747	2787	
Average Bed level (masl)	2740	2782	
HEADRACE TUNNEL			
Туре	D Shaped, Concrete Lined	D Shaped, Concrete Lined	
Size (m)	3.4 (W) x 3.4 (H)	3.4 (W) x 3.4 (H)	
Length (m)	3690.00	4565	
PRESSURE SHAFT			
Туре	Steel lined, back filled with concrete		
Diameter	2800 mm internal dia. Bifurcating 50 m upstream of power house		
Diameter	cavern into two branches each of 2000 mm internal dia.		
Length (m)	1750 (including length after bifurcation)		
POWERHOUSE			
Туре	Underground		
Installed Capacity (MW)	192		
Gross Head (m)	851		
Tail water level (masl)	1862.9		
TURBINE			
Туре	Vertical Pelton		
Numbers	Two		
Rated Output	96 MW each		
POWER BENEFITS			
90% Dependable Energy (GWh)	678.18		
Year of Commissioning/			
Completion			
Unit I	17-07-2010		
Unit II	it II 16-09-2010		

CIA&CCS- Beas Basin in HP Final Report: Chapter 2

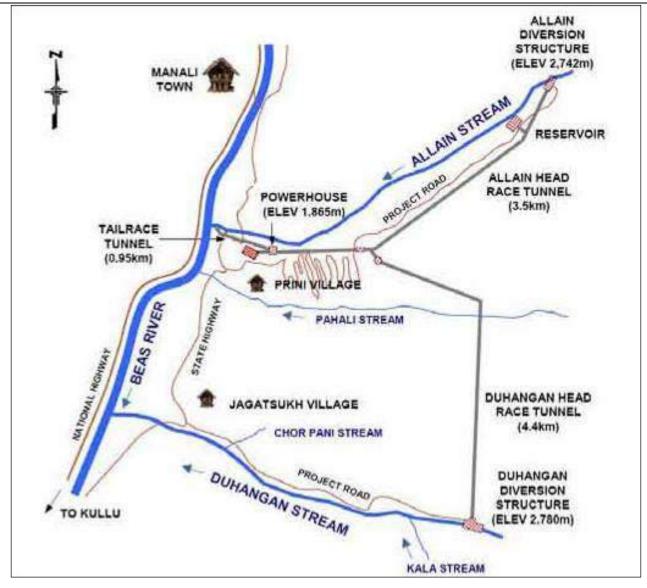


Figure 2.2: Layout Plan of Allain Duhangan HEP

Table 2.7: Salient Features of Sarbari-II (5.4 MW)

LOCATION	
District	Kullu
Name of River	Sarbari Khad
HYDROLOGY	
Catchment area at diversion site (km²)	86
Design Discharge (m ³ /s)	3.65
DIVERSION STRUCTURE	
Туре	Aqueduct (Cascading development)
FRL (masl)	1625.45
INTAKE STRUCTURE	
Туре	R.C.C. structure
Shape	Rectangular
Size (m)	21 x 8.50 x 5.50
WATER CONDUCTOR SYSTEM (From Tail Race	
Channel of Sarbari I to Intake)	
Shape	Circular
Diameter (m)	1.6
Length (m)	58.42
HEAD RACE TUNNEL	
Туре	D Shaped pressurized flow tunnel
Diameter (m)	1.8
Length (m)	3514.6
PENSTOCK	
Number	One
Diameter (m)	1.25
Diameter after bifurcation (m)	1
Length (m)	0.37
Length of bifurcation at lower end (m)	10 (each penstock liner)
POWERHOUSE	
Туре	Surface
Installed Capacity (MW)	5.4
Designed Net Head (m)	188.36
Tail water level (masl)	1418
TURBINE	
Туре	Horizontal axis Pelton
Numbers	Two
Rated Output	2.70 MW each
Year of Commissioning/ Completion	
Commercial Operation Date (COD)	25-08-2010

Tuble 2,0, Sufferiere	atules of Deas Ruliu (7 MW)
LOCATION	
District	Kullu
Name of River	Beas Kund Nala
HYDROLOGY	
Catchment area at diversion site (km²)	115.25
Design Discharge (m ³ /s)	9.09
DIVERSION STRUCTURE	
Туре	Trench Weir
FRL (masl)	2423.5
INTAKE STRUCTURE	
Туре	R.C.C. structure
Shape	Rectangular
Size (m)	5.30 x 4 x 5.20
HEAD RACE TUNNEL	
Shape	Horse Shoe
Diameter (m)	2.5
Length (m)	1512
SURGE SHAFT	
Туре	Cylindrical Underground
Diameter (m)	6
Height (m)	35
PENSTOCK	
Туре	Steel IS:2002 GrB or ASTM A-285 Gr. C
Number	One (Main), Three (Branches)
Diameter (m)	2.0 (Main)
Length (m)	435.0 (Main), 15 (each branch)
POWERHOUSE	
Туре	Surface
Installed Capacity (MW)	9
Net Head (m)	119
Tail water level (masl)	2294
TURBINE	
Туре	Horizontal axis Francis
Numbers	Three
Rated Output	3.0 MW each
Year of Commissioning/ Completion	
Unit I	07-06-2012
Unit II	19-03-2012
Unit III	07-06-2012

CIA&CCS- Beas Basin in HP Final Report: Chapter 2

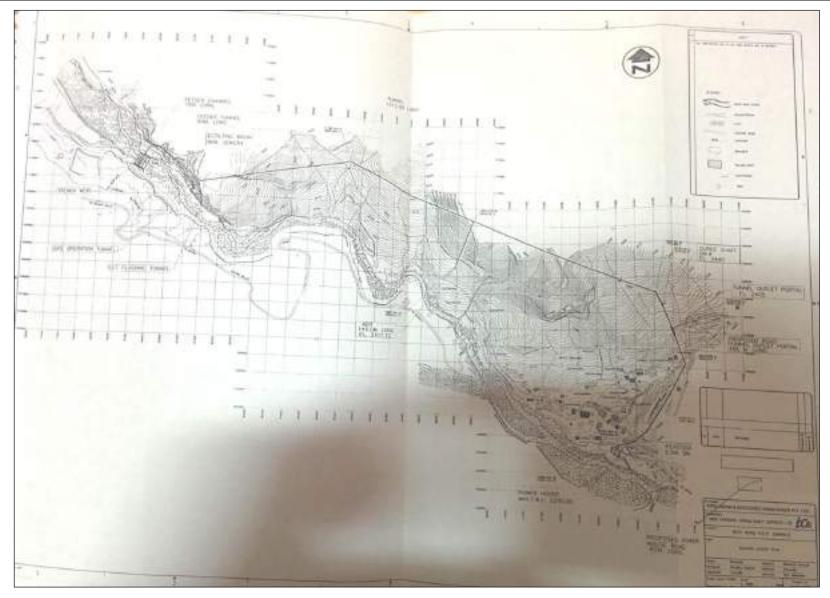


Figure 2.3: General Layout Plan of Beas Kund SHEP

Table 2.9: Salient Features of Malana II (100 MW)

LOCATION	
District	Kullu
Name of River	Malana Nala
HYDROLOGY	
Catchment area at diversion site (km²)	158.00
Design Discharge (m ³ /s)	18.65
DIVERSION STRUCTURE	
Туре	Concrete Gravity Dam
Height from river bed (m)	45
Top of Structure (masl)	2545
FRL (masl)	2543
MDDL (masl)	2528
Average Bed level (masl)	2500
Live Storage (Mcum)	0.2875
HEADRACE TUNNEL	
Туре	D Shaped, Concrete Lined
Size (m)	3.0 x 2.75
Length (km)	4.85
SURGE SHAFT	
Туре	Underground, Simple Surge Shaft
Diameter (m)	6
Height (m)	90
PRESSURE SHAFT	
Туре	Underground
Diameter (m)	2.5
Length (m)	666
POWERHOUSE	
Туре	Underground
Installed Capacity (MW)	100
Rated Net Head (m)	608
Tail water level (masl)	1913
TURBINE	
Туре	Vertical Axis Pelton Wheel
Numbers	Two
Rated Output	50 MW each
POWER BENEFITS	
90% Dependable Energy (M Kwh)	428
PROJECT COST	
Capital Cost (Rs)	63347 lakh
Year of Commissioning/ Completion	
Commercial Operation Date (COD)	12-07-2012

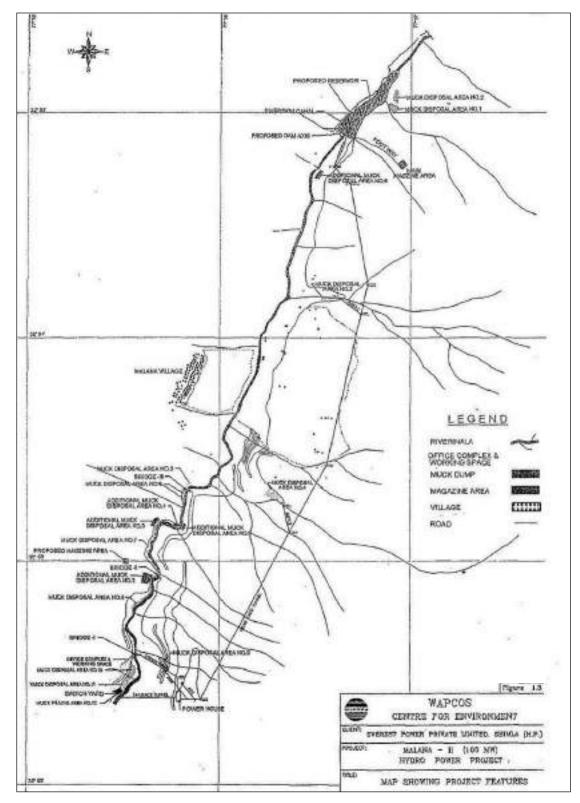


Figure 2.4: Layout Plan of Malana II HEP

Table 2.10: Salient Features of Neugal (15 MW)

LOCATION	
District	Kangra
Name of River	Neugal Nala
HYDROLOGY	3
Catchment area at diversion site (km²)	32.20
Design Discharge (m ³ /s)	4.6
DIVERSION STRUCTURE	
Туре	Ogee Weir
River Bed level (masl)	1905.3
High Flood level (masl)	1931.1
Top Level of Structure (masl)	1932.1
Trash Rack Level (masl)	1931.9
HEAD RACE TUNNEL	
Туре	D Shaped Pressure Flow
Size (m)	2.25 x 2.25
Length (m)	3178
PENSTOCK	
Туре	Surface Circular Steel
Number	One (Main), Two (Branches)
Diameter (m)	1.30 (Main), 0.92 (Each Branch)
Length (m)	664.00 (Main)
POWERHOUSE	
Туре	Surface
Installed Capacity (MW)	15
Net Head (m)	392
Tail water level (masl)	1509.5
TURBINE	
Туре	Pelton Horizontal Axis
Numbers	Two
Rated Output	7.5 MW each
POWER BENEFITS	
50% Dependable Energy (MU)	76.17
90% Dependable Energy (MU)	70.43
PROJECT COST	
Total Cost (Rs)	8161 lakh
Year of Commissioning/ Completion	
Commercial Operation Date (COD)	06-05-2013

Table 2.11: Salient Features of Parbati III (520 MW)

District Name of River Sainj River Sainj River HYDROLOGY Catchment area at diversion site (km²) Design Discharge (cumec) DIVERSION STRUCTURE Type Height from river bed (m) HEADRACE TUNNEL Type Concrete lined Diameter (m) Length (m) PRESSURE SHAFT Type Diameter (m) Length (m) Steel lined Diameter (m) Length (m) Length (m) Steel lined Diameter (m) Length (m)	LOCATION	, , ,
Name of River HYDROLOGY Catchment area at diversion site (km²) Design Discharge (cumec) DIVERSION STRUCTURE Type Rock fill Height from river bed (m) FRL (masl) MDDL (masl) Live Storage (10 ⁶ m³) HEADRACE TUNNEL Type Concrete lined Diameter (m) T.25 Length (m) T.875 Number SURGE SHAFT Type Diameter (m) Leight (m) Diameter (m) Leight (m) Diameter (m) Leight (m) Leight (m) Tope Diameter (m) Leight (m) Tope Steel lined Number Underground Installed Capacity (MW) Net Design Head (m) Minimum Tail water level (masl) Tupe Vertical axis Francis Number Vertical axis Francis		Vullu
HYDROLOGY Catchment area at diversion site (km²) Design Discharge (cumec) DIVERSION STRUCTURE Type Rock fill Height from river bed (m) 43 FRL (mast) 1330 MDDL (mast) Live Storage (106 m³) HEADRACE TUNNEL Type Concrete lined Diameter (m) 7.25 Length (m) 7.875 Number SURGE SHAFT Type 2 Diameter (m) 133.75 PRESSURE SHAFT Type Steel tined Number 2 Diameter (m) 4.00 each bifurcating into two 3.0m dia penstocks Length (m) 510 & 460 POWERHOUSE Type Underground Installed Capacity (MW) 520 Net Design Head (m) Minimum Tail water level (masl) TUREINE Number Vertical axis Francis Number Vertical axis Francis		
Catchment area at diversion site (km²) Design Discharge (cumec) DIVERSION STRUCTURE Type Rock fill Height from river bed (m) A3 MDDL (masl) Live Storage (106 m³) HEADRACE TUNNEL Type Concrete lined Diameter (m) Type Diameter (m) Diameter (m) PRESSURE SHAFT Type Diameter (m) 133.75 PRESSURE SHAFT Type Steel lined Diameter (m) 4.50 each bifurcating into two 3.0m dia penstocks Length (m) POWERHOUSE Type Underground Installed Capacity (MW) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Number Vertical axis Francis		Jailij Rivei
Design Discharge (cumec) DIVERSION STRUCTURE Type Rock fill Height from river bed (m) 43 FRL (masl) MDDL (masl) Live Storage (10 ⁶ m³) HEADRACE TUNNEL Type Concrete lined Diameter (m) 7.25 Length (m) 7.875 Number SURGE SHAFT Type Diameter (m) 133.75 PRESSURE SHAFT Type Steel lined Number Sumber Sumb		
DIVERSION STRUCTURE Type Rock fill Height from river bed (m) 43 FRL (masl) 1330 MDDL (masl) Live Storage (106 m³) HEADRACE TUNNEL Type Concrete lined Diameter (m) 7.25 Length (m) 7.875 Number SURGE SHAFT Type Diameter (m) 20 Height (m) 133.75 PRESSURE SHAFT Type Steel lined Number Diameter (m) 4.50 each bifurcating into two 3.0m dia penstocks Length (m) 510 & 460 POWERHOUSE Type Installed Capacity (MW) 520 Net Design Head (m) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers Vertical axis Francis	, ,	
Type Rock fill Height from river bed (m) 43 1330 MDDL (masl) Live Storage (10 ⁶ m³) HEADRACE TUNNEL Type Concrete lined Diameter (m) 7.25 Length (m) 7.875	Diversion capacities	
Height from river bed (m) FRL (masl) MDDL (masl) Live Storage (106 m³) HEADRACE TUNNEL Type Concrete lined Diameter (m) T.25 Length (m) Type Concrete lined Type Surge SHAFT Type Diameter (m) Leight (m) Type Vertical axis Francis Number Type Uvertical axis Francis Number Vertical size francis		D 1 CH
FRL (masl) MDDL (masl) Live Storage (106 m³) HEADRACE TUNNEL Type Diameter (m) Concrete lined Diameter (m) T.25 Length (m) T.875 Number SURGE SHAFT Type Diameter (m) Diameter (m) 133.75 PRESSURE SHAFT Type Steel lined Number Diameter (m) Length (m) Diameter (m) Length (m) Diameter (m) Length (m) Diameter (m) Length (m) Steel lined Diameter (m) Length (m) Diameter (m) Length (m) Diameter (m) Length (m) POWERHOUSE Type Underground Installed Capacity (MW) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers Vertical axis Francis	Type	
MDDL (masl) Live Storage (106 m³) HEADRACE TUNNEL Type Concrete lined 7.25 Length (m) 7.875 Number SURGE SHAFT Type Diameter (m) 133.75 PRESSURE SHAFT Type Steel lined Diameter (m) 4.50 each bifurcating into two 3.0m dia penstocks Length (m) POWERHOUSE Type Underground Installed Capacity (MW) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers Variable Concrete lined 7.25 Concrete lined 7.20 Concrete lined 7.2		=
Live Storage (106 m³) HEADRACE TUNNEL Type		1330
HEADRACE TUNNEL Type		
Type Concrete lined Diameter (m) 7.25 Length (m) 7.875 Number SURGE SHAFT Type 2 Diameter (m) 20 Height (m) 133.75 PRESSURE SHAFT Type Steel lined Number 2 Diameter (m) 4.50 each bifurcating into two 3.0m dia penstocks Length (m) 510 & 460 POWERHOUSE Type Underground Installed Capacity (MW) 520 Net Design Head (m) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers 4	Live Storage (10° m³)	
Diameter (m) Length (m) Number SURGE SHAFT Type Diameter (m) Height (m) PRESSURE SHAFT Type Steel lined Number 2 4.50 each bifurcating into two 3.0m dia penstocks Length (m) Length (m) POWERHOUSE Type Installed Capacity (MW) Net Design Head (m) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers		
Length (m) Number SURGE SHAFT Type Diameter (m) Height (m) PRESSURE SHAFT Type Steel lined Number 2 Diameter (m) Length (m) POWERHOUSE Type Installed Capacity (MW) Net Design Head (m) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers 7,875 20 Length (m) 20 Length (m) Steel lined 4.50 each bifurcating into two 3.0m dia penstocks Length (m) PowerHouse Type Underground Installed Capacity (MW) S20 Vertical axis Francis		
Number SURGE SHAFT Type Diameter (m) Height (m) PRESSURE SHAFT Type Steel lined Number 2 Diameter (m) A.50 each bifurcating into two 3.0m dia penstocks Length (m) POWERHOUSE Type Underground Installed Capacity (MW) Net Design Head (m) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers 4	Diameter (m)	
SURGE SHAFT Type Diameter (m) Height (m) PRESSURE SHAFT Type Steel lined Number 2 Diameter (m) Steel bifurcating into two 3.0m dia penstocks Length (m) POWERHOUSE Type Underground Installed Capacity (MW) Net Design Head (m) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers 4		7.875
Type Diameter (m) Diameter (m) Diameter (m) Diameter (m) Diameter SHAFT Type Steel lined Number Diameter (m) Diameter (m) Length (m) POWERHOUSE Type Underground Installed Capacity (MW) Net Design Head (m) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers 4		
Diameter (m) 20 Height (m) 133.75 PRESSURE SHAFT Type Steel lined Number 2 Diameter (m) 4.50 each bifurcating into two 3.0m dia penstocks Length (m) 510 & 460 POWERHOUSE Type Underground Installed Capacity (MW) 520 Net Design Head (m) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers 4	SURGE SHAFT	
Height (m) PRESSURE SHAFT Type Steel lined Number 2 Diameter (m) Length (m) POWERHOUSE Type Underground Installed Capacity (MW) Net Design Head (m) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers 133.75 Steel lined 4.50 each bifurcating into two 3.0m dia penstocks Underground into two 3.0m dia penstocks Underground 510 & 460 Vertical axis Francis	Туре	
PRESSURE SHAFT Type Steel lined Number 2 Diameter (m) 4.50 each bifurcating into two 3.0m dia penstocks Length (m) 510 & 460 POWERHOUSE Type Underground Installed Capacity (MW) 520 Net Design Head (m) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers 4	Diameter (m)	
Type Steel lined Number 2 Diameter (m) 4.50 each bifurcating into two 3.0m dia penstocks Length (m) 510 & 460 POWERHOUSE Underground Installed Capacity (MW) 520 Net Design Head (m) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers 4	Height (m)	133.75
Number Diameter (m) Length (m) POWERHOUSE Type Underground Installed Capacity (MW) Net Design Head (m) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers 4.50 each bifurcating into two 3.0m dia penstocks Length (m) 3.0m dia penstocks Length (m) 4.50 each bifurcating into two 3.0m dia penstocks Length (m) 510 & 460 POWERHOUSE Underground Solution Vertical axis Francis	PRESSURE SHAFT	
Number 2 Diameter (m) 4.50 each bifurcating into two 3.0m dia penstocks Length (m) 510 & 460 POWERHOUSE Underground Installed Capacity (MW) 520 Net Design Head (m) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers 4	Type	Steel lined
Length (m) 510 & 460 POWERHOUSE Type Underground Installed Capacity (MW) 520 Net Design Head (m) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers 4		2
Length (m) 510 & 460 POWERHOUSE Type Underground Installed Capacity (MW) 520 Net Design Head (m) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers 4	D: ()	4.50 each bifurcating into two 3.0m dia
Type Underground Installed Capacity (MW) 520 Net Design Head (m) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers 4	Diameter (m)	
Type Underground Installed Capacity (MW) 520 Net Design Head (m) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers 4	Length (m)	510 & 460
Installed Capacity (MW) Net Design Head (m) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers 4		
Installed Capacity (MW) Net Design Head (m) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers 4	Type	Underground
Net Design Head (m) Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers 4		
Minimum Tail water level (masl) TURBINE Type Vertical axis Francis Numbers 4	Net Design Head (m)	
TURBINE Type Vertical axis Francis Numbers 4		
Type Vertical axis Francis Numbers 4	\ /	
Numbers 4		Vertical axis Francis
	Rated Output	130 MW each

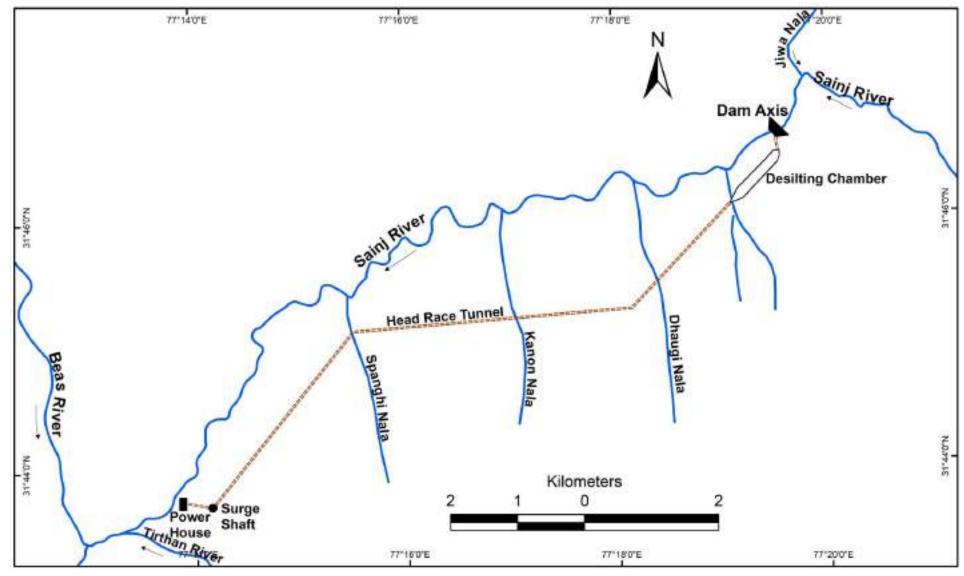


Figure 2.5: General Layout plan of Parbati III HEP

Table 2.12: Salient Features of Baragaon (24 MW)

LOCATION		
District	Kullu	
Name of River	Sanjoin Nala	Bijara Nala
HYDROLOGY		1 2
Catchment area at diversion site (km²)	26.00	13
Design Discharge (m ³ /s)	5.652	5.652
DIVERSION STRUCTURE		•
Туре	Trench Weir	Trench Weir
Top of Structure (masl)	2396	2385
HFL (masl)	2398.34	2387.213
HEADRACE TUNNEL		
Type	D Shaped lined upto	D Shaped Fully Lined
Туре	Springing Level	, ,
Size (m)	1.80 x 2.25	1.80 x 2.25
Length (m)	128.00	1934
SURGE SHAFT		
Туре	Vertical, Circular and Line	ed
Diameter	4	
Height (m)	28	
PENSTOCK		
Туре	Steel Liner	
Number	One (Main), Three (Unit)	
Diameter (m)	1.35 (Main), 0.80 (Unit)	
Length (m)	1480 (Main), 12 (2 Units) a	and 6 (1 Unit)
POWERHOUSE		
Туре	Surface	
Installed Capacity (MW)	24	
Gross Head (m)	608	
Tail water level (masl)	1770	
TURBINE		
Туре	Horizontal Axis Pelton Tur	bine
Numbers	Three	
Rated Output	8 MW each	
Year of Commissioning/ Completion		
Unit I	24-03-2014	
Unit II	30-03-2014	
Unit III	25-05-2014	

Table 2.13: Salient Features of Patikari (16 MW)

LOCATION	
District	Mandi
Name of River	Bakhli Khad, a tributary of Beas River
HYDROLOGY	
Catchment area at diversion site (km²)	214
Design Discharge (m ³ /s)	5.83
DIVERSION STRUCTURE	
Туре	Ogee
FRL (masl)	1394.4
Average Bed level (masl)	1388.76
HEAD RACE TUNNEL	
Length (m)	3614
Diameter	1.80m D-section (2.1m high)
Surge Shaft	
Diameter	3.0m
Full Supply level (FSL)	1396.9m
Min. Draw Down Level (MDDL)	1385.75
Min. water seal above MDDL	1.5m
PENSTOCK	
Туре	Surface
Number	One
Diameter (m)	1.30m
Length (m)	677.065m
POWERHOUSE	
Туре	Surface power house. Reinforced concrete substructure with reinforced concrete columns and beams and masonry walls above. Roof of GCI sheets on tabular trusses.
Installed Capacity (MW)	16
Rated Net Head (m)	356.3
TURBINE	
Туре	Pelton, Horizontal axis
Numbers	2
Rated Output	8

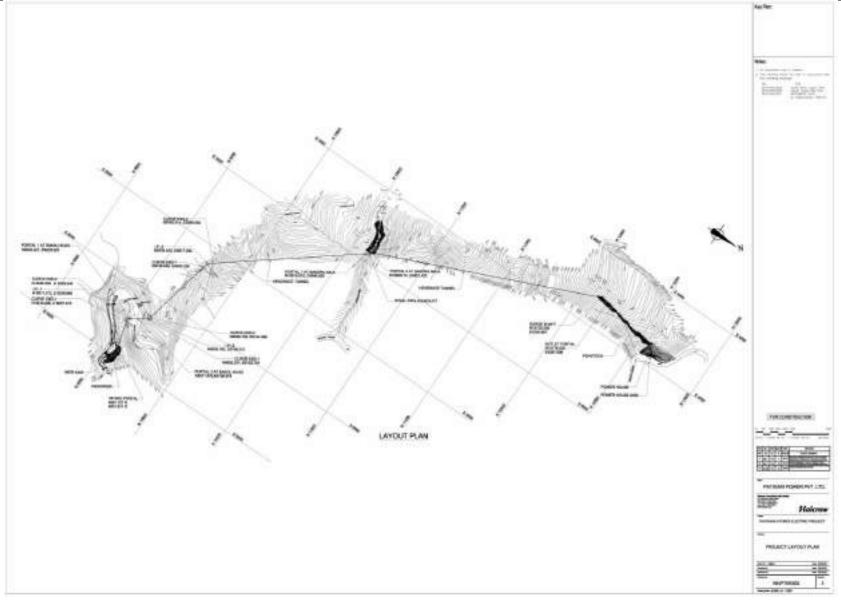


Figure 2.6: General Layout plan of Patikari SHEP

Table 2.14: Salient Features of Baner-II (6 MW)

LOCATION	
District	Kangra
Name of River	Baner Khad
HYDROLOGY	
Catchment area at diversion site (km²)	42
Design Discharge (m ³ /s)	5.54
DIVERSION STRUCTURE	
Туре	Trench Weir
FSL (masl)	1342
HFL (masl)	1343.75
Average Bed level (masl)	1342
FEEDER CHANNEL	
Туре	Trapezoidal
Size (m)	1.00 (bottom) x 3.00 (top) x 3.00 (height)
Length (m)	19
FOREBAY TANK	
Туре	RCC Rectangular Tank
Size (m)	165 (L) x 35 (W) x 7 (D)
Storage Capacity (cum)	28800
Top Level of structure (m)	1343.5
MDDL (m)	1337.6
Penstock Entry Level (m)	1335.3
PENSTOCK	
Туре	Surface Circular Steel
Number	One (Main), Two (Branches)
Diameter (m)	1.6 (Main), 0.90 (Each Branch)
Length (m)	1980 (Main), 50 (Each Branch)
POWERHOUSE	
Туре	Surface
Installed Capacity (MW)	6
Rated Net Head (m)	130
Tail water level (masl)	1387
TURBINE	
Туре	Horizontal axis Francis
Numbers	Two
Rated Output	3.0 MW each
Year of Commissioning/ Completion	
Commercial Operation Date (COD)	27-06-2015

Table 2.15: Salient Features of Pong Dam (396 MW)

LOCATION	
District	Kangra, Hamirpur
Name of River	Beas River
HYDROLOGY	
Catchment area at diversion site (km²)	12,560
Design Discharge (cumec)	
DIVERSION STRUCTURE	
Туре	Earth core gravel shell
Height from river bed (m)	100.58
FRL (masl)	433.12
RBL (masl)	335.28
Live Storage (10 ⁶ m ³)	5966
HEADRACE TUNNEL	
Туре	
Diameter (m)	
Length (m)	
Number	
SURGE SHAFT	
Туре	
Diameter (m)	
Height (m)	
PENSTOCK	
Туре	Steel
Number	3
Diameter (m)	9.14 each
Length (m)	
POWERHOUSE	
Туре	Underground
Installed Capacity (MW)	396
Net Design Head (m)	
Minimum Tail water level (masl)	
TURBINE	
Туре	Vertical shaft, Francis Type
Numbers	6
Rated Output	66 MW each

Table 2.16: Salient Features of Beas Satluj Link (990 MW)

LOCATION	
District	Mandi
Name of River	Beas and Satluj
HYDROLOGY	,
Catchment area at diversion site (km²)	
Design Discharge (cumec)	
DIVERSION STRUCTURE	
Туре	Earth-cum-rock fill
Height from river bed (m)	76.25
FRL (masl)	896.42
RBL (masl)	838.16
Storage (m ³)	1580000
HEADRACE TUNNEL	
Pandoh Baggi Tunnel	7.62 m dia, 13.11 km long
Sundernagar Hydel Channel	11.8 km long open channel
Sundarnagar Dehar Tunnel	8.53 m dia, 12.53 km long
SURGE SHAFT	
Туре	
Diameter (m)	22.86
Height (m)	125
PENSTOCK	
Туре	
Number	Three 4.877 m dia split to six 3.353 m dia
Diameter (m)	
Length (m)	
POWERHOUSE	
Туре	Surface, on Right Bank of Satluj River
Installed Capacity (MW)	990
Net Design Head (m)	
Minimum Tail water level (masl)	
TURBINE	
Туре	
Numbers	6
Rated Output	165 MW each

Table 2.17: Salient Features of Sainj (100 MW)

LOCATION	
District	Kullu
Name of River	Saini River
HYDROLOGY	Saliij Kivei
	434.33
Catchment area at diversion site (km²)	
Design Discharge (cumec)	28.7
DIVERSION STRUCTURE	010
Туре	Gated Barrage
Height from river bed (m)	25
FRL (masl)	1752
MDDL (masl)	1738.5
Live Storage (10 ⁶ m ³)	38.41
HEADRACE TUNNEL	
Туре	Circular, Concrete Lined
Diameter (m)	3.85
Length (m)	6360.75
Number	1
SURGE SHAFT	
Туре	Underground, Restricted Orifice
Diameter (m)	9
Height (m)	75.80m above top of orifice slab
PRESSURE SHAFT	·
Туре	Underground, Steel Lined
Number	One (Main), Two (Branches)
Diameter (m)	2.75 (Main), 1.95 (Each Branch)
Length (m)	±640 (Main); 32.71 and 28.32 (Branches)
POWERHOUSE	
Туре	Underground
Installed Capacity (MW)	100
Net Design Head (m)	395.96
Minimum Tail water level (masl)	1333.21
TURBINE	- 1917
Туре	Pelton, Vertical Axis
Numbers	Two
Rated Output	50 MW each
·······	

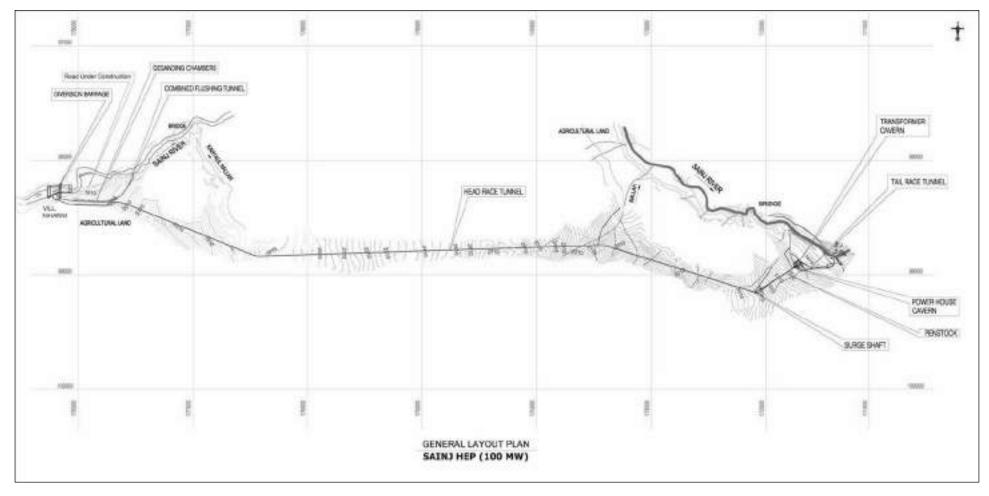


Figure 2.7: General Layout plan of Sainj HEP

Table 2.18: Salient Features of Fozal (6 MW)

District Kullu	Table 2. 16. Satiefft Featur	es of 1 ozat (o mw)
Name of River	LOCATION	
Coordinates - Diversion Site 32 ° 00 '29.79" N, 77" 17 '23.84" E	District	Kullu
Coordinates - Powerhouse 32° 00° 15.99° N, 77° 15° 05.42° E HYDROLOGY 108.5 Design Discharge (cumec) 7.33 DIVERSION STRUCTURE Trench Weir Height from river bed (m) 9.4 Top of Structure (mast) 1594.5 Trash Rack Level (mast) 1590 FSL (mast) 1585.1 Capacity (cumec 1585.1 Capacity (c		Fozal Nala
HYDROLOGY	Coordinates - Diversion Site	32° 00' 29.79" N, 77° 17' 23.84" E
Catchment area at diversion site (km²) 108.5	Coordinates - Powerhouse	32° 00' 15.99" N, 77° 15' 05.42" E
Design Discharge (cumec) 7.33 7	HYDROLOGY	
DIVERSION STRUCTURE	Catchment area at diversion site (km²)	108.5
Type	Design Discharge (cumec)	7.33
Height from river bed (m)	DIVERSION STRUCTURE	
Top of Structure (masl)	Туре	Trench Weir
Top of Structure (masl)	Height from river bed (m)	9.4
FSL (masl)		1594.5
MDDL (masl) 1585.2 Average Bed level (masl) 1585.1 Capacity (cumec 30000 HEAD RACE TUNNEL (Desilting Tank to Tunnel Inlet) RCC Channel, Square Box Section Size (m) 3.50 x 3.50 i/c 0.60m freeboard Length (m) 255.23 POWER CHANNEL Type Type Open Channel Size (m) 1.95 x 1.95 Length (m) 2300 FOREBAY Oval Shaped MDDL (masl) 1578.75 FSL (masl) 1580.25 C/L of Penstock (masl) 1576.65 PENSTOCK Type Number One (Main), Three (Branches) Diameter (m) 1.40 (Main), 0.85 (Each Branch) Length (m) 176.00 (Main), 2.00 (Each Branch) POWERHOUSE Surface Type Surface Installed Capacity (MW) 6 Net Head (m) 97 Tail water level (masl) 1478.5 TURBINE Three Type Francis Horizontal Axis Numbers Three </td <td>Trash Rack Level (masl)</td> <td>1590</td>	Trash Rack Level (masl)	1590
Average Bed level (masl)	FSL (masl)	1589.2
Capacity (cumec 30000 HEAD RACE TUNNEL (Desilting Tank to Tunnel Inlet) RCC Channel, Square Box Section Type RCC Channel, Square Box Section Size (m) 255.23 POWER CHANNEL Open Channel Type Open Channel Size (m) 1.95 x 1.95 Length (m) 2300 FOREBAY Oval Shaped MDDL (masl) 1578.75 FSL (masl) 1580.25 C/L of Penstock (masl) 1576.65 PENSTOCK Surface Circular Steel Number One (Main), Three (Branches) Diameter (m) 1.40 (Main), 0.85 (Each Branch) Length (m) 176.00 (Main), 2.00 (Each Branch) POWERHOUSE Surface Type Surface Installed Capacity (MW) 6 Net Head (m) 97 Tail water level (masl) 1478.5 TURBINE Three Type Francis Horizontal Axis Numbers Three Rated Output 2.00 MW Each POWER GENERATION	MDDL (masl)	1585.2
HEAD RACE TUNNEL (Desilting Tank to Tunnel Inlet) Type	Average Bed level (masl)	1585.1
Type RCC Channel, Square Box Section Size (m) 3.50 x 3.50 i/c 0.60m freeboard Length (m) 255.23 POWER CHANNEL Type Type Open Channel Size (m) 1.95 x 1.95 Length (m) 2300 FOREBAY Type MDL (masl) 1578.75 FSL (masl) 1580.25 C/L of Penstock (masl) 1576.65 PENSTOCK Type Number One (Main), Three (Branches) Diameter (m) 1.40 (Main), 0.85 (Each Branch) Length (m) 176.00 (Main), 2.00 (Each Branch) POWERHOUSE Type Type Surface Installed Capacity (MW) 6 Net Head (m) 97 Tail water level (masl) 1478.5 TURBINE Three Type Francis Horizontal Axis Numbers Three Rated Output 2.00 MW Each POWER GENERATION 75% Dependable Energy (GWH) PROJECT COST		30000
Size (m) 3.50 x 3.50 i/c 0.60m freeboard Length (m) 255.23 POWER CHANNEL Open Channel Type Open Channel Size (m) 1.95 x 1.95 Length (m) 2300 FOREBAY Oval Shaped MDDL (masl) 1578.75 FSL (masl) 1580.25 C/L of Penstock (masl) 1576.65 PENSTOCK Surface Circular Steel Number One (Main), Three (Branches) Diameter (m) 1.40 (Main), 0.85 (Each Branch) Length (m) 176.00 (Main), 2.00 (Each Branch) POWERHOUSE Surface Type Surface Installed Capacity (MW) 6 Net Head (m) 97 Tail water level (masl) 1478.5 TURBINE Turel Type Francis Horizontal Axis Numbers Three Rated Output 2.00 MW Each POWER GENERATION 75% Dependable Energy (GWH) 34.43 PROJECT COST Total Control (Cost)		
Size (m) 3.50 x 3.50 i/c 0.60m freeboard Length (m) 255.23 POWER CHANNEL Open Channel Type Open Channel Size (m) 1.95 x 1.95 Length (m) 2300 FOREBAY Oval Shaped MDDL (masl) 1578.75 FSL (masl) 1580.25 C/L of Penstock (masl) 1576.65 PENSTOCK Surface Circular Steel Number One (Main), Three (Branches) Diameter (m) 1.40 (Main), 0.85 (Each Branch) Length (m) 176.00 (Main), 2.00 (Each Branch) POWERHOUSE Surface Type Surface Installed Capacity (MW) 6 Net Head (m) 97 Tail water level (masl) 1478.5 TURBINE Turel Type Francis Horizontal Axis Numbers Three Rated Output 2.00 MW Each POWER GENERATION 75% Dependable Energy (GWH) 34.43 PROJECT COST Total Control (Cost)	Туре	RCC Channel, Square Box Section
POWER CHANNEL Open Channel Size (m) 1.95 x 1.95 Length (m) 2300 FOREBAY Type MDDL (masl) 1578.75 FSL (masl) 1580.25 C/L of Penstock (masl) 1576.65 PENSTOCK Type Number One (Main), Three (Branches) Diameter (m) 1.40 (Main), 0.85 (Each Branch) Length (m) 176.00 (Main), 2.00 (Each Branch) POWERHOUSE Surface Installed Capacity (MW) 6 Net Head (m) 97 Tail water level (masl) 1478.5 TURBINE Three Type Francis Horizontal Axis Numbers Three Rated Output 2.00 MW Each POWER GENERATION 75% Dependable Energy (GWH) 34.43 PROJECT COST PROJECT COST		3.50 x 3.50 i/c 0.60m freeboard
Type Open Channel Size (m) 1.95 x 1.95 Length (m) 2300 FOREBAY 7 Type Oval Shaped MDDL (masl) 1578.75 FSL (masl) 1580.25 C/L of Penstock (masl) 1576.65 PENSTOCK 5 Type Surface Circular Steel Number One (Main), Three (Branches) Diameter (m) 1.40 (Main), 0.85 (Each Branch) Length (m) 176.00 (Main), 2.00 (Each Branch) POWERHOUSE Surface Type Surface Installed Capacity (MW) 6 Net Head (m) 97 Tail water level (masl) 1478.5 TURBINE Turbine Type Francis Horizontal Axis Numbers Three Rated Output 2.00 MW Each POWER GENERATION 75% Dependable Energy (GWH) 34.43 PROJECT COST A43	Length (m)	255.23
Size (m) 1.95 x 1.95 Length (m) 2300 FOREBAY Oval Shaped MDDL (masl) 1578.75 FSL (masl) 1580.25 C/L of Penstock (masl) 1576.65 PENSTOCK Variace Circular Steel Number One (Main), Three (Branches) Number (m) 1.40 (Main), 0.85 (Each Branch) Length (m) 176.00 (Main), 2.00 (Each Branch) POWERHOUSE Type Installed Capacity (MW) 6 Net Head (m) 97 Tail water level (masl) 1478.5 TURBINE Three Type Francis Horizontal Axis Numbers Three Rated Output 2.00 MW Each POWER GENERATION 75% Dependable Energy (GWH) PROJECT COST 34.43	POWER CHANNEL	
Size (m) 1.95 x 1.95 Length (m) 2300 FOREBAY Oval Shaped MDDL (masl) 1578.75 FSL (masl) 1580.25 C/L of Penstock (masl) 1576.65 PENSTOCK Variace Circular Steel Number One (Main), Three (Branches) Number (m) 1.40 (Main), 0.85 (Each Branch) Length (m) 176.00 (Main), 2.00 (Each Branch) POWERHOUSE Type Installed Capacity (MW) 6 Net Head (m) 97 Tail water level (masl) 1478.5 TURBINE Three Type Francis Horizontal Axis Numbers Three Rated Output 2.00 MW Each POWER GENERATION 75% Dependable Energy (GWH) PROJECT COST 34.43	Туре	Open Channel
FOREBAY Oval Shaped MDDL (masl) 1578.75 FSL (masl) 1580.25 C/L of Penstock (masl) 1576.65 PENSTOCK Type Number One (Main), Three (Branches) Diameter (m) 1.40 (Main), 0.85 (Each Branch) Length (m) 176.00 (Main), 2.00 (Each Branch) POWERHOUSE Surface Installed Capacity (MW) 6 Net Head (m) 97 Tail water level (masl) 1478.5 TURBINE Three Type Francis Horizontal Axis Numbers Three Rated Output 2.00 MW Each POWER GENERATION 75% Dependable Energy (GWH) 34.43 PROJECT COST PROJECT COST		
FOREBAY Oval Shaped MDDL (masl) 1578.75 FSL (masl) 1580.25 C/L of Penstock (masl) 1576.65 PENSTOCK Surface Circular Steel Number One (Main), Three (Branches) Diameter (m) 1.40 (Main), 0.85 (Each Branch) Length (m) 176.00 (Main), 2.00 (Each Branch) POWERHOUSE Surface Installed Capacity (MW) 6 Net Head (m) 97 Tail water level (masl) 1478.5 TURBINE Three Type Francis Horizontal Axis Numbers Three Rated Output 2.00 MW Each POWER GENERATION 75% Dependable Energy (GWH) 34.43 PROJECT COST PROJECT COST	Length (m)	2300
MDDL (masl) 1578.75 FSL (masl) 1580.25 C/L of Penstock (masl) 1576.65 PENSTOCK Type Type Surface Circular Steel Number One (Main), Three (Branches) Diameter (m) 1.40 (Main), 0.85 (Each Branch) Length (m) 176.00 (Main), 2.00 (Each Branch) POWERHOUSE Surface Installed Capacity (MW) 6 Net Head (m) 97 Tail water level (masl) 1478.5 TURBINE Total water level (masl) Type Francis Horizontal Axis Numbers Three Rated Output 2.00 MW Each POWER GENERATION 75% Dependable Energy (GWH) 34.43 PROJECT COST 34.43		
FSL (masl) C/L of Penstock (masl) PENSTOCK Type Surface Circular Steel Number One (Main), Three (Branches) Diameter (m) Length (m) POWERHOUSE Type Surface Installed Capacity (MW) Net Head (m) Tail water level (masl) TURBINE Type Francis Horizontal Axis Numbers Rated Output POWER GENERATION 75% Dependable Energy (GWH) PIONE Surface 1580.25 Surface 1.40 (Main), 0.85 (Each Branch) 176.00 (Main), 2.00 (Each Branch) 6 6 1478.5 THREE Francis Horizontal Axis Three 2.00 MW Each POWER GENERATION 75% Dependable Energy (GWH) 34.43	Туре	Oval Shaped
C/L of Penstock (masl) PENSTOCK Type Surface Circular Steel Number One (Main), Three (Branches) Diameter (m) Length (m) POWERHOUSE Type Surface Installed Capacity (MW) Net Head (m) Tail water level (masl) TURBINE Type Francis Horizontal Axis Numbers Rated Output POWER GENERATION 75% Dependable Energy (GWH) PInder Surface 1576.65 Surface (Branch) 166 866 876 877 878 878 878 878	MDDL (masl)	1578.75
Type Surface Circular Steel Number One (Main), Three (Branches) Diameter (m) 1.40 (Main), 0.85 (Each Branch) Length (m) 176.00 (Main), 2.00 (Each Branch) POWERHOUSE Surface Installed Capacity (MW) 6 Net Head (m) 97 Tail water level (masl) 1478.5 TURBINE Type Francis Horizontal Axis Numbers Three Rated Output 2.00 MW Each POWER GENERATION 75% Dependable Energy (GWH) 34.43 PROJECT COST	FSL (masl)	1580.25
Type Surface Circular Steel Number One (Main), Three (Branches) Diameter (m) 1.40 (Main), 0.85 (Each Branch) Length (m) 176.00 (Main), 2.00 (Each Branch) POWERHOUSE Type Surface Installed Capacity (MW) 6 Net Head (m) 97 Tail water level (masl) 1478.5 TURBINE Type Francis Horizontal Axis Numbers Three Rated Output 2.00 MW Each POWER GENERATION 75% Dependable Energy (GWH) 34.43 PROJECT COST	C/L of Penstock (masl)	1576.65
Number One (Main), Three (Branches) Diameter (m) 1.40 (Main), 0.85 (Each Branch) Length (m) 176.00 (Main), 2.00 (Each Branch) POWERHOUSE Type Surface Installed Capacity (MW) 6 Net Head (m) 97 Tail water level (masl) 1478.5 TURBINE Type Francis Horizontal Axis Numbers Three Rated Output 2.00 MW Each POWER GENERATION 75% Dependable Energy (GWH) 34.43 PROJECT COST	PENSTOCK	
Diameter (m) Length (m) 1.40 (Main), 0.85 (Each Branch) 176.00 (Main), 2.00 (Each Branch) POWERHOUSE Type Surface Installed Capacity (MW) 6 Net Head (m) 97 Tail water level (masl) 1478.5 TURBINE Type Francis Horizontal Axis Numbers Rated Output 2.00 MW Each POWER GENERATION 75% Dependable Energy (GWH) PROJECT COST	Туре	Surface Circular Steel
Length (m) POWERHOUSE Type Installed Capacity (MW) Net Head (m) Tail water level (masl) Type Type Type Francis Horizontal Axis Numbers Rated Output POWER GENERATION 75% Dependable Energy (GWH) PROJECT COST Tive Surface 1478.5 Francis Francis 1478.5	Number	One (Main), Three (Branches)
Type Surface Installed Capacity (MW) 6 Net Head (m) 97 Tail water level (masl) 1478.5 TURBINE Francis Horizontal Axis Numbers Three Rated Output 2.00 MW Each POWER GENERATION 75% Dependable Energy (GWH) 34.43 PROJECT COST	Diameter (m)	1.40 (Main), 0.85 (Each Branch)
Type Surface Installed Capacity (MW) 6 Net Head (m) 97 Tail water level (masl) 1478.5 TURBINE Francis Horizontal Axis Numbers Three Rated Output 2.00 MW Each POWER GENERATION 75% Dependable Energy (GWH) 34.43 PROJECT COST		176.00 (Main), 2.00 (Each Branch)
Installed Capacity (MW) Net Head (m) Tail water level (masl) TURBINE Type Francis Horizontal Axis Numbers Rated Output POWER GENERATION 75% Dependable Energy (GWH) PROJECT COST 6 POT 1478.5 Francis Horizontal Axis Francis Horizontal Axis 1478.5 1478.6 1478.6 1478.6	POWERHOUSE	
Net Head (m) 97 Tail water level (masl) 1478.5 TURBINE Francis Horizontal Axis Numbers Three Rated Output 2.00 MW Each POWER GENERATION 34.43 PROJECT COST	Туре	Surface
Tail water level (masl) TURBINE Type Francis Horizontal Axis Numbers Rated Output POWER GENERATION 75% Dependable Energy (GWH) PROJECT COST 1478.5 Francis Horizontal Axis 2.00 MW Each 34.43	Installed Capacity (MW)	
TURBINE Type Francis Horizontal Axis Numbers Three Rated Output 2.00 MW Each POWER GENERATION 75% Dependable Energy (GWH) 34.43 PROJECT COST	Net Head (m)	97
Type Francis Horizontal Axis Numbers Three Rated Output 2.00 MW Each POWER GENERATION 75% Dependable Energy (GWH) 34.43 PROJECT COST	Tail water level (masl)	1478.5
Numbers Three Rated Output 2.00 MW Each POWER GENERATION 75% Dependable Energy (GWH) 34.43 PROJECT COST	TURBINE	
Rated Output 2.00 MW Each POWER GENERATION 75% Dependable Energy (GWH) 34.43 PROJECT COST	,,	Francis Horizontal Axis
POWER GENERATION 75% Dependable Energy (GWH) 34.43 PROJECT COST	Numbers	
75% Dependable Energy (GWH) 34.43 PROJECT COST		2.00 MW Each
PROJECT COST		
		34.43
Net Cost (Rs) 3098 lakh		
	Net Cost (Rs)	3098 lakh

Table 2.19: Salient Features of Lambadug (25 MW)

LOCATION	
District	Kangra
Name of River	Lambadug Khad
HYDROLOGY	
Catchment area at diversion site (km²)	197
Design Discharge (m ³ /s)	12.75
DIVERSION STRUCTURE	
Туре	Drop Type Trench Weir
FRL (masl)	2082
HEAD RACE TUNNEL	
Туре	D Shaped, Concrete Lined
Equivalent Radius (m)	3.7
Length (m)	4150
PENSTOCK	
Туре	Surface
Diameter (m)	2
Length (m)	550
POWERHOUSE	
Installed Capacity (MW)	25
Net Head (m)	221.71
Tail water level (masl)	1836
TURBINE	
Туре	Vertical Francis
Numbers	Two
Rated Output	12.5 MW each
POWER BENEFITS	
75% Dependable Net Energy (MU)	105.36
50% Dependable Net Energy (MU)	130.92
PROJECT COST	
Cost per MW (Rs)	4.90 Crore

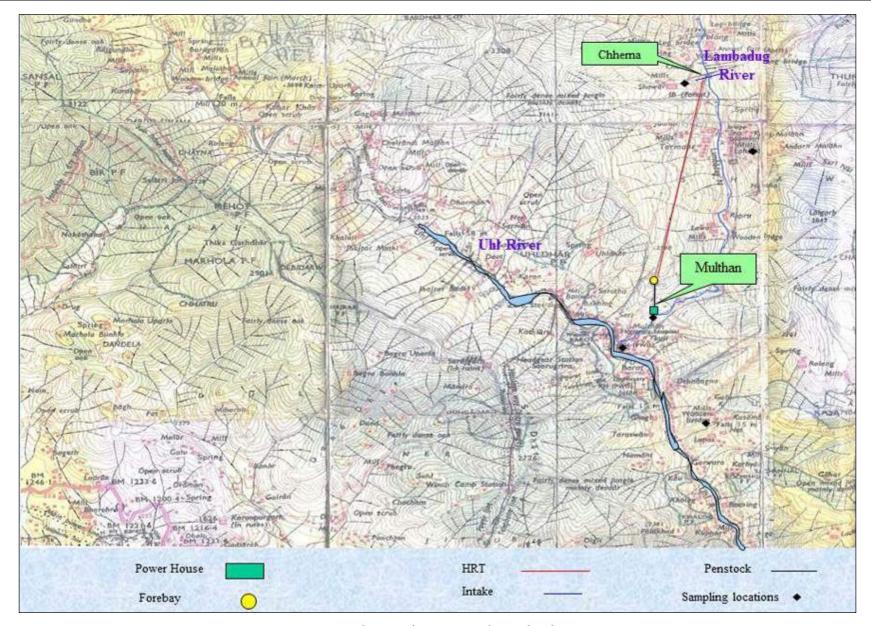


Figure 2.8: General Layout of Lambadug HEP

Table 2.20: Salient Features of Lower Uhl (13 MW)

	, ,
LOCATION	
District	Mandi
Name of River	Uhl River
Coordinates - Diversion Site	31° 49' 50" N, 76° 58' 34" E
HYDROLOGY	
Catchment area at diversion site (km²)	365.00 at Barot and 606.09 at Riagri
Design Discharge (cumec)	15.72
DIVERSION STRUCTURE	
Туре	Barrage
Height from deepest river bed level (m)	10.76
Top of Structure (masl)	1075
FRL (masl)	1068.38
Deepest River Bed Level (masl)	1064.24
HEAD RACE TUNNEL	
Type	D Shaped with CC Lining
Diameter (m)	3.6
Length (m)	3802.56
FOREBAY TANK	
Туре	Surface
Size (m)	65.00 x 12.00
Live Storage Capacity (cum)	3120
FSL (m)	1064
MDDL (m)	1060
Penstock Entry Level (m)	1056.945
PENSTOCK	
Туре	Circular, Burried
Number	One (Main), Two (Branches)
Diameter (m)	2.20 (Main), 1.55 (Each Branch)
Length (m)	197.50 (Main), 26.50 (Each Branch)
POWERHOUSE	
Туре	Surface
Installed Capacity (MW)	13
Rated Net Head (m)	99.17
Tail water level (masl)	965.4
TURBINE	
Туре	Horizontal Francis
Numbers	Two
Rated Output	6.50 MW Each
ENERGY GENERATION	
75% Dependable Energy (Mu)	60.19

Table 2.21: Salient Features of Parbati II (800 MW)

	Salient reatures (DI PAIDALI II (60	U MW)	
LOCATION				
District	Kullu			
Name of River	Parbati River	Jigrai Nala	Hurla Nala	Jiwa Nala
HYDROLOGY				
Catchment area at diversion site (km²)	1155	44	67	120
Design Discharge (cumec)	87	3.60	9.0	16.50
DIVERSION STRUCTURE				
Туре	Concrete Gravity Dam	Trench Weir	Trench Weir	Trench Weir
Height from river bed (m)	83.7			
FRL (masl)	2197		2221 (top)	2220 (top)
MDDL (masl)	2189	2207.3 (sill)	2218 (crest)	2216.87 (crest)
RBL (m)	2128			
Gross Storage (10 ⁶ m ³)	655			
HEADRACE TUNNEL				
Type	Concrete lined			
Diameter (m)	6			
Length (m)	31.23			
Number	1			
SURGE SHAFT				
Type	Orifice			
Diameter (m)	17			
Height (m)	116			
PRESSURE SHAFT				
Туре				
Number				
Diameter (m)				
Length (m)				
POWERHOUSE				
Туре	Surface			
Installed Capacity (MW)	800			
Design Head (m)	788			
Minimum Tail water level (masl)				
TURBINE				
Туре	Pelton, vertical	axis		
Numbers	4			
Rated Output	200 MW each			

Final Report: Chapter 2

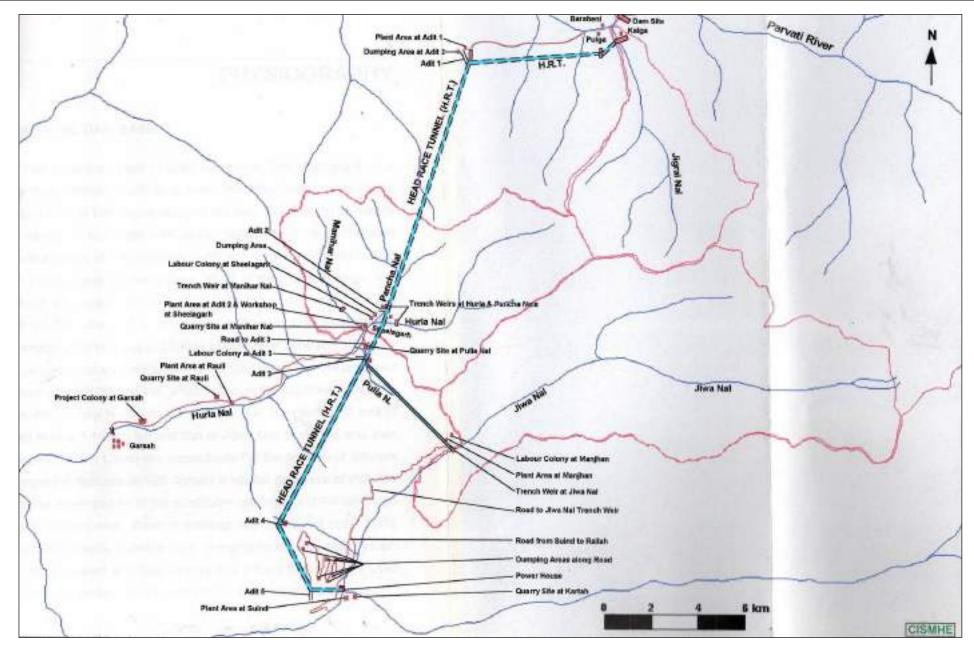


Figure 2.9: General Layout plan of Parbati II HEP

Table 2.22: Salient Features of Uhl-III (100 MW)

LOCATION				
District	Mandi	Mandi		
Name of River	Neri Khad Bassi PH tail race Rana K			
HYDROLOGY				
Catchment area at diversion site (km²)	16.00		98.90	
Design Discharge (m³/s)				
DIVERSION STRUCTURE				
Туре				
Crest level	894.50	889.75	897.65	
POWER CHANNEL				
Length (m)		1250	1970	
STORAGE RESERVOIR	At Khuddar	·		
Туре	Surface Trapezo	oidal shape		
Live Storage Capacity m ³	176000			
FRL (m)	890.90			
MDDL (m)	882.00			
HEAD RACE TUNNEL				
Туре	Circular shape			
Diameter (m)	4.15			
Length (m)	8275			
Design Discharge m ³	41.30			
SURGE SHAFT				
Shape	Restricted orifi	ce open to sky		
Diameter (m)	13 and 9 riser			
Height (m)	45 and 12 riser			
Top Level (m)	905			
Bottom Level (m)	848			
Maximum Surge level (m)	903.50			
Maximum Surge level (m)	850.00			
PENSTOCK				
Туре	Circular Steel li	ined		
	Main (1no.) 3.4			
Diameter (m)	Branches (2 nos.) 2.40m each			
Length (m)	Main (1773) after bifurcation (80m)			
POWERHOUSE				
Туре	Surface			
Installed Capacity (MW)	100			
Design Head (m)	282.90			
Minimum Tail water level (masl)	580			
TURBINE				
Туре	P. Francis Verti	ical Axis		
Numbers	2			
Rated Output	50			

Final Report: Chapter 2

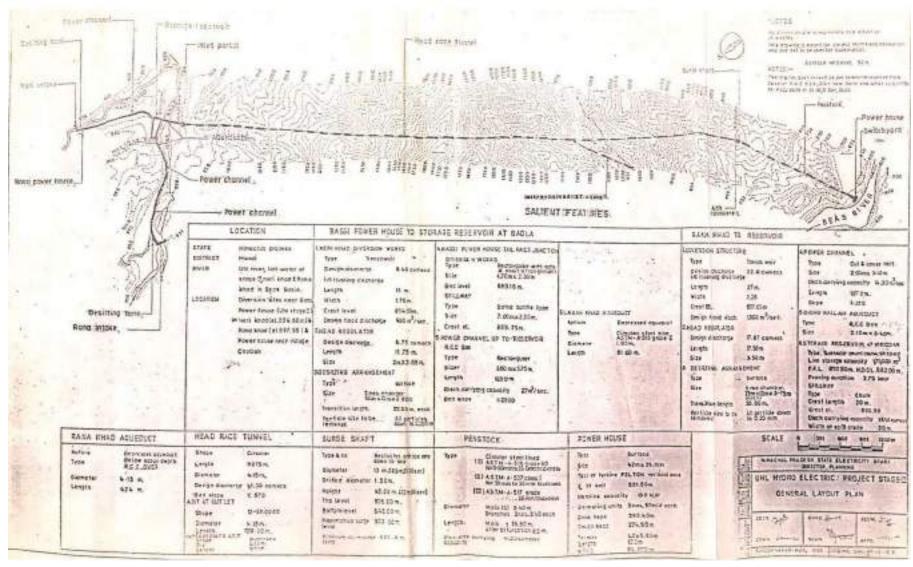


Figure 2.10: General Layout plan of Uhl III HEP

LOCATION		
District	Kullu	
Name of River	Parbati River	
HYDROLOGY		
Catchment area at diversion site (km²)	70	
Design Discharge (m ³ /s)	13.35 i/c overloading discharge	
DIVERSION STRUCTURE		
Туре	Boulder Weir - Over Flow Type	
FRL (masl)	1950	
HFL (masl)	1954	
Top Deck Level (masl)	1955	
HEAD RACE TUNNEL		
Туре	D Shaped	
Size (m)	2.50 (Wide) x 3.70 (High)	
Length (m)	1557	
FOREBAY TANK		
Shape	Rectangular	
Size (m)	8.00 (Wide) x 50.00 (Long)	
Storage Capacity (cum)	1602 for 2 minutes peaking	
Maximum Water Level (m)	±1948.90	
MDDL (m)	±1944	
FRL (m)	1948	
Spillway Crest Level (m)	±1948	
Normal Water Level (m)	±1948	
PENSTOCK		
Number	Three	
Diameter (m)	1.45 each	
Length (m)	111 each	
POWERHOUSE		
Туре	Surface	
Installed Capacity (MW)	9	
Rated Net Head (m)	84	
Minimum Tail water level (masl)	1863.5	
TURBINE		
Туре	Horizontal Axis Francis	
Numbers	Three	
Rated Output	3.00 MW Each	
POWER GENERATION		
75% Dependable Energy (MU)	49.55	

Final Report: Chapter 2

Table 2.24: Salient Features of Uhl (14 MW)

LOCATION	actives of one (14 mw)	
District	Mandi	
Name of River	Uhl River	
Coordinates - Diversion Site	32° 04' 22.50" N, 76° 04' 38.50" E	
	,	
Coordinates - Powerhouse	32° 02' 33.40" N, 76° 50' 33.77" E	
HYDROLOGY	442.270	
Catchment area at diversion site (km²)	113.369	
Design Discharge (cumec)	8.35	
DIVERSION STRUCTURE		
Type	Raised Diversion Weir	
Crest level (masl)	2085	
Depth (m)	12	
HFL (masl)	2091.15	
HEAD RACE TUNNEL (From Intake to Desilting Tank)		
Туре	D Shaped	
Size (m)	2.50 x 2.50	
Length (m)	10	
HEAD RACE TUNNEL (From Desilting Tank to Surge Shaft)		
Туре	D Shaped Pressurized Tunnel	
Size (m)	2.30 x 2.30	
Length (m)	4624.59	
SURGE SHAFT		
Туре	Underground RCC/ Steel Tank	
Diameter (m)	9.5	
Depth (m)	30.00 i/c 3.00 m freeboard	
PENSTOCK		
Type	Circular boiler quality steel pipe	
Number	One (Main), Three (Branches)	
Diameter (m)	2.00 (Main), 1.20 (Each Branch)	
Length (m)	700.00 (Main), 15.00 (Each Branch)	
POWERHOUSE		
Туре	Surface	
Installed Capacity (MW)	14	
Rated Net Head (m)	201.02	
Tail water level (masl)	1870.05	
TURBINE		
Туре	Horizontal Shaft Synchronous	
Numbers	Three	
Rated Output	4.67 MW each	
ENERGY GENERATION		
75% Dependable Energy (Mu)	74.179	
	1 1711 /	

Table 2.25: Salient Features of Sarsadi-II (9 MW)

LOCATION	
District	Kullu
Name of River	Parbati River
HYDROLOGY	
Catchment area at diversion site (km²)	492.50
Design Discharge (m³/s)	21
DIVERSION STRUCTURE	
Туре	Trench Weir
Crest Level of Weir (masl)	1190
HFL (masl)	1197.65
HEADRACE TUNNEL (From Intake to Desilting Tank)	
Shape	D Shaped
Size	4.0 m x 4.0 mm
Length (m)	304.15
HEADRACE TUNNEL (From Desilting Tank to Surge Shaft)	50 1115
Shape	D Shaped
Size (m)	3.50 x 3.50
Length (m)	2685.00
SURGE SHAFT	2003.00
Type	Partly Underground
Diameter (m)	9
Depth (m)	26
PRESSURE SHAFT	
Type	Underground
Number	One (Main), Two (Branches)
Diameter (m)	2.75 (Main), 1.95 (Each Branch)
Length (m)	550 (Main), 30 (Each Branch)
PENSTOCK	
Diameter (m)	3 (Primary), 2.25 (Branched)
Length (m)	75 (Main), 10 (Branched)
	Surface
	9
	51.1
• '	1136
	Horizontal Shaft Francis
Numbers	Two
	4.5 MW each
Energy gneration in 2008on the basis of discharges derived	24.75
from Malana (MU)	21./3
PROJECT COST	
Capital Cost (Rs)	6350.90 Lakh
POWERHOUSE Type Installed Capacity (MW) Rated Designed Net Head (m) Tail water level (masl) TURBINE Type Numbers Rated Output POWER BENEFITS Energy gneration in 2008on the basis of discharges derived from Malana (MU) PROJECT COST	Surface 9 51.1 1136 Horizontal Shaft Francis Two 4.5 MW each 21.75

Table 2.26: Salient Features of Palchan Bhang (9 MW)

LOCATION	3 (* * * * * * * * * * * * * * * * * * *
District	Kullu
Name of River	Kothi Nala
HYDROLOGY	NOLIII NALA
	64.62
Catchment area at diversion site (km²)	04.02
Design Discharge (cumec)	
DIVERSION STRUCTURE	
Type	Drop Type Trench Weir
FRL (masl)	2242
River Bed Level (masl)	2246
WATER CONDUCTING SYSTEM	
Туре	D Shaped Tunnel
Size (m)	2.20 x 2.20
Length (m)	3233
FOREBAY TANK	
Туре	Surface
Size (m)	65.00 x 8.50 x 2.00
Storage Capacity (cum)	1139
Full Forbay Level (m)	2239
MDDL (m)	2237.9
PENSTOCK	
Туре	Circular, Surface Steel
Number	One (Main), Three (Branches)
Diameter (m)	1.25 (Main), 0.85 (Each Branch)
Length (m)	450
POWERHOUSE	
Туре	Surface
Installed Capacity (MW)	9
Net Head (m)	198.39
Tail water level (masl)	2035
TURBINE	
Type	Francis
Numbers	Three
Rated Output	3.0 W Each
nacea oacpac	3.0 11 Lucii

Table 2.27: Salient Features of Uhl Khad (14 MW)

LOCATION	,
District	Mandi
Name of River	Uhl River
HYDROLOGY	OH RIVEI
Catchment area at diversion site (km²)	636.09
Design Discharge (cumec)	17.75
DIVERSION STRUCTURE	17.73
Type	Concrete Trench Weir
River Bed Level (masl)	935.5
WATER CONDUCTING SYSTEM	7,551,5
Type	D Shaped Tunnel
Size (m)	3.20 x 3.20
Length (m)	3413
SURGE SHAFT	
Туре	Underground
Diameter (m)	6.5
Depth (m)	54
PENSTOCK	
Type	Circular, Surface Steel
Number	One (Main), Two (Branches)
Diameter (m)	2.5
Length (m)	160
POWERHOUSE	
Туре	Surface
Installed Capacity (MW)	14
Net Head (m)	101.58
Tail water level (masl)	824.61
TURBINE	
Туре	Horizontal Shaft Francis
Numbers	Two
Rated Output	7.0 W Each

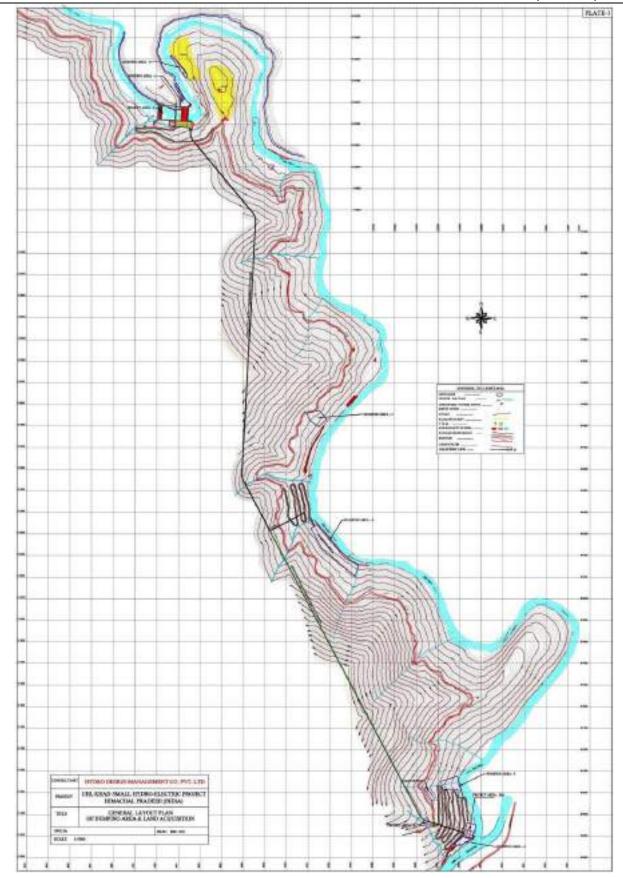


Figure 2.11: General Layout plan of Uhl Khad SHEP

Table 2.28: Salient Features of Bhang (9 MW)

LOCATION		
District	Kullu	
Name of River	Beas River	
Coordinates - Diversion Site	32° 18' 6.21" N, 77° 10' 57.77" E	
Coordinates - Powerhouse	32° 16' 36.61" N, 77° 10' 47.75" E	
HYDROLOGY	·	
Catchment area at diversion site (km²)	162.75	
Design Discharge (cumec)	8.5	
DIVERSION STRUCTURE		
Туре	Trench Weir	
Crest Level (masl)	2240	
HFL (masl)	2241.55	
POWER CHANNEL (From Intake to Desilting		
Tank)		
Туре	Rectangular Cut and Cover Type	
Size (m)	2.80 x 2.80	
Length (m)	43.78	
FOREBAY TANK		
Туре	RCC Hopper, Surface	
Size (m)	65.00 (L) x 8.00 (W) x 4.50 (D)	
Storage Capacity (cum)	1310	
FSL (masl)	2238	
MDDL (masl)	2237	
Crest Level of Penstock (masl)	2232.65	
PENSTOCK		
Туре	Boiler Quality Steel	
Number	One (Main), Two (Branches)	
Diameter (m)	2.0 (Main), 1.35 (Each Branch)	
Length (m)	2320.00 (Main), 15.00 (Each Branch)	
POWERHOUSE		
Type	Surface	
Installed Capacity (MW)	9	
Rated Net Head (m)	126	
Tail water level (masl)	2104	
TURBINE		
Туре	Vertical Shaft 6 Jet Pelton	
Numbers	Two	
Rated Output	4.50 MW Each	
POWER GENERATION		
75% Dependable Energy (Mu)	39.571	

Table 2.29: Salient Features of Sharni (9.6 MW)

LOCATION		
District	Kullu	
Name of River	Parbati River	
Coordinates - Diversion Site	31° 58′ 42.69″ N, 77° 15′ 01.61″ E	
Coordinates - Powerhouse	31° 57' 56.68" N, 77° 13' 42.65" E	
HYDROLOGY	31 37 30.00 N, 77 13 42.03 L	
Effective Catchment area at diversion site (km²)	182	
Design Discharge (cumec)	24.15	
DIVERSION STRUCTURE	2.113	
Туре	RCC Barrage Type Weir	
FSL(masl)	1310	
HFL (masl)	1312.5	
HEAD RACE TUNNEL (Tunnel Intake to Surge Shaft)	151215	
Type	D Shaped Pressurised Tunnel	
Size (m)	4.10 x 4.10	
Length (m)	2738	
SURGE SHAFT	2.00	
Туре	RCC Circular Tank	
Diameter (m)	20	
Height (m)	24.45	
FSL (masl)	1307.4	
MDDL (masl)	1303.3	
Crest Level of Penstock (masl)	1293.28	
PENSTOCK		
Туре	Surface Circular Steel	
Number	One (Main), Two (Branches)	
Diameter (m)	3.30 (Main), 2.30 (Each Branch)	
Length (m)	58.66 (Main), 20.00 (Each Branch)	
POWERHOUSE		
Туре	Surface	
Installed Capacity (MW)	9.6	
Net Head (m)	47.64	
Tail water level (masl)	1254	
TURBINE		
Туре	Horizontal Shaft Francis	
Numbers	Two	
Rated Output	4.80 MW Each	
POWER GENERATION		
75% Dependable Energy (Mu)	46.4	

Table 2.30: Salient Features of Sarsadi (9.6 MW)

LOCATION		
District	Kullu	
Name of River	Parbati River	
Coordinates - Diversion Site	31° 57' 25" N, 77° 11' 33" E	
Coordinates - Powerhouse	31° 56′ 38.01″ N, 77° 10′ 21.48″ E	
HYDROLOGY		
Effective Catchment area at diversion site (km²)	188	
Design Discharge (cumec)	24.15	
DIVERSION STRUCTURE		
Туре	RCC Rectangular tank	
FSL(masl)	1253.99	
Top level of Structure (masl)	1254.29	
HEAD RACE TUNNEL (Feeder Channel Outlet to		
Surge Shaft)		
	D Shaped Pressurised Tunnel	
Size (m)	4.10 x 4.10	
Length (m)	3165	
SURGE SHAFT		
Туре	RCC Circular Tank	
Diameter (m)	20	
Height (m)	25.21	
FSL (masl)	1251.32	
MDDL (masl)	1247.22	
Crest Level of Penstock (masl)	1239.98	
PENSTOCK		
	Surface Circular Steel	
Number	One (Main), Two (Branches)	
Diameter (m)	58.66 (Main), 20.00 (Each Branch)	
	58.66 (Main), 20.00 (Each Branch)	
POWERHOUSE		
Туре	Surface	
Installed Capacity (MW)	9.6	
	47.63	
Tail water level (masl)	1203	
TURBINE		
71	Horizontal Shaft Francis	
Numbers	Two	
	4.80 MW Each	
POWER GENERATION		
75% Dependable Energy (Mu)	46.3	

Table 2.31: Salient Features of Nakhtan (460 MW)

LOCATION		,
District	Kullu	
Name of River	Parbati River Tosh Nala	
HYDROLOGY	Tarbaci Kivei	Tosii nada
Catchment area at diversion site (km²)	687.44	332.67
Design Discharge (m³/s)	51.85	23.13
DIVERSION STRUCTURE	31.03	23.13
Type	Barrage	Barrage
Height from river bed (m)	13	17
Top of Structure (masl)	2977	2977
FRL (masl)	2975	2975
MDDL (masl)	2975	2975
River Bed Level (masl)	2964	2960
Gross Storage (MCM)	0.034	0.03
HEADRACE TUNNEL	0.034	0.03
Type	Circular (TBM)	Modified Horse Shoe (DBM)
Number	One (TBM)	One
	5.10	3.10
Diameter (m)	7471.56	2896.22
Length (m) PRESSURE SHAFT	/4/1.36	2896.22
	Hadanana d	
Type	Underground	
Number	One (Main), Four (Unit)	
Internal Diameter (m)	4.20 (Main), 2.1 each (Unit)	
Length (m)	1848.38 (Main); 55.72, 34.54, 37.1 and 37.1 (Unit)	
POWERHOUSE	<u> </u>	
Type	Underground	
Installed Capacity (MW)	460	
Rated Net Head (m)	678.98	
Tail water level (masl)	2269.62	
TURBINE		
Туре	Pelton	
Numbers	Four	
Rated Output	115 MW each	
POWER BENEFITS		
90% Dependable Energy (MU)	1535.11	
CONSTRUCTION PERIOD (Inclusive of	90 months	
Infrastructure Works)	70 1110110113	
PROJECT ESTIMATED COST (Dec. 2014		
price level)		
Total Completed Cost (Crore)	Rs. 4693.32	
Cost per MW	Rs. 10.20	
TARIFF		
1st Year Tariff (Rs./ Unit)	7.17	
35 Years Levelized tariff (Rs./ Unit)	6.30	

Figure 2.12: General Layout plan of Nakhtan HEP

Table 2.32: Salient Features of Thana Plaun (191 MW)

LOCATION		
District	Mandi	
Name of River	Beas River	
Coordinates - Diversion Site	31°49'28.22" N, 76°50'20.53" E	
HYDROLOGY		
Catchment area at diversion site (km²)	7378	
Average Discharge (cumec)	107.60	
DIVERSION STRUCTURE	167166	
Туре	RCC Dam	
Dam Top level (masl)	719	
Height of Dam (m)	85	
River Bed level (masl)	634	
FRL (masl)	716	
MDDL (masl)	697	
Live Storage (MCM)	44.93	
HEAD RACE TUNNEL	171.73	
Type	Horse Shoe	
Number	Two	
Diameter (m)	6.30 and 7.30	
Length (m)	116.30 and 146.40	
PENSTOCK/ PRESSURE SHAFT	110.30 dilu 140.40	
	Underground	
Туре	Underground Pressure Shaft-1: 5.7 m dia. bifurcating into 2.65	
	m and 5.00 m dia. which further bifurcates into	
Number	two branch penstocks of 4.25 m and 2.65 m Dia.	
Number	Pressure Shaft-2: 6.0 m dia. bifurcating into two	
	branch penstocks of 4.25 m Dia. each	
	Pressure Shaft-1: 5.7m, 4.25 m and 5.00m and	
Diameter (m)	2.65m	
Diameter (iii)	Pressure Shaft-2: 6.0 m and 4.25 m	
Length upto Bifurcation of main pressure	Pressure Shaft-1:92m	
shafts (m)	Pressure Shaft-2: 127 m	
POWERHOUSE	Tressure Share-2, 127 III	
Type	Underground	
Installed Capacity (MW)	191	
Rated Head (m)	72.97	
Rated field (iii)	634 (Monsoon), 632.70 (Lean), 633.30 (Non-	
Tail water level (masl)	Monsoon Peaking Hours), 631.70 (Non-Monsoon	
Tait water tevet (mast)	Non-Peaking Hours)	
TURBINE	Horri Caking Hours)	
Туре	Vertical Francis	
Numbers	Five	
Rated Output	3 x 50.33 MW and 2 x 20 MW	
POWER BENEFITS	3 X 30.33 MW and 2 X 20 MW	
Annual energy in 90% dependable year on		
95% machine availability (GWh)	524.91 (Main Units), 143.16 (Environmental Units)	
PROJECT COST		
Total Cost (Crore)	Rs. 2007.46	
Levelised Tariff at 90% Dependable Year	113. 2007.70	
(Rs/KWh)	Rs. 6.70	
Levelised Tariff at 50% Dependable Year		
(Rs/KWh)	Rs. 6.58	
CONSTRUCTION PERIOD (excluding 18		
months preconstruction activities)	4.5 Years	

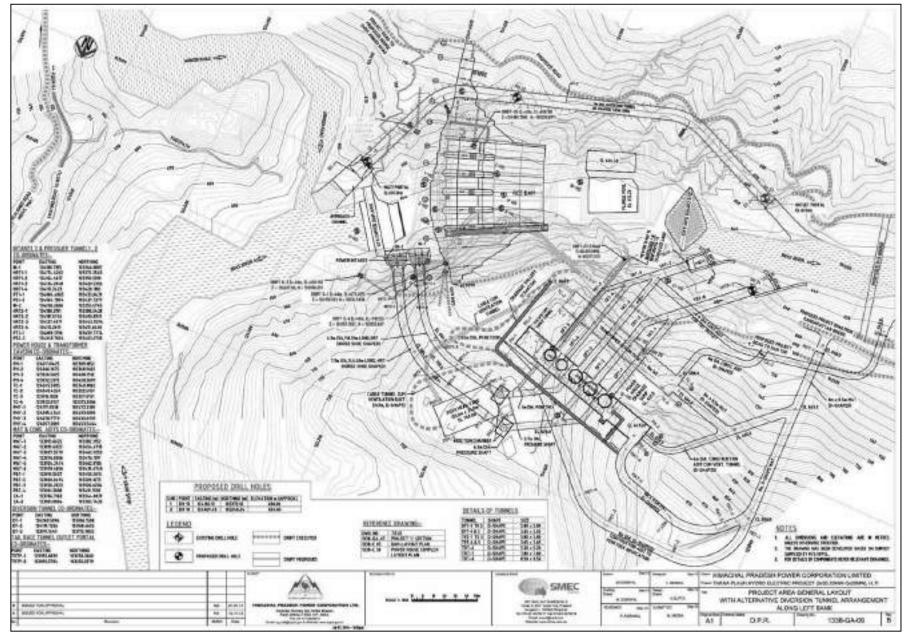


Figure 2.13: General Layout Plan of Thana Plaun HEP

Table 2.33: Salient Features of Triveni Mahadev (96 MW)

LOCATION	
District	Mandi
Name of River	Beas River
HYDROLOGY	
Catchment area at diversion site (km²)	8155 (7740 of Beas + 415 of Binwa Khad)
Average Discharge (cumec)	250.87
DIVERSION STRUCTURE	
Туре	Concrete Gravity Dam
Dam Top level (masl)	595
Height of Dam (m)	31.50
River Bed level (masl)	563.50
FRL (masl)	592
MDDL (masl)	590
Live Storage (MCM)	5.08
Barrage on Binwa Khad to divert water into HRT	15.5 m high
HEAD RACE TUNNEL	
Туре	Horse Shoe
Number	One
Diameter (m)	9.50
Length (m)	1850
PENSTOCK/ PRESSURE SHAFT	
Туре	Underground/ Surface
Number	Three
Diameter (m)	4.5
Total Length Pressure Shaft/Penstock (m)	169
POWERHOUSE	
Туре	Surface (Main including one monsoon unit), Surface (Dam Toe Environmental Releases)
Installed Capacity (MW)	96
Tail water level (masl)	552
TURBINE	
Туре	Vertical Kaplan
Numbers	Five
Rated Output	3 x 26.67 MW and 2 x 8.5 MW

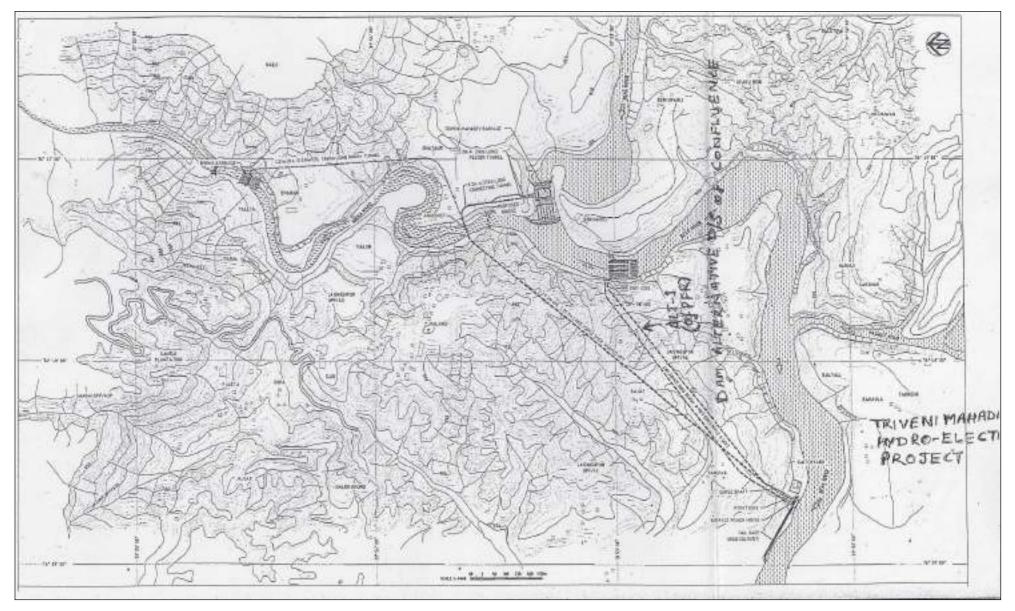


Figure 2.14: General Layout plan of Triveni Mahadev HEP

Table 2.34: Salient Features of Dhaulasidh (66 MW)

LOCATION	
District	Hamirpur
Name of River	Beas River
Coordinates - Diversion Site	31° 48' 23.1" N, 76° 26' 30.7" E
HYDROLOGY	,
Catchment area at diversion site (km²)	9580.00
Design Discharge (m ³ /s)	175
DIVERSION STRUCTURE	
Туре	Straight Concrete Gravity Dam
Height from river bed (m)	51
Top of Structure (masl)	523
FRL (masl)	520
MDDL (masl)	519
Average Bed level (masl)	472
Live Storage (10 ⁶ m ³)	6.87
PENSTOCK	
Type	Surface
Number	Two
Diameter (m)	4.3
Length (m)	60.50 each
POWERHOUSE	
Туре	Dam Toe Surface
Installed Capacity (MW)	66
Rated Head (m)	45.33
Tail water level (masl)	473.3
TURBINE	
Туре	Vertical Francis
Numbers	Two
Rated Output	33 MW each
POWER BENEFITS	
90% Dependable Energy (GWh)	257.16
PROJECT COST	
Capital Cost (Rs)	489.74 Crore

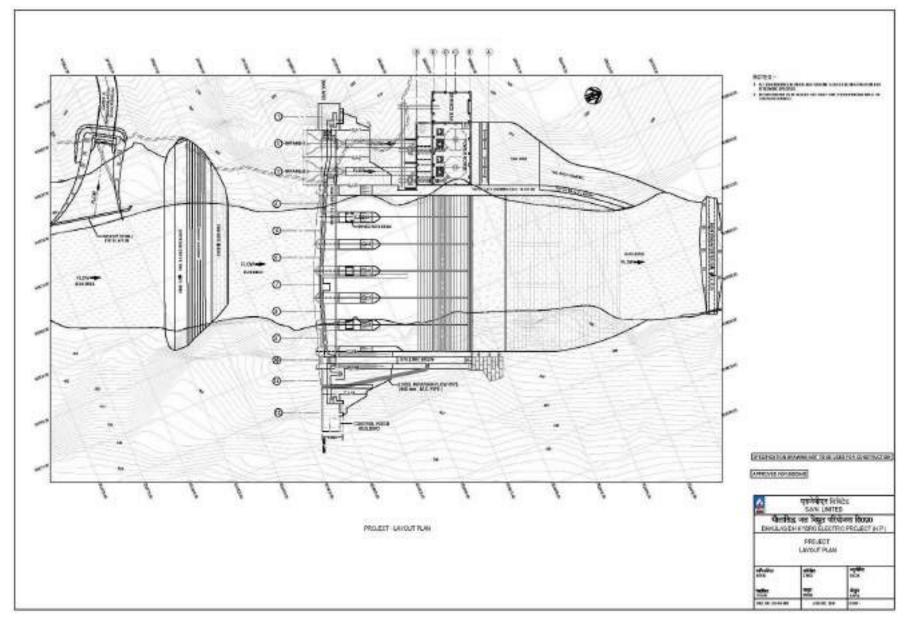


Figure 2.15: General Layout plan of Dhaulasidh HEP

Table 2.35: Salient Features of Parbati (12 MW)

LOCATION	
District	Kullu
Name of River	Parbati River
Coordinates - Diversion Site	32° 4' N, 77° 14' E
Coordinates - Powerhouse	31° 56' N, 77° 6' E
HYDROLOGY	
Catchment area at diversion site (km²)	Downstream of Tail Race of Malana HEP (86 MW)
Design Discharge (m ³ /s)	21.5
DIVERSION STRUCTURE	
Туре	Trench Weir
River Bed level (masl)	1391
High Flood level (masl)	1395
Trash Rack Level (masl)	1391
HEAD RACE TUNNEL	
Туре	Partial D Shaped
Size (m)	3.75 x 3.75
Length (m)	5250
PENSTOCK	
Туре	Surface Circular Steel
Diameter (m)	114 upto bifurcation & 15 including branches
Length (m)	3 upto bifurcation & 2.25 including branches
POWERHOUSE	
Туре	Surface
Installed Capacity (MW)	12
Average Net Head (m)	79.89
Average Tail water level (masl)	1312
TURBINE	
Туре	Francis
Numbers	Two
Rated Output	6 MW each
POWER BENEFITS	
Annual energy generation in 2008-09 with 20% COL (MU)	51.369
PROJECT COST	
Total Cost (Rs)	7835.217 lakh

Table 2.36: Salient Features of Hurla-I (9.4 MW)

District Mame of River	LOCATION	
Name of River	District	Kullu
Coordinates - Powerhouse		
Hydrology		
Catchment area at diversion site (km²) 122.4 (Pre Parbati) Design Discharge (m³/s) 4.67 DIVERSION STRUCTURE Trench Weir with Intake Structure of RCC Type Trench Weir with Intake Structure of RCC FRL (masl) 1440 HEAD RACE TUNNEL D Shaped Size (m) 2.0 x 2.5 Length (m) 1831 FOREBAY TANK Type Rectangular RCC Size (m) 35 (L) x 7.5 (W) x 1.3 (D) Elevation (masl) 1435 Capacity (currec) 450 PENSTOCK Type Fabricated from Steel Plate Number One Diameter (m) 1.45 Length (m) 550 POWERHOUSE Type Type Surface Installed Capacity (MW) 5.4 Design Head (m) 237 Tail water level (masl) 1185 TURBINE Two Type Horizontal Francis Numbers Two Rated Output 4.7 MW each </td <td></td> <td></td>		
Design Discharge (m³/s) 4.67 DiVERSION STRUCTURE Type Trench Weir with Intake Structure of RCC FRL (masl) 1440 HEAD RACE TUNNEL Type D Shaped Size (m) 2.0 x 2.5 Length (m) 1831 FOREBAY TANK Type Rectangular RCC Size (m) 35 (L) x 7.5 (W) x 1.3 (D) Elevation (masl) 1435 Capacity (cumec) 450 PENSTOCK Type Fabricated from Steel Plate Number One Diameter (m) 1.45 Length (m) 550 POWERHOUSE Type Surface Installed Capacity (MW) 5.4 Design Head (m) 237 Tail water level (masl) 1185 TURBINE Type Horizontal Francis Numbers Two Rated Output 4.7 MW each POWER BENEFITS 95% Dependable Energy (MU) 48.17 (Post Parbati) 59.69 (Pre Parbati) PROJECT COST		122.4 (Pre Parbati)
Design Discharge (m³/s)	Catchment area at diversion site (km²)	
DIVERSION STRUCTURE Trench Weir with Intake Structure of RCC	Design Discharge (m ³ /s)	
Type Trench Weir with Intake Structure of RCC FRL (masl) 1440 HEAD RACE TUNNEL 1440 Type D Shaped Size (m) 2.0 x 2.5 Length (m) 1831 FOREBAY TANK Type Rectangular RCC Size (m) 35 (L) x 7.5 (W) x 1.3 (D) Elevation (masl) 1435 Capacity (cumec) 450 PENSTOCK Type Number One Diameter (m) 1.45 Length (m) 550 POWERHOUSE Type Installed Capacity (MW) 5.4 Design Head (m) 237 Tail water level (masl) 1185 TURBINE Two Numbers Two Rated Output 4.7 MW each POWER BENEFITS 48.17 (Post Parbati) 95% Dependable Energy (MU) 59.69 (Pre Parbati) PROJECT COST	DIVERSION STRUCTURE	
FRL (masl) 1440 HEAD RACE TUNNEL D Shaped Size (m) 2.0 x 2.5 Length (m) 1831 FOREBAY TANK Type Rectangular RCC Size (m) 35 (L) x 7.5 (W) x 1.3 (D) Elevation (masl) 1435 Capacity (cumec) 450 PENSTOCK Type Type Fabricated from Steel Plate Number One Diameter (m) 1.45 Length (m) 550 POWERHOUSE Type Installed Capacity (MW) 5.4 Design Head (m) 237 Tail water level (masl) 1185 TURBINE Type Horizontal Francis Numbers Two Rated Output 4.7 MW each POWER BENEFITS 48.17 (Post Parbati) 95% Dependable Energy (MU) 59.69 (Pre Parbati) PROJECT COST 48.17 (Post Parbati)		Trench Weir with Intake Structure of RCC
D Shaped D Shaped Size (m) 2.0 x 2.5		
Type D Shaped Size (m) 2.0 x 2.5 Length (m) 1831 FOREBAY TANK Type Rectangular RCC Size (m) 35 (L) x 7.5 (W) x 1.3 (D) Elevation (masl) 1435 Capacity (cumec) 450 PENSTOCK Fabricated from Steel Plate Number One Diameter (m) 1.45 Length (m) 550 POWERHOUSE Veriface Type Surface Installed Capacity (MW) 5.4 Design Head (m) 237 Tail water level (masl) 1185 TURBINE Two Type Horizontal Francis Numbers Two Rated Output 4.7 MW each POWER BENEFITS 48.17 (Post Parbati) PS% Dependable Energy (MU) 59.69 (Pre Parbati) PROJECT COST 18.17 (Post Parbati)		
Size (m) 2.0 x 2.5 Length (m) 1831 FOREBAY TANK Type Type Rectangular RCC Size (m) 35 (L) x 7.5 (W) x 1.3 (D) Elevation (masl) 1435 Capacity (cumec) 450 PENSTOCK Type Type Fabricated from Steel Plate Number One Diameter (m) 1.45 Length (m) 550 POWERHOUSE Type Installed Capacity (MW) 5.4 Design Head (m) 237 Tail water level (masl) 1185 TURBINE Turbine Type Horizontal Francis Numbers Two Rated Output 4.7 MW each POWER BENEFITS 48.17 (Post Parbati) 95% Dependable Energy (MU) 59.69 (Pre Parbati) PROJECT COST 50.00		D Shaped
Length (m)		
FOREBAY TANK Rectangular RCC Size (m) 35 (L) x 7.5 (W) x 1.3 (D) Elevation (masl) 1435 Capacity (cumec) 450 PENSTOCK Fabricated from Steel Plate Number One Diameter (m) 1.45 Length (m) 550 POWERHOUSE 5urface Installed Capacity (MW) 5.4 Design Head (m) 237 Tail water level (masl) 1185 TURBINE Horizontal Francis Numbers Two Rated Output 4.7 MW each POWER BENEFITS 48.17 (Post Parbati) 95% Dependable Energy (MU) 59.69 (Pre Parbati)		
Type Rectangular RCC Size (m) 35 (L) x 7.5 (W) x 1.3 (D) Elevation (masl) 1435 Capacity (cumec) 450 PENSTOCK Type Type Fabricated from Steel Plate Number One Diameter (m) 1.45 Length (m) 550 POWERHOUSE Surface Installed Capacity (MW) 5.4 Design Head (m) 237 Tail water level (masl) 1185 TURBINE Horizontal Francis Numbers Two Rated Output 4.7 MW each POWER BENEFITS 48.17 (Post Parbati) 95% Dependable Energy (MU) 59.69 (Pre Parbati)		1001
Size (m) 35 (L) x 7.5 (W) x 1.3 (D) Elevation (masl) 1435 Capacity (cumec) 450 PENSTOCK Type Type Fabricated from Steel Plate Number One Diameter (m) 1.45 Length (m) 550 POWERHOUSE Surface Installed Capacity (MW) 5.4 Design Head (m) 237 Tail water level (masl) 1185 TURBINE Type Numbers Two Rated Output 4.7 MW each POWER BENEFITS 48.17 (Post Parbati) 95% Dependable Energy (MU) 59.69 (Pre Parbati) PROJECT COST 450		Rectangular RCC
Elevation (masl) Capacity (cumec) 450 PENSTOCK Type Fabricated from Steel Plate Number One Diameter (m) Length (m) POWERHOUSE Type Surface Installed Capacity (MW) Design Head (m) Turring Head (m) Turring Head (masl) Turring Horizontal Francis Type Horizontal Francis Numbers Rated Output POWER BENEFITS 95% Dependable Energy (MU) PROJECT COST 48.17 (Post Parbati) 59.69 (Pre Parbati)		
Capacity (cumec) 450 PENSTOCK Fabricated from Steel Plate Type Fabricated from Steel Plate Number One Diameter (m) 1.45 Length (m) 550 POWERHOUSE Surface Installed Capacity (MW) 5.4 Design Head (m) 237 Tail water level (masl) 1185 TURBINE Horizontal Francis Numbers Two Rated Output 4.7 MW each POWER BENEFITS 48.17 (Post Parbati) 95% Dependable Energy (MU) 59.69 (Pre Parbati) PROJECT COST		
PENSTOCK Fabricated from Steel Plate Type Fabricated from Steel Plate Number One Diameter (m) 1.45 Length (m) 550 POWERHOUSE Type Installed Capacity (MW) 5.4 Design Head (m) 237 Tail water level (masl) 1185 TURBINE Type Numbers Two Rated Output 4.7 MW each POWER BENEFITS 48.17 (Post Parbati) 95% Dependable Energy (MU) 59.69 (Pre Parbati)		
Type Fabricated from Steel Plate Number One Diameter (m) 1.45 Length (m) 550 POWERHOUSE Type Surface Installed Capacity (MW) 5.4 Design Head (m) 237 Tail water level (masl) 1185 TURBINE Type Horizontal Francis Numbers Two Rated Output 4.7 MW each POWER BENEFITS 95% Dependable Energy (MU) PROJECT COST	PENSTOCK	150
Number One Diameter (m) 1.45 Length (m) 550 POWERHOUSE		Fabricated from Steel Plate
Length (m) 550 POWERHOUSE Surface Type Surface Installed Capacity (MW) 5.4 Design Head (m) 237 Tail water level (masl) 1185 TURBINE Type Numbers Two Rated Output 4.7 MW each POWER BENEFITS 48.17 (Post Parbati) 95% Dependable Energy (MU) 48.17 (Post Parbati) PROJECT COST 59.69 (Pre Parbati)		
Length (m) 550 POWERHOUSE Surface Type Surface Installed Capacity (MW) 5.4 Design Head (m) 237 Tail water level (masl) 1185 TURBINE Type Numbers Two Rated Output 4.7 MW each POWER BENEFITS 48.17 (Post Parbati) 95% Dependable Energy (MU) 48.17 (Post Parbati) PROJECT COST 59.69 (Pre Parbati)		
POWERHOUSE Surface Type 5.4 Design Head (m) 237 Tail water level (masl) 1185 TURBINE Horizontal Francis Numbers Two Rated Output 4.7 MW each POWER BENEFITS 48.17 (Post Parbati) 95% Dependable Energy (MU) 59.69 (Pre Parbati)	· /	
Type Surface Installed Capacity (MW) 5.4 Design Head (m) 237 Tail water level (masl) 1185 TURBINE Horizontal Francis Numbers Two Rated Output 4.7 MW each POWER BENEFITS 48.17 (Post Parbati) 95% Dependable Energy (MU) 59.69 (Pre Parbati)		
Installed Capacity (MW) 5.4 237		Surface
Design Head (m) 237 Tail water level (masl) 1185 TURBINE Horizontal Francis Numbers Two Rated Output 4.7 MW each POWER BENEFITS 48.17 (Post Parbati) 95% Dependable Energy (MU) 59.69 (Pre Parbati)		
Tail water level (masl) 1185 TURBINE Horizontal Francis Type Horizontal Francis Numbers Two Rated Output 4.7 MW each POWER BENEFITS 48.17 (Post Parbati) 95% Dependable Energy (MU) 59.69 (Pre Parbati) PROJECT COST PROJECT COST		
Type Horizontal Francis Numbers Two Rated Output 4.7 MW each POWER BENEFITS 48.17 (Post Parbati) 95% Dependable Energy (MU) 48.17 (Post Parbati) PROJECT COST 59.69 (Pre Parbati)		1185
Numbers Two Rated Output 4.7 MW each POWER BENEFITS 48.17 (Post Parbati) 95% Dependable Energy (MU) 59.69 (Pre Parbati) PROJECT COST	TURBINE	
Numbers Two Rated Output 4.7 MW each POWER BENEFITS 48.17 (Post Parbati) 95% Dependable Energy (MU) 59.69 (Pre Parbati) PROJECT COST	Type	Horizontal Francis
POWER BENEFITS 95% Dependable Energy (MU) PROJECT COST 48.17 (Post Parbati) 59.69 (Pre Parbati)		
POWER BENEFITS 95% Dependable Energy (MU) PROJECT COST 48.17 (Post Parbati) 59.69 (Pre Parbati)	Rated Output	4.7 MW each
PROJECT COST 59.69 (Pre Parbati)		
PROJECT COST 59.69 (Pre Parbati)	OF O Depart debte Fragge (AUI)	48.17 (Post Parbati)
PROJECT COST	95% Dependable Energy (MU)	
Total Cost (Rs) 7121 lakh	PROJECT COST	,
	Total Cost (Rs)	7121 lakh

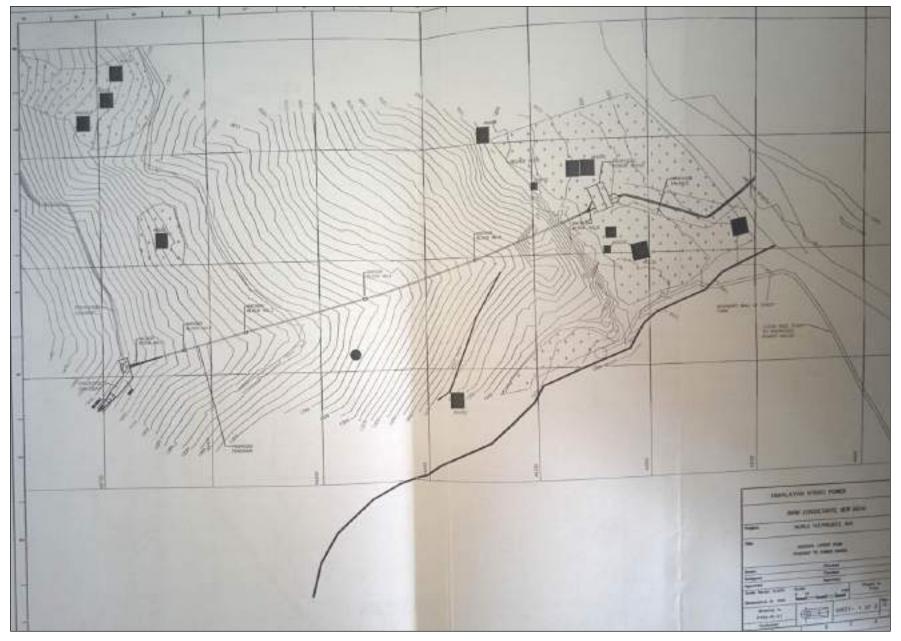


Figure 2.16: General Layout plan of Hurla-I SHEP

Table 2.37. Salletti Fediul	es of surf (12 mw)
LOCATION	
District	Kullu
Name of River	Parbati River
Coordinates - Diversion Site	32° 00' 29.79" N, 77° 17' 23.84" E
Coordinates - Powerhouse	32° 00' 15.99" N, 77° 15' 05.42" E
HYDROLOGY	
Effective Catchment area at diversion site (km²)	182.79
Design Discharge (cumec)	20.35
DIVERSION STRUCTURE	
Туре	Concrete Gravity Floor Type Weir
Crest Level of other bay of Weir (masl)	1480
HFL upstream (masl)	1481.43
HEAD RACE TUNNEL (Desilting Tank to Tunnel Inlet)	
Туре	RCC Channel, Square Box Section
Size (m)	3.50 x 3.50
Length (m)	255.23
HEAD RACE TUNNEL (Tunnel Inlet to Surge Shaft)	
Туре	D Shaped Pressurized Tunnel
Diameter (m)	3.5
Length (m)	3294.54
SURGE SHAFT	
Туре	Underground, Steel/RCC
Diameter (m)	3.0 and 10.80
Depth (m)	75.5
Static Water Level (masl)	1480
Operating Water level (masl)	1476.335
Bed Level (masl)	1412.5
Top Level of Tank (masl)	1488
MDDL (masl)	1473.51
PENSTOCK	
Туре	Underground Steel
Number	One (Main), Three (Branches)
Diameter (m)	2.50 (Main), 1.60 (Each Branch)
Length (m)	251.30 (Main), 15.00 (Each Branch)
POWERHOUSE	
Туре	Surface
Installed Capacity (MW)	12
Net Head (m)	70.3
Tail water level (masl)	1400
TURBINE	
Type	Horizontal Shaft Francis
Numbers	Three
Rated Output	4.00 MW Each
POWER GENERATION	noo mir Euch
	105.12 (Pre Parvati Stage-II Commissioning)
75% Dependable Energy (Mu)	65.52 (Post Parvati Stage-II Commissioning)
ESTIMATE OF COST	03.32 (FOSC FAI VACI SCASE-II COIIIIIIISSIOIIIIIS)
Total Project Cost (Lakh)	Rs. 10204.70
Cost per MW (Lakh)	Rs. 850
CONSTRUCTION PERIOD	
CONSTRUCTION PERIOD	3 Years (after financial closure)

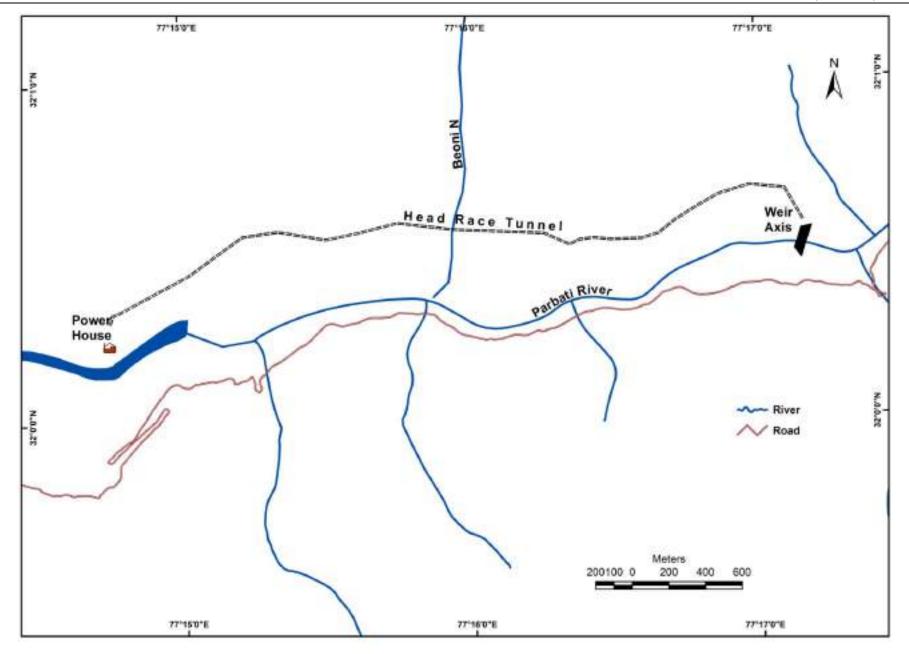


Figure 2.17: General Layout map of Jari SHEP

Table 2.38: Salient Features of Raison (18 MW)

	PROPOSAL-I	TENTATIVE (PROPOSAL-II)
LOCATION		
District	Kullu	Kullu
Name of River	Beas River	Beas River
HYDROLOGY		
Catchment area at diversion site (km²)	1025	1025
Design Discharge (cumecs)	137.5	137.5
DIVERSION STRUCTURE		
Туре	Labyrinth weir	Labyrinth weir Rectangular
Creat Floration (most)	Rectangular shaped ±1327	shaped ±1327
Crest Elevation (masl)	±1327	±1327
DESILTING TANK	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	I. C
Туре	Surface, central	Surface, central Cunnette
	Cunnette type 50x34x4	type 50x34x4
Size (m)	5UX34X4	3UX34X4
WATER CONDUCTOR SYSTEM	POWER CHANNEL CUM FOREBAY	POWER CHANNEL
Size (m)	16m wide, varying height	16m wide, varying height
Length (m)	±430	±235
		PENSTOCK
Туре		surface, circular steel penstock
Number		Three
Diameter (m)		3.4 (each)
Length (m)		220 (each)
POWERHOUSE		
Туре	Surface	Surface
Installed Capacity (MW)	18	18
Net Head (m)	15	15
Maximum Tail water level (masl)	1311	1311
TURBINE		
Туре	Kaplan, horizontal axis	Kaplan, horizontal axis
Numbers	3	3
Rated Output	6 MW each	6 MW each
POWER BENEFITS		
75% Dependable Energy (Gwh)	78.57	78.57
PROJECT ESTIMATED COST (Tentative)		-
Total Completed Cost (Crore)	161.39	146.50
Cost per Kwh	3.56	3.23

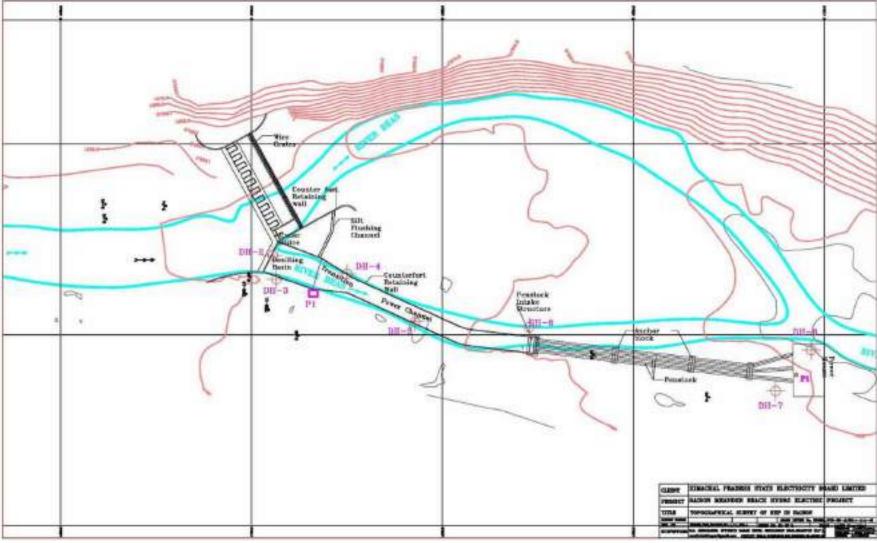


Figure 2.18: General Layout plan of Raison HEP

Table 2.39: Salient Features of Kilhi Bahl (7.5 MW)

	Herit i catales of Killin Bailt (7:5 MW)
LOCATION	
District	Kangra
Name of River	Binwa and Awa Nalas
Coordinates - Diversion Site	32° 00' 40" N, 76° 36' 50" E
Coordinates - Powerhouse	31° 58' 40" N, 76° 37' 15" E
HYDROLOGY	
Catchment area at diversion site (km²)	282.00
Design Discharge (m ³ /s)	10.34
DIVERSION STRUCTURE	
Туре	Raised Crested Type Weir
River Bed level (masl)	786
HEAD RACE TUNNEL	
Туре	D Shaped
Diameter (m)	2.5
Length (m)	3630
SURGE SHAFT	
Туре	Underground
Diameter (m)	6
Height (m)	33
PENSTOCK	
Туре	Circular, Underground/ Surface Steel
Diameter (m)	2.2
Length (m)	150
POWERHOUSE	
Туре	Surface
Installed Capacity (MW)	7.5
Net Head (m)	86
Tail water level (masl)	690
TURBINE	
Туре	Francis
Numbers	Three
Rated Output	7.5 MW each
POWER BENEFITS	
75% Dependable Energy (MU)	46.93
PROJECT COST	
Total Cost (Rs)	7400.65 Lac
` '	

Table 2.40: Salient Features of Malana-III (30 MW)

Table 2.40, Jallell	it i eatures of mataria-iii (50 mm)
LOCATION	
District	Kullu
Name of River	Malana Nala
Coordinates - Diversion Site	32° 06' 16.35" N, 77° 18' 31.80" E
Coordinates - Powerhouse	32° 5' 4.42" N, 77° 16' 42.24" E
HYDROLOGY	
Catchment area at diversion site (km²)	124.75
Design Discharge (m ³ /s)	14.17 i/c Shingle and Sand flushing discharge
DIVERSION STRUCTURE	
Type	Type Weir
River Bed level (masl)	2895
POWER PIPE	
Type	Circular
Diameter (m)	2
Length (m)	3918
SURGE TANK	
Size (m)	8 (L) x 8 (W) x 6 (H)
Maximum Upsurge level (masl)	2910.35
Minimum Down Surge Level (masl)	2874.75
POWERHOUSE	
Type	Surface
Installed Capacity (MW)	25
Rated Net Head (m)	325.2
Maximum Tail water level (masl)	2550
TURBINE	
Туре	Vertical Axis Pelton
Numbers	Two
Rated Output	15 MW each
POWER BENEFITS	
75% Dependable Energy (GWh)	127.64
PROJECT COST	
Total Cost (Rs)	212.66 Crore

Table 2.41: Salient Features of Jobrie (12 MW)

	Tr. Salient reatures or Sobrie (12.11(1)		
LOCATION				
District	Kullu			
Name of River	Jobrie Nala Allain Nala			
HYDROLOGY				
Catchment area at diversion site (km²)	66.70	57.3		
Design Discharge (m ³ /s)	12.53 inclusive of 20% overload	during monsoon months		
DIVERSION STRUCTURE				
Туре	Raised Crested Boulder Filled Weir	Raised Crested Boulder Filled Weir		
FRL (masl)	2965	2965		
HFL (masl)	2968.5	2967.5		
HEADRACE TUNNEL				
Type	D Shaped, Pressurized	D Shaped, Pressurized		
Size (m)	2.0 (W) x 2.5 (H)	2.0 (W) x 2.5 (H)		
Length (m)	762.50	2167		
PENSTOCK				
Type	Circular, ASTM 285 Grade "C"			
Number	One (Main), Three (Branches)			
Diameter (m)	2.00 (Main), 1.64 (One Branch	and 1.16 (Two Branches Each)		
Length (m)	519.739 (Main), 6.975 (One Bra Each)	nch) and 18.00 (Two Branches		
POWERHOUSE	,			
Installed Capacity (MW)	18 + 20% Continuous Overload			
Gross Head (m)	205			
Tail water level (masl)	2760.9			
TURBINE				
Type	Horizontal Axis Francis			
Numbers	Three			
Rated Output	6 MW each + 20% Continuous Overload			
POWER BENEFITS				
50% Dependable Energy (MU)	108.74			
75% Dependable Energy MU)	100.69			
90% Dependable Energy (MU)	91.48			
PROJECT COST				
Total Cost (Rs)	15758.11 Lakh			

LOCATION		
District	Mandi	
Name of River	Beas	
HYDROLOGY		
Catchment area at diversion site (km²)	4921	
Design Discharge (cumec)	312.50	
DIVERSION STRUCTURE		
Type	Gravity & Masonry	
Height from river bed (m)	26.50	
Top of Structure (masl)	981.50	
River Bed level (masl)	955	
Full Reservoir level (masl)	969.50	
Minimum Drop Down level (masl)	963.00	
Total Volume Content of Dam (TCM)	111.571	
HEAD RACE TUNNEL		
Туре	Circular	
Length (m)	4119.861	
Diameter (m)	8.5	
PRESSURE SHAFT		
Type	ASTM-A-537	
Number	Three	
Diameter (m)	4.5 (each)	
Length (m)	83.33 (each)	
POWERHOUSE		
Type	Underground	
Installed Capacity (MW)	126	
Net Head (m)		
Tail water level (masl)	899.6	
TURBINE		
Type	Kaplan	
Numbers	Three	
Rated Output	42 MW each	
POWER BENEFITS		
50% Dependable Energy (MU)		
90% Dependable Energy (MU)		
PROJECT COST		
Total Cost (Rs)	796.98 Crore	
Year of Commissioning/ Completion		
·	Unit I - 19-07-2007	
Commercial Operation Date (COD)	Unit II - 12-10-2006	
	Unit III - 29-09-2006	

Final Report: Chapter 3 CHAPTER-3

METHODOLOGY

3.1 GENERAL

To undertake Cumulative Impact Assessment and Carrying Capacity Study (CIA&CCS) of Beas river basin vis-à-vis proposed hydropower development in Himachal Pradesh, it is essential to establish the present environment setting in the basin on which impacts of development can be predicted and strategy for sustainable development can be formulated. Scoping for the study has set the requirement of extensive baseline data to be collected. Extensive baseline surveys were carried out for data collection, sampling and analysis. Additionally, data was collected from secondary sources, collated and analyzed. Entire data collection and analysis work was undertaken scientifically based on the pre-defined methodology, which is discussed in ensuing text. The data on baseline status of various environmental parameters in the study area was collected through primary surveys for three seasons as specified in the approved TOR.

3.2 DATA COLLECTION

3.2.1 Secondary Data Collection

In addition to primary surveys, substantial secondary data was also collected through interaction with various state and project officials. Sources and data so collected have been mentioned below:

- Directorate of Energy, Government of Himachal Pradesh, Himachal Pradesh Power Corporation Ltd. (HPPCL), State Forest Department and State Fisheries Department. This includes status of planned and allotted projects in the basin, Forest Working Plan, Wildlife sanctuaries/National Parks and other protected areas in the basin and their management plans, fish fauna and conservation measures, if any.
- Data collected from published sources and literature survey for forest type, flora, fauna and fishes; their conservation status i.e. Rare, Endangered & Threatened (RET), Scheduled species as per Indian Wildlife (Protection) Act (1972), threatened status according to IUCN Red List, Red Data Books by Botanical Survey of India and conservation of important medicinal plants according to guidelines of CAMP, 2013 (Conservation Assessment and Management Plan) workshops held at Shimla in 2010 and fishes according to CAMP, 1998.
- Procurement of satellite data, Forest Survey of India (FSI) data, Advanced Space borne
 Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM)
 Version 2 data and digital maps; used to prepare base maps, longitudinal sections of river
 stretches, slope maps, drainage maps, forest cover maps, etc.

3.2.2 Primary Data Collection

Primary Data collection has been undertaken for different months and seasons as per the predefined TOR. Field surveys were undertaken to collect data on various environmental parameters like water quality, flora, fauna, fisheries, aquatic ecology, etc.

3.3 GENERATION OF THEMATIC LAYERS

The spatial database on physiographic features like drainage, roads, settlements and villages, etc. was created from maps of topographic sheets and satellite data followed by ground truth verification and data analysis with Geographic Information System (GIS) tools. GIS based maps have been provided for the following themes:

Final Report: Chapter 3

- General Features (Villages, roads, tributaries)
- Hydrology: Drainage of Beas river along with their tributaries
- Soil
- Elevation profile
- Slope
- Land use in study area
- Vegetation

A comprehensive list of various thematic data layers prepared and used in the study is given in table below.

Description of the Data Layer	Procedure used in generation
Catchment Boundary (Beas basin in Himachal Pradesh) in ARC and POLYGON shape files	Catchment area in Himachal Pradesh has been delineated using Survey of India 1:50000 topo-sheets and satellite data
Hydro - electric projects in the Beas catchment study area	All hydro projects in Beas basin of Himachal Pradesh have been marked on GIS and data has been taken from Directorate of Energy, Himachal Pradesh as point shapefiles
Main roads passing through the study area	Data related to roads have been picked up from Survey of India 1:50000 topo-sheets and satellite data PWD, BRO and existing published maps. Same has been digitised as GIS layer as polyline shapefile
Other roads in the study area	Data related to roads have been picked up from PWD, BRO and existing published maps. Same has been digitised as GIS layer as polyline shapefile
Rivers, tributaries and drainages in POLYLINE shapes	Small rivers and drainages have been delineated using Survey of India topo-graphical sheets and have been updated using IRS P6, LISS IV satellite data as well as Google Earth. (Polyline shape)
Rivers, tributaries and drainages in POLYGON shapes	Major rivers and drainages have been delineated using Survey of India topo-graphical sheets and have been updated using IRS P6, LISS IV satellite data as well as Google Earth. (Polygon shape)
Soil data layers as per NBSS&LUP, Nagpur	Soil maps have been procured from National Bureau of Soil Survey and Land use Planning, Nagpur in hard copy formats which were geo-referenced and digitized as GIS layer as polygon shapefiles.
Raw satellite data for IRS P6 satellite, LISS III sensor	Raw satellite data for IRS P6, LISS III sensor has also been procured from National Remote Sensing Centre.
Classified data for land cover	Land use and land cover map of the basin was prepared from the data of 2015 was procured from Forest Survey of India (FSI). It was further refined by ground checks carried out during the field surveys. For this purpose FCC of the entire study area was generated from digital satellite data of LISS-III, IRS-P6.
Village level data for all villages in the study area as per latest Census of India	All census data like population, occupational profile, literates, SC/ST population etc. (males/females) have been arranged in EXCEL table.
GIS files for forest data layers as per Forest Survey of India	Forest related data has been procured from Forest Survey of India and forest classification has been done accordingly and has been placed on GIS platform.
Digital Elevation Model of Beas Catchment in Himachal Pradesh (Study Area) showing different elevation ranges	Digital Elevation model for the entire study area has been derived using digitised contours and spot levels from topographical sheets.
Slope Map	Slope map has been derived using digital elevation model of the study area. The entire study area has been divided into different slope classes.

Protected Area National Parks and Wildlife Sanctuaries in the (Beas Catchment) in Himachal Pradesh

Boundary of National Parks and Wildlife Sanctuaries has been marked as GIS layer using Gazette notification.

3.4 STUDY AREA (BEAS BASIN) DEMARCATION

The study area i.e. Beas basin in Himachal Pradesh was delineated using Survey of India toposheets at 1:50000 starting from Rohtang Pass up to Dam site of Pong Dam. The following toposheets were used for delineation.

Survey of India Toposheets: The entire study area is covered in following topographical sheets of Survey of India at 1:50000 scale (**refer Figure 3.1**): 43P15, 43P16, 44M13, 52D3, 52D4, 52D7, 52D8, 52D12, 52D16, 52H3, 52H4, 52H7, 52H8, 52H12, 52H16, 53A1, 53A2, 53A5, 53A6, 53A9, 53A10, 53A13, 53A14, 53A15, 53E1, 53E2, 53E3, 53E5, 53E6, 53E7, 53E9, 53E10, 53E13, 53E14.

Projection and Datum : UTM and WGS 84; 46 North

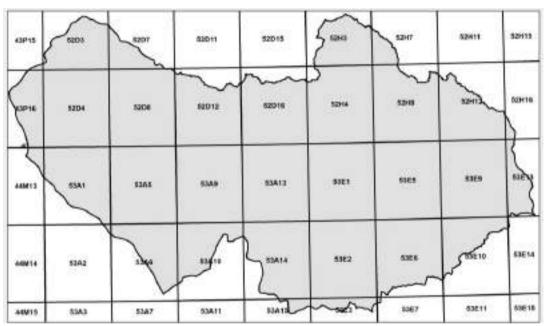


Figure 3.1: Survey of India toposheets at 1:50000 coverage of Beas basin

3.5 LAND USE/ LAND COVER MAPPING

False Color Composite (FCC) of the study area was generated from digital satellite data of **LANDSAT** data downloaded ETM+ from USGS Earth (https://earthexplorer.usgs.gov/) and is given at Figure 3.2. In addition, latest satellite data of Sentinel-2 was also downloaded from USGS portal referred to above. The Sentinel-2 satellite mission was launched by the European Space Agency (ESA) in collaboration with the European Commission, industry, service providers, and data users in June, 2015. Sentinel-2 data is acquired in 13 multispectral bands ranging from Visible and Near-Infrared (VNIR) to Shortwave Infrared (SWIR) wavelengths along a 290-km orbital swath with spectral resolution ranging from 10m to 60m in different bands. Sentinel-2 data of April 2017 was downloaded to generate FCC for visualization purpose mainly. FCC generated from Sentinel-2 is given at Figure 3.3.

For the preparation of land use and land cover map of the basin, forest cover data of 2015 was procured from Forest Survey of India (FSI), Dehradun. In addition digital data of 2005 was

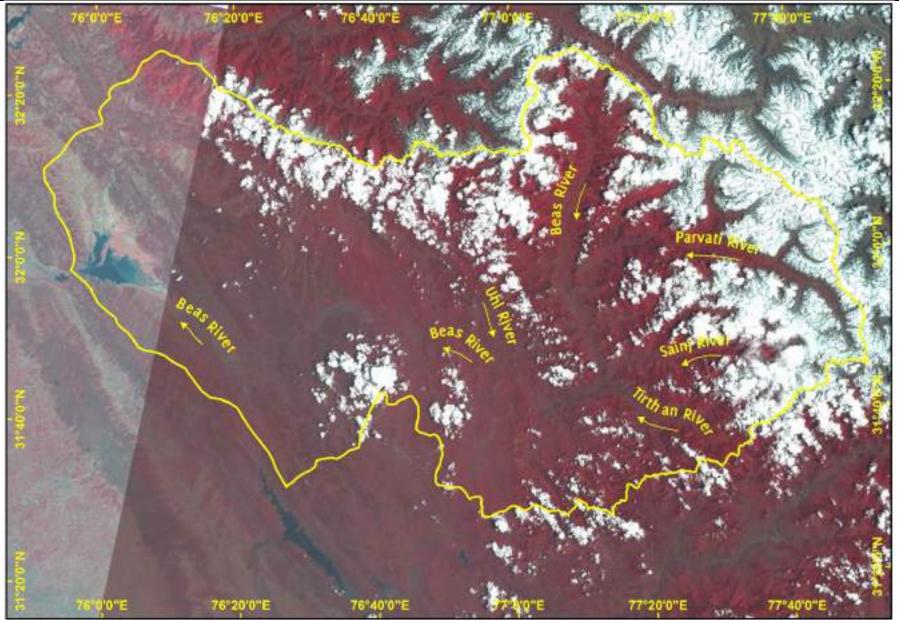


Figure 3.2: FCC generated from Landsat ETM+ data of 2004

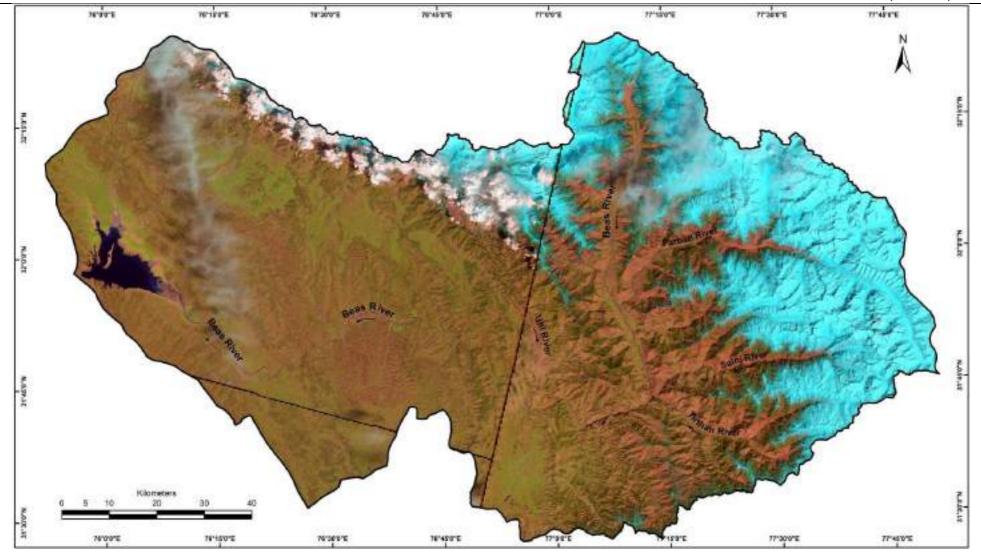


Figure 3.3: FCC generated from Sentinel-2 April 2017 data

also procured from FSI in order to understand the forest cover/land use change since 2005. The digital data procured from FSI was downloaded and further processed in GIS domain to generate mosaic of Beas basin.

In order to understand the extent of forest cover the classification scheme suggested by Forest Survey of India, Dehradun was adopted for the preparation of land use/land cover map of the basin. The forests with >70% canopy cover has been demarcated as Very Dense Forest, between 40% and 70% canopy cover was delineated as Moderately Dense Forest and between 10% and 40% crown density as Open Forest. Furthermore, degraded forests, grass covered slopes with canopy density <10% were delineated as Scrubs. The area not included in any of the above classes is delineated as Non-forest land cover.

3.6 FOREST TYPES

Administratively the forests in the Beas basin fall under jurisdiction of Kullu, Parvati, Seraj, Mandi, Nachan, Joginder Nagar, Dharamshala, Nurpur, Palampur, Dehra and Suket Forest Divisions which are under administrative control of four Circles namely Kullu, Hamirpur, Dharamshala and Mandi of Himachal Pradesh State Forest Department. Forest types in study area have been described as per the Revised Survey of India by Champion and Seth (1968).

3.7 COMMUNITY STRUCTURE

The objectives of the present floristic study are as follows:

- To prepare an inventory of various groups of plants (Angiosperms, Gymnosperms, Pteridophytes and Bryophytes) in the basin
- To assess the community structure in the study area
- To determine Importance Value Index and
- Shannon Wiener Diversity Index for trees, shrubs and herbs

3.7.1 Sampling Locations and Methodology

The size and number of quadrats needed were determined using the species- area curve (Misra, 1968). The data on vegetation were quantitatively analyzed for density, frequency as per the methodology given in Curtis & McIntosh (1950), Dhar *et al.* (1997), Greig-Smith, (1957), Misra, (1968), Samant *et al.* (2002) and Joshi and Samant (2004). The Importance Value Index (IVI) for trees was determined as the sum of relative density, relative frequency and relative dominance (Curtis, 1959).

Sampling Site Selection

The sampling locations were selected on the basis of the area located in the vicinity of operational, under construction as well as proposed projects and their components. Entire Beas basin has been covered with required number of sampling locations as per TOR i.e. 60 locations. No sampling site was located in Tirthan catchment which has been declared as nogo area by the state government. Sampling locations were identified to capture the baseline status and depending upon the anticipated changes in the topography, vegetation, forest types, etc. so as to capture the representative baseline of the area. Reach/ coverage of each project was considered from tip of the Full Reservoir Level (FRL) to the tail water outfall point. Therefore, for projects in cascade some sampling locations were considered representative of more than one project. Coverage area for terrestrial ecology sampling sites

was invariably spread over an area of 4 - 5 sq km in general in which 10-15 number of 10m x 10m quadrats were laid to capture the vegetation structure.

As per the requirement of ToR, surveys for terrestrial ecology were conducted during three seasons i.e. Pre-monsoon/Summer (May-June, 2016), Monsoon (August-September, 2016) and Post-monsoon/winter (November-December, 2016).

The number of quadrats studied varied from minimum of 10 quadrats to 15 quadrats at a particular sampling site/ area depending upon the heterogeneity/ homogeneity of the vegetation encountered at a particular site/ area (see Table 3.2). At each site the quadrats were laid along the altitudinal gradient beginning from the vegetation along the river bank/riverine vegetation and further up along the slope ensuring maximum possible representative coverage of the vegetation of a particular sampling location. Each sampling location/ area was divided into grids vertically as well as horizontally along the slopes thereby capturing the maximum diversity of vegetation. In case of trees total basal area/cover per unit area was calculated by measuring the 'cbh' (circumference at breast height) of each individual tree belonging to different species, which was then converted into basal area using the formula as follows.

Based on the quadrat data, frequency, density and cover (basal area) of each species were calculated. The data on density and basal cover are presented on per ha basis.

The Importance Value Index (IVI) for different tree species was determined by adding up the Relative Density, Relative Frequency and Relative Dominance/ Cover values. The Relative Density and Relative Frequency values were used to calculate the IVI of shrubs and herbs.

For the calculation of dominance, the basal area was determined by using following formula. Basal area = πr^2

The index of diversity was computed by using Shannon Wiener Diversity Index (Shannon Wiener, 1963) as:

 $H = - \Sigma (ni/n) \times ln (ni/n)$

Where, ni is individual density of a species and n is total density of all the species

The Evenness Index (E) is calculated by using Shannon's Evenness formula (Magurran, 2004). Evenness Index (E) = H / In(S)

Where, H is Shannon Wiener Diversity index; S is number of species

The forest communities were then identified on the basis of IVI values of trees. The single tree species representing > 50% of the total IVI were designated as a single species dominated community, whereas two or more species contributing 50 or > 50% of the total IVI to be named as a mixed community. Species richness has also been determined using Shannon Weiner Diversity Index.

In order to understand the composition of the vegetation, most of the plant species were identified in the field itself whereas the species that could not be identified the photographs were taken of different plant parts for identification later with the help of available

published literature and floras of the region (Aswal and Mehrotra, 1994; Chowdhery and Wadhwa, 1984; Dhaliwal and Sharma, 1999; Polunin and Stainton, 1984; Murti, 2001). The nomenclature for all plant species is based upon the latest nomenclature given in www.theplantlist.org. Efforts were made to include synonyms also in addition to new names wherever required. The inventory of plant species was prepared using extensive literature citations and field surveys. Following literature was used for the preparation of up-to-date list of plant species reported from Beas basin. The following literature was consulted for the preparation of inventory of plant species reported from Beas basin in Himachal Pradesh: Samant et al., (2002), Joshi and Samant (2004), Aswal and Mehrotra (1994) Chowdhery and Wadhwa (1984), Dhaliwal and Sharma (1999), Polunin and Stainton (1984) and Murti (2001).

Detailed list of sampling locations and number of quadrats sampled is given at **Tables 3.1 & 3.2** and their location on the map of Beas basin has been marked and is shown in **Figure 3.4**.

Table 3.1: Sampling sites and their locations for vegetation sampling in Beas basin

Sampling Site	Name of Project	Name of Site			
V1	Beas Kund HEP	Near Power House site: Beas river			
V2	Palchan Bhang HEP	Project area of Proposed Palchan Bhang HEP: Beas river			
V3	Bhang HEP	Project area of Proposed Bhang HEP: Beas river			
V4	Jobrie HEP	Project area of Proposed Jobrie HEP: Allain Nala			
V5	Allain Duhangan HED	Power House site: Allain Nala			
V6	Allain Duhangan HEP	Downstream of diversion site: Duhangan Nala			
V7	Malana III HEP	Proposed project area: Malana Nala			
V8	Malana II HEP	Upstream of Dam site			
V9	Malana II HEP	Upstream of Power House site			
V10	Malana I HEP	Downstream of Barrage site: Malana Nala			
V11	Malana i HEP	Upstream of Power house Site			
V12	Tosh HEP	Downstream of Diversion site near Tosh village			
V13		Near proposed Diversion site at Tosh Nala			
V14	Nakthan HEP	Near proposed Power house site			
V15		Near proposed Diversion site at Parbati river			
V16		Upstream of Dam site along Parbati river			
V17	Parbati II HEP	Upstream of Dam along Tosh Nala			
V18		Downstream of Dam site			
V19	Balargha HEP	Near Proposed Power House site			
V20	Parbati HEP	Proposed project area of Parbati HEP			
V21	Baragaon HEP	Near Power house site			
V22	Sarbari II HEP	Near Power house site			
V23	Fozal HEP	Near Diversion site			
V24	Sharni HEP	Proposed project area of near Sarsadi Village Sharni village			
V25	Sarsadi HEP	Proposed project area of near Sarsadi Village			
V26	Sarsadi II HEP	Proposed project area of near Sarsadi Village			
V27	Hurla HEP	Proposed project area of Hurla HEP			
V28	Caini HED	Upstream of Dam site			
V29	Sainj HEP	Near Power House site			
V30	Upstream of Resrvoir area				
V31	Parbati III HEP	Downstream of Diversion site			
V32		Near Power house site			
V33	Lambadug HEP	Downstream Diversion site			
V34	Uhl I HEP	Upstream of Barrage site			

Uhl HEP

Lower Uhl HEP

Uhl Khad HEP

Uhl II HEP

Uhl III HEP

Larji I HEP

Patikari HEP

Khauli Khad

Neogal HEP

Binwa HEP

Baner I HEP

Kilhi Bahl HEP

Pong Dam HEP

Thana Plaun HEP

Dhaulasidh HEP

Triveni Mahadev HEP

Baner HEP

Gai Khad HEP

Name of Project

Beas Satluj Link (Pandoh Dam HEP)

Sampling

Site V35

V36

V37

V38

V39

V40

V41

V42

V43

V44

V45

V46

V47

V48

V49

V50

V51

V52

V53

V54

V55

V56

V57

V58

V59

V60

Table 3.2: No. of quadrats studied for each vegetation component

Near Dam Site

Near diversion weir

Downstream of Diversion weir

Right bank of reservoir

Left Bank of reservoir

Downstream of Dam site

Near Proposed Dam site

Upstream of Proposed dam site

Upstream of Proposed dam site

Proposed Dam site

Proposed project area of Kilhi Bahl HEP

	<u>-</u>					
Sampling	Trees	Shrubs	Herbs (1x1) m ²			
Site	(10x10)	(5x5)	Pre-	Monsoon	Post	
Site	m²	m²	Monsoon	MOIISOOII	monsoon/Winter	
1	10	10	12	15	12	
2	10	10	12	15	12	
3	10	10	12	15	12	
4	10	10	12	15	12	
5	10	10	12	15	12	
6	10	10	12	15	12	
7	10	10	15	15	12	
8	10	10	15	15	12	
9	10	10	15	15	12	
10	10	10	15	15	12	
11	10	10	15	15	12	
12	10	10	12	12	12	
13	10	10	12	12	12	
14	10	10	12	12	12	
15	10	10	12	12	12	
16	10	10	12	12	12	
17	10	10	12	12	12	
18	10	10	20	12	12	
19	10	10	20	12	12	
20	10	10	20	12	12	
21	10	10	12	15	12	

	Trees	Shrubs	Herbs (1x1) m ²		
Sampling	(10x10)	(5x5)	Pre- Post		Post
Site	m² ′	m² ′	Monsoon	Monsoon	monsoon/Winter
22	10	10	12	15	12
23	10	10	12	15	12
24	10	10	12	15	12
25	10	10	12	15	12
26	10	10	12	15	12
27	10	10	12	12	12
28	10	10	12	12	12
29	10	10	12	12	12
30	10	10	12	12	12
31	10	10	12	12	12
32	10	10	12	12	12
33	10	10	12	12	12
34	10	10	12	12	12
35	10	10	12	12	12
36	10	10	12	12	12
37	10	10	12	12	12
38	10	10	12	12	12
39	10	10	12	12	12
40	10	10	12	12	12
41	10	10	12	12	12
42	10	10	12	12	12
43	10	10	12	12	12
44	10	10	12	12	12
45	10	10	12	12	12
46	10	10	12	12	12
47	10	10	12	12	12
48	10	10	12	12	12
49	10	10	12	12	12
50	10	10	12	12	12
51	10	10	12	12	12
52	10	10	12	12	12
52	10	10	12	12	12
53	10	10	12	12	12
54	10	10	12	12	12
55	10	10	12	12	12
56	10	10	12	12	12
57	10	10	12	12	12
58	10	10	12	12	12
59	10	10	12	12	12
60	10	10	12	12	12

3.8 FAUNAL ELEMENTS

The data on faunal elements of the basin has been compiled with the help of transacts walked during field surveys, secondary sources supplemented with information provided by local people during field surveys conducted in different areas of the basin as discussed in previous section.

The study area was divided into different strata based on vegetation and topography. Sampling for habitat and animals was done in each strata. Same systematic transects were used for mammals as well as birds. Transect walks along the forest trail in the study area

were undertaken. To study the wild mammalian fauna of the study area, 2 - 5 km long transects and trails were walked during early morning and evening hours. Direct sighting of animals as well as indirect signs like scat, pellets, pugmarks, scraps, vocalizations, horns etc. were also recorded during the survey trails. On each transect, the locations were marked with the help of a hand held GPS. Animals and birds observed along the route were recorded, together with information on their habitat. This method of continuous recording (Martin & Batson, 1993, Chalise, 2003) was adopted for the collection of general information on species presence and absence. It also reveals diversity and population by direct observation. This method is also known as Visual Encountered Sampling to reflect wildlife population and diversity (Mukherjee, 2007). Four to five separate walks were done along both the banks of Beas and their tributaries to collect information on riverine tract. For birds a prismatic field binocular (10 × 50) was used for bird watching during surveys.

Secondary data as well as information elicited from the locals were also noted for the presence or absence of wild animals in the area. These indirect evidences and information have to be analyzed and ascertained with the help of literature available. In addition to the field sampling the data/ information was also collected as follows.

- Direct sighting and indirect evidences such as calls, signs, pugmarks of mammals were recorded along the survey routes taking aid from Prater (1980).
- Interviews of local villagers and interaction with forest personnel for the presence and relative abundance of various animal species within each locality.

The checklist of mammalian fauna of the basin has been compiled with the help of data provided by Zoological Survey of India (ZSI) supplemented with information collected during field surveys.

For the compilation of checklist of birds, butterflies and herpetofauna found in the Beas basin, published literature was consulted along with Management Plans and Forest Working Plans of different Forest Divisions falling within the basin. In addition published research papers were also consulted.

The nomenclature of bird species is based upon http://avibase.bsc-eoc.org and of reptiles is based upon http://www.reptile-database.org.

3.9 AQUATIC ECOLOGY

3.9.1 Sampling Locations & Schedule

The sampling was carried out at 59 locations as per ToR to study various physico-chemical and biological characteristics of Beas river and its major tributaries in the basin. Water samples were collected and analyzed for physico-chemical every month for the entire year round and for biological parameters, it was done for three seasons viz. Pre-monsoon/Summer (May-June, 2016), Monsoon (August-September, 2016) and Post-monsoon/winter (November-December, 2016).

CIA&CCS-Beas Basin in HP

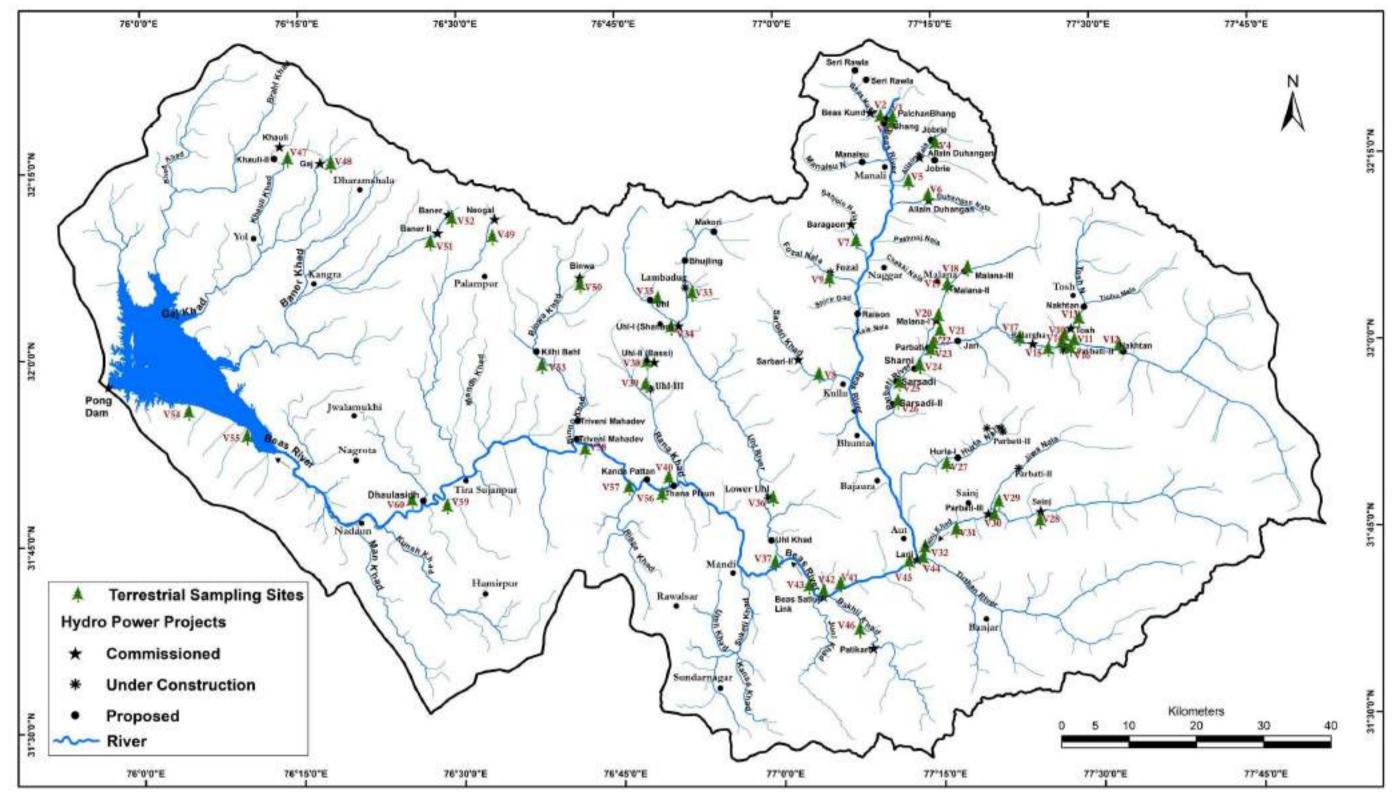


Figure 3.4: Sampling sites/locations for terrestrial ecology in Beas basin

3.9.2 Methodology

The composite water samples from the river were taken in triplicates at each site and average values were computed for the results. The details of sampling sites and their locations are given in **Table 3.3** and locations of sampling sites are marked on map is given in **Figure 3.5**.

Selection of Sampling Sites

Monthly sampling was carried out at 59 different locations as described in the **Table 3.3** to study various physico-chemical and biological characteristics. The sampling sites were located near the area where major project components are proposed like near diversion site (trench weir/ barrage/ dam site), intermediate stretch between diversion site and power house, powerhouse, near the confluence of major tributaries with the main channel and near settlements.

Sampling Methodology

The samples were taken in replicates of three at each site. The mean values were calculated for the final result. The following methods were employed for physical, chemical and biological characteristics:

3.9.2.1 Physico-chemical Parameters

The parameters like pH, temperature, electrical conductivity, total dissolved solids and dissolved oxygen were measured in the field with the help of portable instruments. The water temperature was measured with the help of graduated mercury thermometer; pH, electrical conductivity and total dissolved solids were recorded with the help of a pH, EC and TDS probes (Hanna Instruments HI 98130) in the field. Dissolved oxygen was measured with the help of Digital DO meter (Eutech ECDO 602K) in the field. For the analysis of turbidity, separate water samples were collected and brought to the laboratory for analysis. The turbidity was recorded with the help of Digital Turbidity meter.

Similarly, separate water samples were collected and after the addition of preservative were brought to the laboratory for the analysis of the parameters such as total alkalinity, total hardness, chlorides, sulphates, phosphates, and nitrates at CISMHE, University of Delhi, Delhi. Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) was analysed by standard analytical methods. Calcium, Magnesium, Manganese, Potassium, Sodium, Iron, and heavy metals Cd, Hg, Pb, Zn, Cr, Cu were also analysed. Total coliform was assessed via media method. To assess the primary productivity, DO analysis with dark and light bottle, applying Alkali Azide analysis technique and measuring DO with digital DO meter (diurnal curve method) was used.

3.9.2.2 Sampling of Phytoplankton, Phytobenthos and Zooplankton

For the quantification of phytoplankton and zooplankton 50 liters of water for each community was filtered at each site by using plankton net made up of fine silk cloth (mesh size 25 μ m). The study was repeated three times at each site and samples were pooled. The filtrate collected for phytoplankton was preserved in 1% Lugol's Iodine solution.

For phytobenthos the sampling was performed across width of stream at a depth of 15 - 30 cm. The samples were taken from the accessible banks only. The cobbles (64 -128 mm size) usually 4 - 5 in number, were picked from the riffle and pools, in apparently different flows such as stones above and below gushing waters, swift flow and slow flow conditions so as to obtain a representative sample. Benthic diatom samples were collected by scratching the pebbles with a brush of hard bristles in order to dislodge benthos from crevices and minute cavities on the boulder surface from an area of 3 x 3 cm², using a sharp edged razor. The scrapings from each cobble were collected in 25 μ mesh and transferred to storage vials. The samples were preserved in 1% Lugol's iodine solution.

Acid treatment according to Reimer (1962) method, adopted also by Nautiyal & Nautiyal (1999, 2002), was followed to process the samples for light microscopy. The treated samples were washed repeatedly to remove traces of acid. Samples with high organic content were treated with hydrogen peroxide (H_2O_2) to clean the diatom frustules. The permanent mounts were prepared in Naphrax for further analysis. They were examined using a BX-40 Trinocular Olympus microscope (x10 and x15 wide field eyepiece) fitted with Universal condenser and PLANAPO x100 oil immersion objective under bright field using appropriate filters to identify the species.

For preparing permanent mounts from the treated samples, the slide was first smeared with Mayer's albumen. The sample was then agitated to render it homogeneous. Quickly a drop of known volume (0.04 ml) of processed material was placed on the slide and heated gently till it dried. It was dehydrated using 95% and 100% alcohol, consecutively. The dehydrated material was transferred to Xylol twice before finally mounting in Euparol.

Table 3.3: Details of sampling locations for the collection of data on aquatic ecology

S. No.	Sub- basin	Name of the Project	Project Status	Sampling Sites	No. of sampling points
1		Beas Kund	Operational	W1	1
2		Palchan Bhang	Proposed	W2	1
3	Beas I	Bhang	Proposed	W3	1
4		Jobrie	Proposed	W4	1
5		Allain Duhangan	Operational	W & W6	2
6		Baragaon	Operational	W7	1
7	Beas II	Fozal	Operational	W8	1
8	Deas II	Sarbari II	Under Construction	W9	1
9		Nakthan	Proposed	W10, W11 & W12	3
10		Tosh	Operational	W13	1
11	Parbati Upper	Parbati II	Under Construction	W14, W15 & W16	3
12		Balargha	Under Construction	W17	1
13		Malana III	Proposed	W18	1
14	Malana	Malana II	Operational	W19 & W20	2
15		Malana I	Operational	W21 & W22	2
16		Parbati	Operational	W23	2
17	Parbati	Sharni	Proposed	W24	3
18	Lower	Sarsadi	Proposed	W25	3
19		Sarsadi II	Proposed	W26	1

3.9.2.3 Identification of Diatoms & Zooplankton

Pong Dam

The permanent mounts were then subjected to analysis under a phase contrast binocular microscope using an oil immersion lens of x100 magnification. For identifying the various diatom species, varieties and forms, the morphological characteristics used included length, width (µm), number of striae, raphe, axial area, central area, terminal and central nodules. Identifications were made according to standard literature viz. Schmidt, 1914 -1954; Hustedt, 1943; Hustedt, 1985; Krammer & Lange - Bertalot, 1986, 1991, 1999, 2000 a & b; Lange - Bertalot, H. Krammer, K. 2002; Metzeltin & Lange - Bertalot 2002; Krammer 2000, 2003; Lange Bertalot et al., 2003; Werum & Lange - Bertalot, 2004 and Metzeltin et al., 2005. In addition Sarode & Kamat (1984), Prasad (1992) and Gandhi (1998) were also consulted for the oriental species.

Operational

W58 & W59

Total

The identification of zooplankton was made with the help of Ward and Whipple (1959) and Battish (1992).

Density and Diversity of different species was calculated as follows:

- a) Density of phytoplankton (cells/lit) and zooplankton (indiv./lit)
- b) Density of phytobenthos (cells/cm²)

Total count of cells × cover glass size/length of visual field of microscope × counted rows × total sample volume (ml)/observed sample / sampled area

43

2

59

c) **Species Diversity Index** (Shannon & Wiener 1963): The Shannon diversity indices were determined on the basis of counts (500 - 600 valves).

Shannon-Wiener Diversity Index $H = -\Sigma (ni/n) \times ln (ni/n)$

where, pi is the proportion of total number of species made up of the ith species

d) Evenness Index (Shannon & Wiener 1963)

Evenness Index (E) = H / In(S)

where, H is Shannon Index of general diversity and S is Number of species

3.9.2.4 Sampling & Identification of Macro-invertebrates (Zoobenthos)

For Macro-invertebrate samples were collected from 1 sq ft area by lifting of stones and sieving of substratum from the wadeable portion of the river. The material was sieved through 125 μ m sieve and preserved in 70% ethyl alcohol. Samples were collected in three replicates and pooled for further analysis. The organisms obtained were then counted after identifying them up to family level. Standard keys were used for the identification of macro invertebrate samples (Pennek, 1953; Edmondson, 1959; Macan, 1979; Edington and Hildrew, 1995).

Crude density (Indiv/ m^2) = total numbers of individuals in each quadrat/ total quadrats × 11

3.9.3 Physico-Chemical Water Quality Index

The water quality objectives for freshwaters focus on a core indicator set that reflects their importance along a river stretch in a valley/basin. The core indicators pH, turbidity, electrical conductivity (salinity) and dissolved oxygen are addressed in this report.

In order to assess the water quality of Beas river and its tributary streams a Water Quality Index was used which has been developed at Washington State Department of Ecology, Environmental assessment Programme. The Water Quality Index (WQI) used in the report is a unitless number ranging from 1 to 100. A higher number is indicative of better water quality. For temperature, pH, faecal coliform bacteria and dissolved oxygen, the index expresses results relative to levels required to maintain beneficial uses (based on criteria in Washington's Water Quality Standards, WAC 173-201A).

Water quality index is a 100 point scale that summarizes results from a total of nine different measurements viz.

pH Dissolved OxygenTurbidity Faecal Coliform

Biochemical Oxygen Demand
 Total Phosphates

Nitrates Total Suspended Solids

-

Temperature

RSET

CIA&CCS-Beas Basin in HP

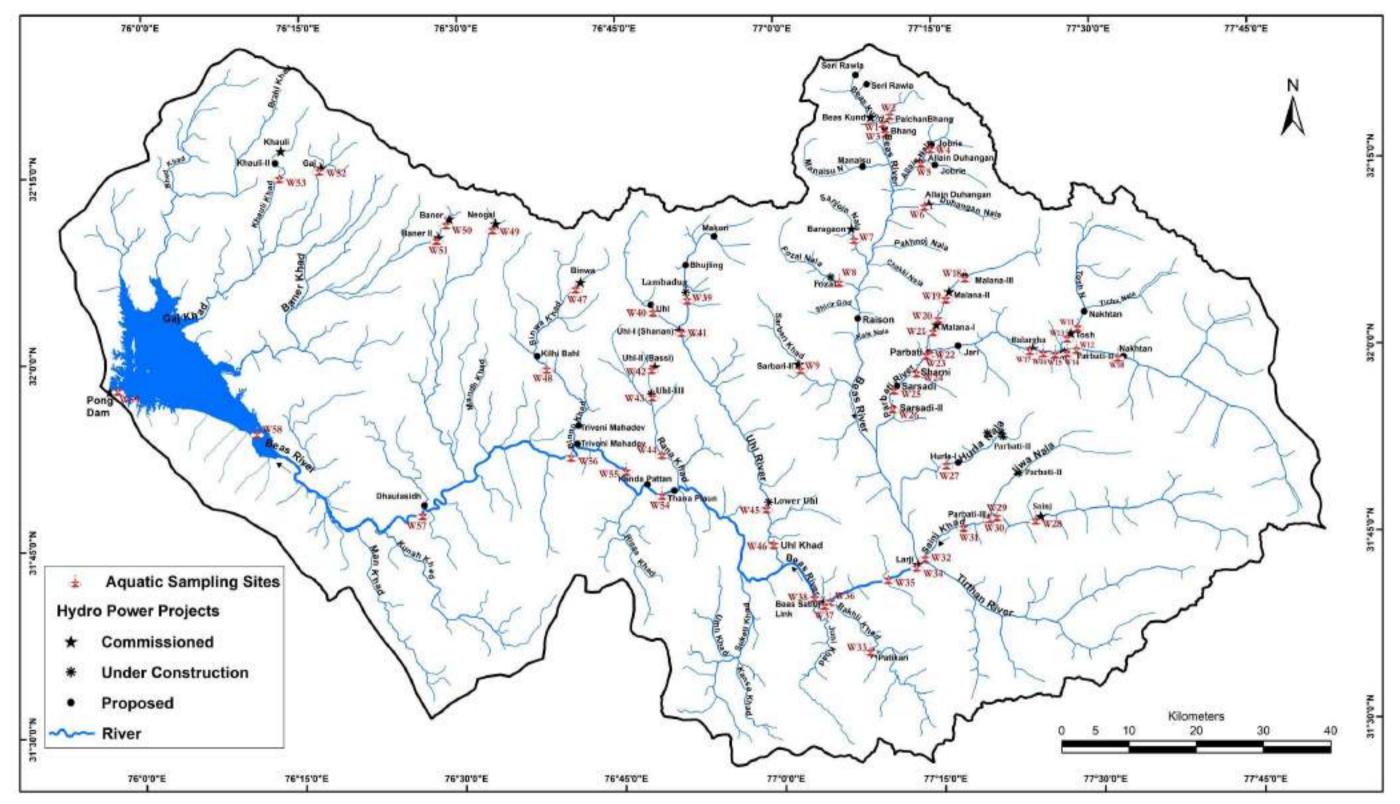


Figure 3.5: Location of Sampling sites for Aquatic Ecology in Beas basin

During the Water Quality analysis number of other parameters were also analysed from the water samples collected from different locations during the field surveys. These are as follows:

Electrical conductivity (EC)	Potassium	
Total Dissolved Solids (TDS)	Iron	
Chlorides	Manganese	
Total Alkalinity	Zinc	
Total Hardness	Cadmium	
Chemical Oxygen Demand (COD)	Lead	
Sulphates	Copper	
Sodium	Mercury	
Calcium	Total Chromium	
Magnesium		

The analysis of above mentioned parameters revealed that parameters like hazardous elements and heavy metals are of least importance in hilly and mountainous streams with sparse population and good forest landscape. In general, the concentration of most of the heavy metals is Not Detectable or Below Detectable limits in such areas. The values for all or most of the parameters have been averaged for each sampling /field surveys and from different sampling locations to arrive at a meaningful conclusion and interpretation otherwise the data collected for each and every month for each parameter becomes too voluminous to arrive at any meaningful outcome.

The analysis of water quality therefore has been based upon 9 parameters as defined for WQI above.

Water Quality Index		
Range	Quality	
90-100	Excellent	
70-90	Good	
50-70	Medium	
25-50	Bad	
0-25	Very bad	

3.9.4 Biological Water Quality Index

For the assessment and analysis of Biological Water Quality an index named Biological Monitoring Working Party (BMWP) procedure was employed using species of macro-invertebrates as biological indicators (http://www.nethan-valley.co.uk/insectgroups.doc). The method is based on the principle that different aquatic invertebrates have different tolerances to pollutants. The presence of mayflies or stoneflies for instance indicates the cleanest water. The BMWP score equals the sum of the tolerance scores of all macro-invertebrate families in the sample. Therefore, a higher BMWP score is considered to reflect a better water quality. The number of different macro-invertebrates is also an important factor, because a better water quality is assumed to result in a higher diversity. Alternatively, also the Average Score Per Taxon (ASPT) score is calculated. The ASPT equals the average of the tolerance scores of all macro-invertebrate families found, and ranges from 0 to 10. The main difference between both indices is that ASPT does not depend on the family richness.

For the presently analysis of biological water quality above indices have been calculated for each location in Beas basin.

3.10 FISH AND FISHERIES

For collection of data on occurrence and distribution of fish species in the Beas river and its tributaries, experimental fishing was done with the help of local fishermen at various sites in the basin. Interviews were conducted with locals regarding the probable presence of fishes in the river were also conducted.

The data on fish species in Beas basin was collected from Fisheries Department of State Government and through published literature. An inventory of the fish species was prepared after consulting main sources like Indu Sharma *et al.* (2013), Mehta and Uniyal (2005 & 2008), Menon (1999), Talwar and Jhingaran (1991). and Sharma and Tandon (1990). Correct scientific names were checked and updated by following http://www.fishbase.org.

CHAPTER-4

BASIN CHARACTERISTICS

4.1 INTRODUCTION

More than 90% of the drainage system of Himachal Pradesh is a part of Indus river system with Jhelum, Chenab, Ravi, Beas and Sutlej its tributaries. Beas basin in comprised of Beas river drainage catchment in Himachal Pradesh. Beas happens to be a principal tributary of Sutlej river in India. Beas basin is flanked in the north by drainage catchment of Ravi and Chenab rivers and in the south by Sutlej river (see Figure 4.1). Beas river originates from Beas Kund at Rohtang Pass at an elevation of 13,050 feet (3,978 m) and flows for a length of about 470 km before joining the Sutlej River at Harike Pattan south of Amritsar in Punjab. After the confluence of two source streams viz. Beas Kund and Beas Rishi at Palchan village, the river is known as Beas. The river after passing through Manali town traverses dense evergreen forested slopes and enters the town of Kullu. At Bhuntar Beas river is joined by Parbati river on its left bank which is a major tributary. After this river flows through different terrain types cutting through the hills. The river flows in north-south direction up to Larji and then turns west up to Pandoh diversion dam. It is fed by number of streams in this stretch up to Pandoh. In addition to Parbati river major tributaries of Beas River upstream of Pandoh are Sainj, Tirthan river and Bakhli Khad joining from the east; Sanjoin, Manalsu, Fozal and Sarbari from the west. After Pandoh, Beas river flows in northerly direction and is joined by Uhl river on its right bank along its course. After this it again turns westward up to Mandi where it takes northerly turn again to be joined by Rana Khad on its right bank. It then enters Kangra valley near Sandhol. In Kangra valley Binwa, Neugal, Banganga, Gaj and Dehar are the major streams joining from the north and Kunah, Maseh, Son, Khairan Man from south. The northern and eastern tributaries of the Beas receive water from the melting snow and are perennial whereas the southern tributaries are seasonal. After leaving Himachal Pradesh the river enters plains of Punjab at Talwara and joins Sutlej at Harike Pattan.

4.2 BEAS RIVER BASIN - STUDY AREA

The Study Area covered as a part of the Beas Basin is comprised of part of Beas river catchment falling within Himachal Pradesh i.e. Beas river catchment from its origin at Rothang Pass up to Pong Dam at the inter-state boundary with Punjab. The total catchment area of Beas river in Himachal Pradesh is about 12591 sq km and its length in the study area is about 274 km.

Beas basin in Himachal Pradesh administratively falls under 5 districts viz. Kullu, Mandi, Kangra, Hamirpur and Chamba. Most part of Kullu forms the upper reaches of Beas basin while Kangra and Hamirpur form the lower part of the basin. Kullu is the largest district accounting for 38.49% of basin area followed by Kangra district with 31.44%, Mandi with 21.71% and Hamirpur with 6.73% area. Very area of Chamba district falls in the Beas basin which is about 1.63% only. Major towns located in the basin are Manali, Naggar, Kullu, Bhuntar, Bajaura, Aut, Banjar, Mandi, Ner Chowk, Sunder Nagar, Barot, Joginder Nagar, Sujanpur Tira, Nadaun, Kangra, Palampur, Yol and Dharamshala.

Figure 4.1: Map showing location of Beas basin in Himachal Pradesh

4.2.1 Beas River Drainage System

Drainage map of the study area i.e. Beas river basin in Himachal Pradesh was prepared from Survey of India Toposheets at 1:50000 scale as base map along with satellite data. The drainage map of the basin thus prepared is given at Figure 4.2. The major tributaries joining Beas river at either bank are described in the following paragraphs.

4.2.1.1 Major Tributaries of Beas River

a) Beas Kund Nala

It originates at an altitude of 3978 m near Rohtang Pass. After its confluence with Beas Rishi at Palchan village 10 km north of Manali river is known as Beas. The total catchment area of Beas Kund nala is about 122 sq km.

b) Allain Nala

Allain Nala, also known as Hamtah Nala in its higher reaches meets Beas river at its left bank downstream of Manali town. It descends from an altitude of 4208 m near Hamtahjot Pass. The total length of the nala is about 18.7 km with a catchment area of about 139.62 sq km.

c) Duhangan Nala

Duhangan nala meets Beas river at its left bank further 3.8 km downstream of Allain nala. It originates from an unnamed glacier at an elevation of about 4200 m. The total length of the nala is about 18.6 km with a catchment area of about 88.41 sq km.

Final Report: Chapter 4

d) Sanjoin Nala

It is right bank tributary of Beas river. It traverses a distance of about 14.6 km to meet Beas river near Baragaon village. Total catchment area of the nala is about 75.22 sq km.

e) Fozal Nala

It is another right bank tributary of Beas river. It traverses a distance of about 14 km with a catchment area of about 122.63 sq km.

f) Sarbari Khad

Sarbari khad is a right bank tributary of Beas river. The total length of the khad up to its confluence with Beas river at Dhalpur, Kullu is about 26.7 km. The total catchment area of this stream is 183 sq km.

g) Parbati River

Parbati river is the largest tributary of Beas river. It meets Beas river on its left bank near Bhuntar. The river originates from Pin Parbati Pass at an elevation of around 5400m. The total length of the river from its origin to its confluence with Beas is about 82 km. The total catchment area of the river is about 1729.5 sq km. The major tributaries joining Parbati river at its right bank are Dibi ka Nal, Gohru Khol, Tosh Nala, Galigad Nala, Rashkar Gad, Brahamganga Nala, Gohar Nala, Rasol Nala, Reoni Nala, Malana Nala, Baladhi Nal while the left bank tributaries are Bakar Bihar Khol, Dauns Par Khol, Tundabhuj Khol, Bakar Kiara Khol, Shat Nal, Chharor Nal, Jari.

h) Malana Nala

It originates from an unnamed glacier and travels a distance of about 25 km to join Parbati river at its right bank. It is the largest tributary of Parbati river. The Catchment area of Malana Nala is about 192 sq km.

i) Hurla Nala

Hurla Nala meets Beas river on it left bank near Hurla village at 1020m. The total length of the nala is about 33.3 km with a catchment area of about 188.5 sq km.

j) Sainj River

Further about 13 km downstream of Hurla Nala, Beas is fed by Sainj River which traverses a distance of about 59.5 km to join Beas River on its left bank. The catchment area of the river is 747 sq km. It originates from an unnamed glacier at an elevation of about 4200 m. The major tributaries joining Sainj river on its right bank are Rakti Nal, Chyos Nal, Jiun Nal, Riasa Nal, Jiwa Nal, Phagla Gad, Baga Gad while the left bank tributaries are Gahru Nal, Kuli Gad, Dhaugi Gad, Kanon Gad, Tirthan River.

k) Tirthan River

It originates from an unnamed glacier at an elevation of 4378m and travels a distance of about 50.7 km to join Sainj river on its left bank. It is the biggest tributary of Sainj with a catchment area of Tirthan Nala is about 679 sq km.

Final Report: Chapter 4

l) Bakhli Khad

Bakhli khad meets Beas river on its left bank downstream of Bakhli village. The total length of the nala is about 46 km with a catchment area of about 271.5 sq km.

m) Juni Khad

Thereafter nearly 2.3 km downstream Beas river is fed by Juni Khad on its left bank near Pandoh village. The total length of the nala is about 38 km.

n) Uhl River

After flowing north for another 10 km till Uhl River Beas river flows westward direction. Uhl river traverses a distance of about 73 km with a catchment area of about 755.6 sq km.

o) Rana Khad

Rana Khad is a right bank tributary and meets Beas river near Tudal village. The length of the river is 27.3 km and catchment area of the river is 224.5 sq km.

p) Binwa Khad

After travelling about 24 km in westward direction Beas river meets Binwa khad on its right bank at elevation of 636m. Binwa khad, also known as Banu Khad in its higher reaches. The length of the river is 42 km and catchment area of the river is 375.35 sq km.

q) Neugal Khad

Neugal khad meets Beas river on its right bank near Alampur village. The length of the river is 55 km and catchment area of the river is 386 sq km.

r) Man Khad

Thereafter nearly 30 km downstream Beas river is fed by Man Khad on its left bank near Nadaun village. The total length of the nala is about 31 km and catchment area of the river is 194 sq km.

s) Baner Khad

Baner Khad meets Beas river on its right bank near Mahora village. The length of the river is 63 km and catchment area of the river is 749 sq km.

t) Gaj Khad

Gaj Khad originates from an altitude of 4400m and travels 64 km to join the Beas river on right bank a little upstream of Pong dam lake. The catchment area of the river is 1246 sq km.

Figure 4.2: Map of Beas basin showing districts and drainage

4.3 GLACIERS & LAKES IN BEAS BASIN

Beas river is fed by number glaciers and glacial lakes. There have been number studies done in the past on the inventory of glaciers and glacial lakes in Beas basin by various workers. These reports differ in the total number of glaciers in the basin. One such prominent study was published by Space Applications Centre, Ahmedabad in May 2011 sponsored by Ministry of Environment Forests & Climate Change and Department of Space, GOI, the total number of glaciers in Beas basin has been given as 335 with an area of 698 sq km. According to report on the inventory of moraine dammed glacial lakes in Sutlej, Beas, Chenab and Ravi basins in Himachal Pradesh published in April 2014 prepared by HP Stare Centre on Climate Change study the Beas basin contains 67 lakes covering an area of about 110.15 ha.

4.4 TOPOGRAPHY & RELIEF

Beas basin is characterized by rugged topography with high ridges and peaks, with higher reaches covered with glaciers, and massive ice and snowfields.

The elevation in the basin varies from high of 6619m to a low of 325m. In order to understand the relief profile of the basin it has been divided into 600m elevation zones. Area falling under different elevation zones is given in **Table 4.1** and **Figure 4.3**. In order to understand the terrain morphology Digital Elevation Model (DEM) of the basin was prepared from SRTM 30m data and the same has been given at **Figure 4.4**.

The relief map thus prepared is given at Figure 4.4.

Table 4.1: Area falling under different Elevation zones in the Beas Basin

Elevation Band (m)	Area (sq km)	Area (%)
Up to 600	1336.40	10.61
601-1200	3571.44	28.37
1201-1800	1523.80	12.10
1801-2400	1358.50	10.79
2401-3000	1367.28	10.86
3001-3600	928.54	7.37
3601-4200	813.57	6.46
4201-4800	908.44	7.22
4801-5400	655.89	5.21
5401-6000	119.96	0.95
Above 6000	6.96	0.06
Total	12590.79	

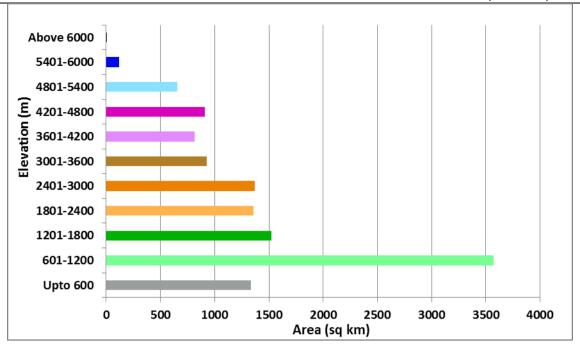


Figure 4.3: Area under different elevation zones in Beas basin

As seen from the map, table and graph more than 70% of the catchment area lies below elevation of 3000 m and about 21% of the area lies between 3000 and 4800m elevation zone.

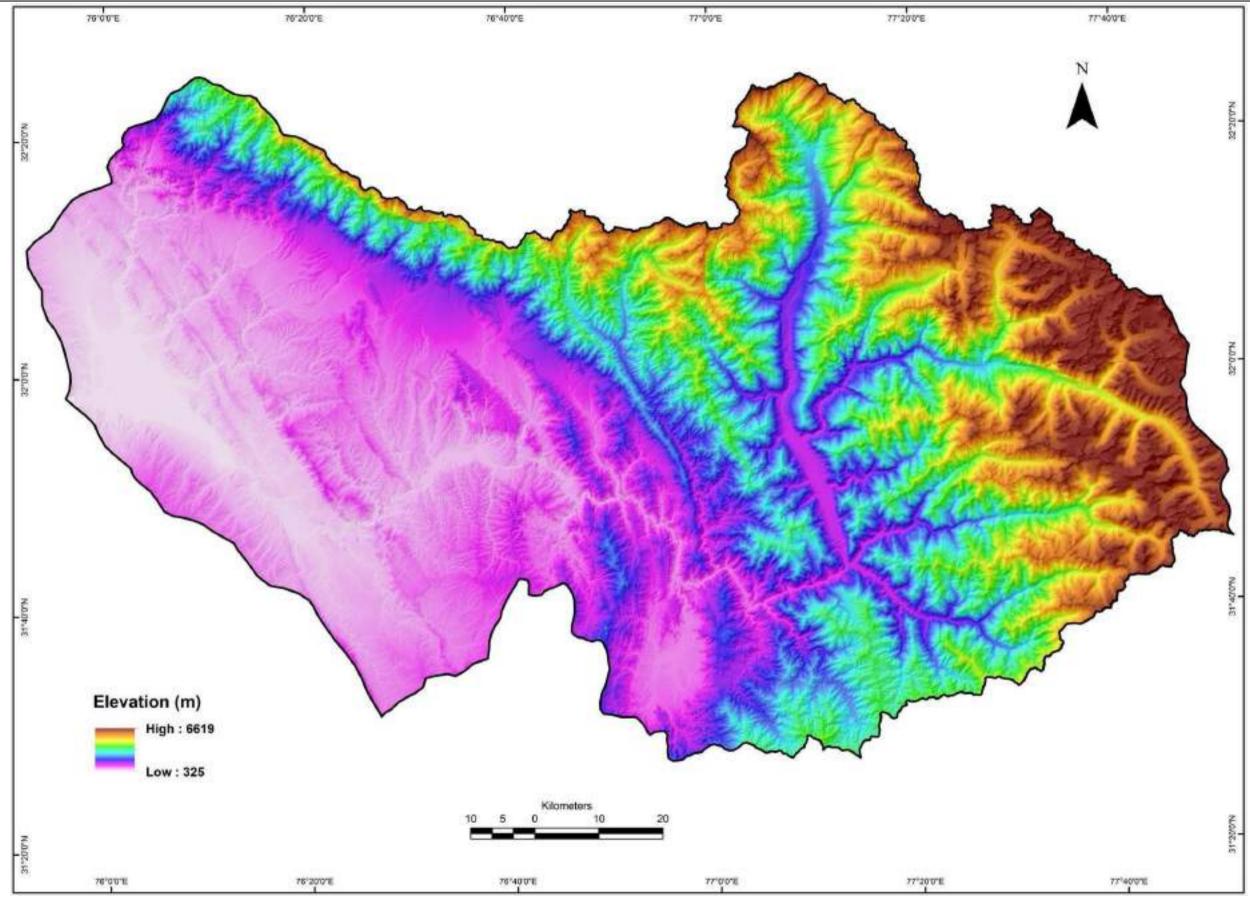


Figure 4.4: Digital Elevation Map (DEM) of Beas river basin in Himachal Pradesh

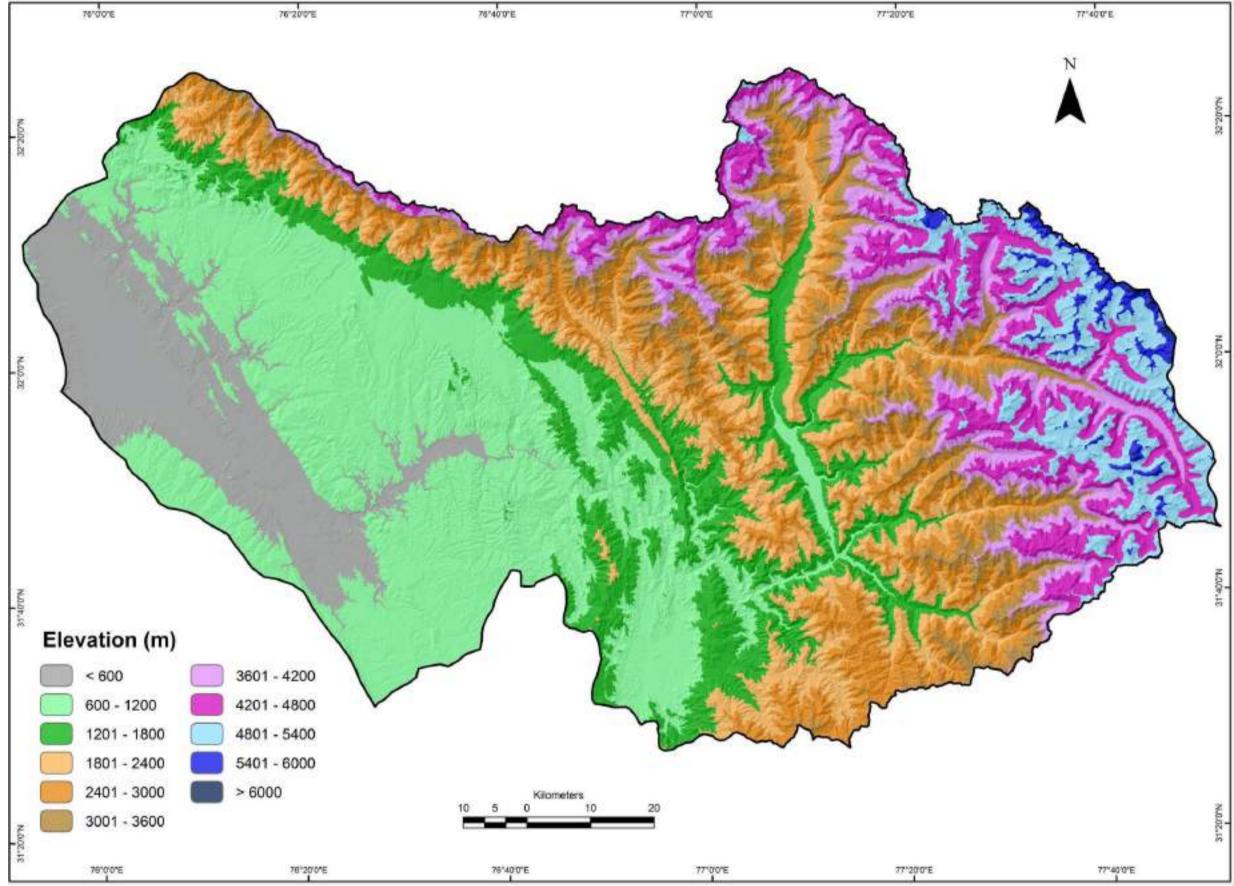


Figure 4.5: Relief map of Beas basin

4.5 SLOPE

For the preparation of slope map of the basin, SRTM 30m data was used to first generate Digital Elevation Model (DEM) of the entire basin area. First of all a Digital Terrain Model (DTM) of the area was prepared, which was then used to generate a slope map. The following slope classes and ranges were used for the study. Area falling under different slope categories is given in **Table 4.2.**

Slope in Degrees	Description
0 - 2	Gently sloping
2 - 8	Moderately sloping
8 - 15	Strongly sloping
15 - 30	Moderately steep
30 - 45	Steep
45- 60	Very steep
60 - 70	Extremely Steep
Above 70	Escarpments

Table 4.2: Area falling under different Slope Categories in the Beas Catchment in Himachal Pradesh

Slope Class	Area (sq km)	Area (%)
Gently sloping	678.21	5.39
Moderately sloping	1801.41	14.31
Strongly sloping	1825.43	14.50
Moderately steep	4153.48	32.99
Steep	3249.13	25.81
Very steep	811.92	6.45
Extremely Steep	60.70	0.48
Escarpments	10.51	0.08
	12590.79	-

The slope prepared as above has been given at **Figure 4.6** and area under different slope categories is given in **Figure 4.7**.

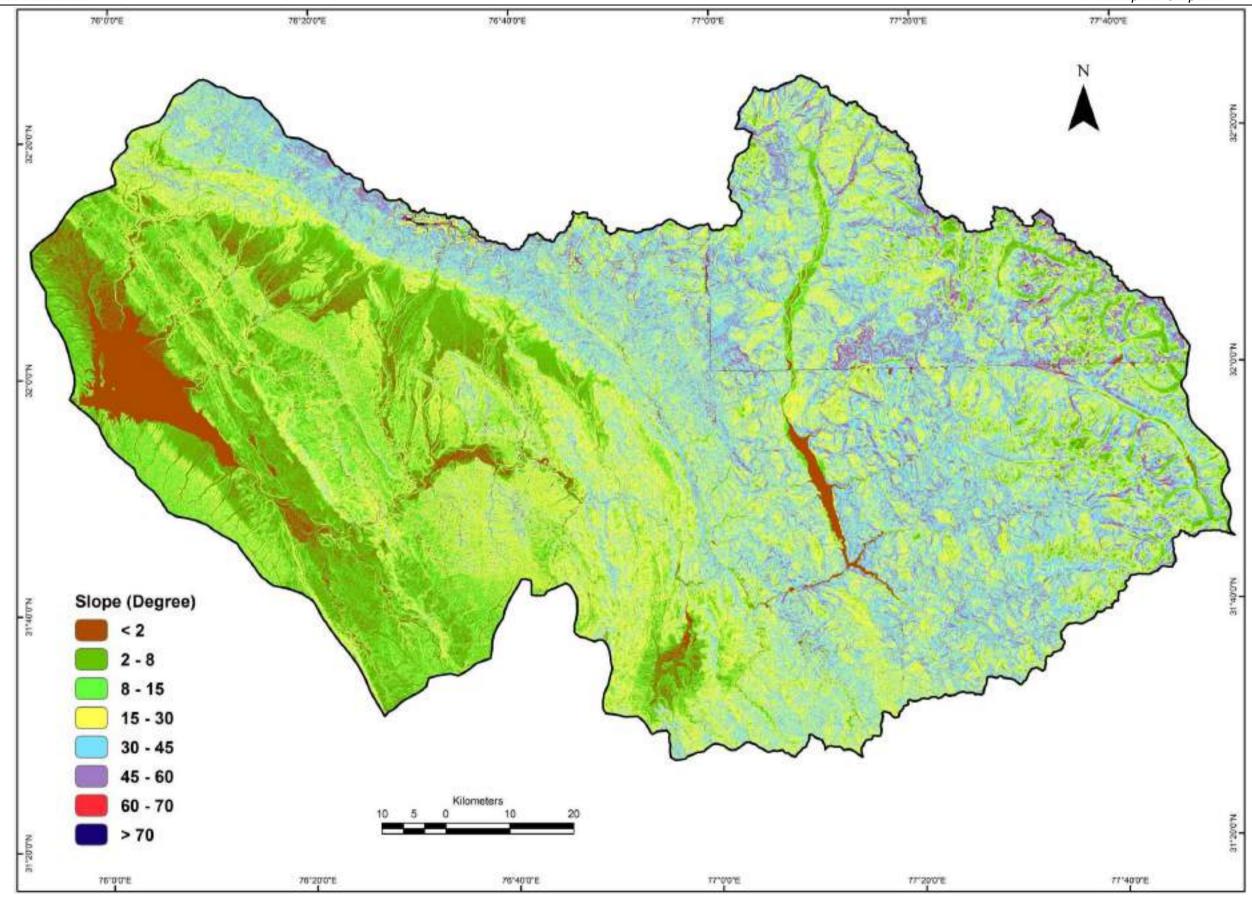


Figure 4.6: Slope map of Beas river basin in Himachal Pradesh

Figure 4.7: Area (percent) under different slope categories in Beas river basin in Himachal **Pradesh**

As seen from the table, map and graph, more than 32% of Beas river basin area in Himachal Pradesh is characterized by steep slopes while around 33% area is having moderately steep slopes.

4.6 **SOILS**

Soil map of the study area has been produced using soil maps collected from National Bureau of Soil Survey & Land use Planning (NBSS & LUP), Nagpur. The soil map thus prepared has been shown as Figure 4.8. Area distribution of various soil units has been shown in Table 4.3. Predominant soil type is Typic Udorthents (24.24%) which is found at middle slopes characterized by rock outcrops, deep well drained, mesic, loamy skeletal soils on very steep slopes with severe erosion. Typic Cryorthents second predominant soil type found near the ridge slopes and is characterized by rock outcrops, with shallow depth, excessively drained, loamy skeletal soils on very steep slopes prone to severe erosion. Valley floor is comprised of Dystric Eutrochrepts which are deep, well drained, mesic, coarse-loamy soils on gentle slopes with loamy surface and moderate erosion.

Table 4.3: Description and Area under different Soil Units in Beas Basin

Soil	Туре	Area (sq km)	Area (%)
1	Lithic Cryorthents	96.73	0.77
	Rock Outcrops covered glaciers; associated with: Shallow, excessively drained, sandy-skeletal soils with sandy surface, severe erosion and strong stoniness		
2	Lithic Cryorthents	179.80	1.43
	Shallow, excessively drained, sandy-skeletal soils on very		
	steep slopes with sandy surface, severe erosion and		

45

0.21

25.92

Typic Udorthents

		Tinat Report: enapter		
Soil	Туре	Area (sq km)	Area (%)	
	Medium deep, well drained, thermic, coarse-loamy soils on steep slopes with loamy surface and severe erosion; associated with:	, , ,		
	Dystric Eutrochrepts Medium deep to deep, well drained, fine-loamy soils with loamy surface and moderate erosion			
48	Typic Eutrochrepts	105.72	0.84	
70	Medium deep, well drained, thermic, fine-loamy calcareous soils on moderately steep slopes with loamy surface and severe erosion; associated with: Typic Udorthents Medium deep, well drained, fine-loamy soils with loamy	103.72	0.04	
- 10	surface and moderate erosion			
49	Dystric Eutrochrepts Medium deep, well drained, thermic, fine loamy soils on moderately steep slopes with loamy surface, severe erosion and slight stoniness; associated with: Typic Udorthents Shallow, well drained, fine-loamy soils with loamy surface and moderate erosion	225.60	1.79	
51	Dystric Eutrochrepts Deep, well drained, thermic, fine-loamy soils on very steep slopes with loamy surface and severe erosion; associated with: Typic Udorthents Medium deep, well drained, fine-loamy soils with loamy surface and severe erosion	63.15	0.50	
53	Lithic Udorthents Shallow, well drained, thermic, loamy soils on very steep slopes with loamy surface and very severe erosion; associated with: Typic Udorthents Medium deep, well drained, coarse-loamy soils with loamy surface and severe erosion	140.10	1.11	
55	Dystric Eutrochrepts Deep, well drained, thermic, fine-loamy soils on moderate slopes with loamy surface and moderate erosion; associated with: Typic Udorthents Medium deep, well drained, loamy-skeletal soils with loamy surface and severe erosion	11.13	0.09	
56	Lithic Udorthents Shallow, excessive drained, thermic, loamy soils on very steep slopes with loamy surface and severe erosion; associated with: Dystric Eutrochrepts Medium deep to deep, well drained, fine loamy soils with loamy surface and moderate erosion	346.32	2.75	
57	Dystric Eutrochrepts Medium deep, well drained, thermic, fine-loamy soils on moderate slopes with loamy surface, severe erosion and slight stoniness; associated with: Typic Udorthents Medium deep, somewhat excessively drained, coarse-loamy	14.46	0.11	

associated with:

soils on steep slopes with loamy surface and severe erosion;

Final Report: Chapter 4

A&CCS-	Beas Basin in HP	Final Rep	ort: Chapter 4
Soil	Туре	Area (sq km)	Area (%)
	moderate slopes with loamy surface and moderate erosion; associated with: Typic Udorthents Medium deep, well drained, fine-loamy soils with loamy surface and moderate erosion		
87	Udic Ustorthents Medium deep, well drained, hyperthermic, fine-loamy, calcareous soils on moderate slopes with loamy surface and moderate erosion; associated with: Typic Ustorthents Medium deep, well drained, loamy-skeletal soils with loamy surface and severe erosion	33.38	0.27
88	Typic Ustifluvents Shallow, well drained, hyperthermic, sandy soils on very gentle slopes with sandy surface and moderate erosion; associated with: Typic Ustifluvents Shallow, well drained, coarse-loamy soils with loamy surface and moderate erosion	50.38	0.40
92	Typic Eutrochrepts Medium deep, well drained, thermic, fine-loamy, calcareous soils on very gentle slopes with loamy surface and slight erosion; associated with: Dystric Eutrochrepts Deep, well drained, loamy-skeletal soils with loamy surface and slight erosion	7.96	0.06
95	Typic Ustipsamments Deep, excessively drained, hyperthermic, calcareous, sandy soils on very gentle slopes with loamy surface, slight erosion and moderate flooding; associated with: Typic Ustifluvents Deep, well drained, calcareous fine-loamy over sandy soils with loamy surface and moderate flooding	230.41	1.83

Total

12590.79

100.00

CIA&CCS- Beas Basin in HP

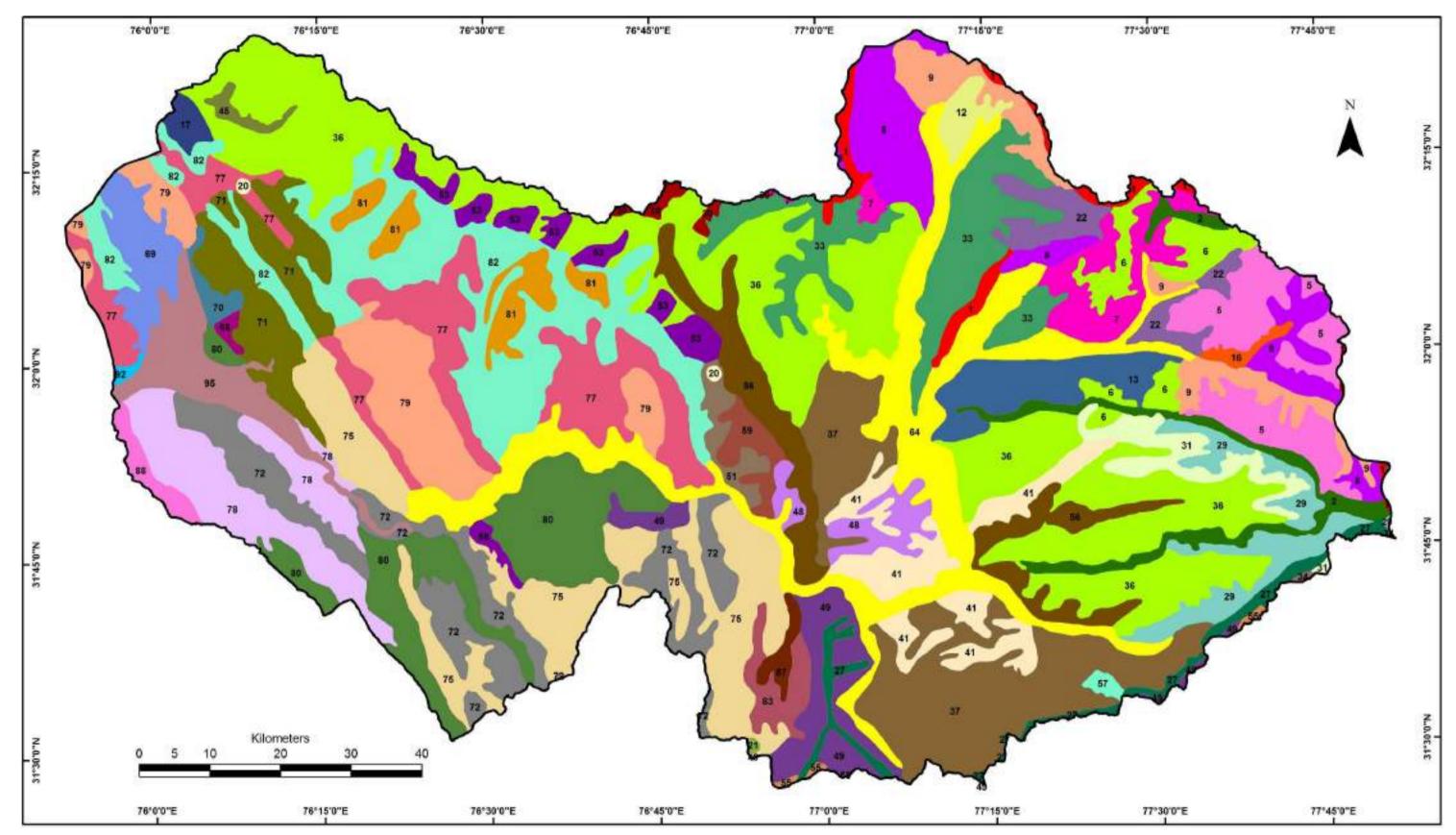


Figure 4.8: Soil Map of Beas Basin as per data from NBSS & LUP (For Soil Description refer Table 4.3)

4.7 BEAS SUB-BASINS

For the convenience of study and analysis of various physical and biological parameters and their interpretation, entire Beas basin in India has been delineated into 11 sub-basins comprised of major tributaries and covering varied domains as well as hydroelectric projects (see Figure 4.9). The characteristics of each sub-basin have been listed in Table 4.4.

Final Report: Chapter 4

Table 4.4: Characteristics of Sub-basins of Beas river basin

S. No.	Sub-basin	Altitudinal Range (m)	Projects	Status	River/Stream	Area (sq km)
	Beas I Sub- basin		Beas Kund	Commissioned	Beas Kund Nala	
			Palchan Bhang	Proposed	Kothi Nala	
		1671-6002	Bhang	Proposed	Beas River	
1			Jobrie	Proposed	Jobrie & Allain Nala	618.35
			Allain Duhangan	Commissioned	Allain & Duhangan Nala	
			Baragaon	Commissioned	Sanjoin & Bijara Nala	798.21
2	Beas II Sub- basin	1168-4927	Fozal	Under Construction	Fozal Nala	
			Raison	Proposed	Beas	
			Sarbari II	Commissioned	Sarbari Khad	
	Malana Sub-		Malana I	Commissioned	Malana Nala	158.04
3	basin	1427-5756	Malana II	Commissioned	Malana Nala	
	DaSIII		Malana III	Proposed	Malana Nala	
	Parbati Upper Sub-basin		Nakhtan	Proposed	Tosh Nala & Parbati River	1437.11
			Toss	Commissioned	Tosh Nala	
			Jari	Proposed	Parbati River	
4		1427-6619	Balargha	Commissioned	Parbati River	
			Parbati II	Under Construction	Parbati River	
			Parbati	Proposed	Parbati River	
	Parbati Lower Sub-basin		Sharni	Proposed	Parbati River	
5		1168-3721	Sarsadi	Proposed	Parbati River	137.02
			Sarsadi II	Proposed	Parbati River	
_	Sainj Sub- basin	1 1168-5673	Sainj	Under Construction	Sainj River	1108.37
6			Parbati III	Commissioned	Sainj River	
			Hurla I	Proposed	Hurla Nala	
7	Tirthan Sub- basin	1168-5201	-	-	-	685.25

CIA&CCS- Beas Basin in HP Final Report: Chapter 4						
S.	Sub-basin	Altitudinal	Projects	Status	River/Stream	Area
	Beas III Sub-		Patikari	Commissioned	Bakhli Khad	
8		798-3346	Pandoh	Commissioned	Beas River	703.44
	basin		Larji	Commissioned	Beas River	
			Lambadug	Under	Lambadug	
				Construction	Khad	
			Uhl	Proposed	Uhl River	
			Uhl I (Shanan)	Commissioned	Uhl River	
9	Uhl Sub-basin	657-5171	Uhl II (Bassi)	Commissioned	Rana & Neri Khad	1711.71
				Under	Rana & Neri	
			Uhl III	Construction	Khad	
			Lower Uhl	Under Construction	Uhl River	
			Uhl Khad	Proposed	Uhl River	
	Beas IV Sub- basin	414-4907	Gaj	Commissioned	Gaj Khad	3644.10
			Khauli	Commissioned	Khauli Khad	
			Baner	Commissioned	Baner Khad	
			Neogal	Commissioned	Neogal Nala	
10			Baner II	Commissioned	Baner Khad	
			Binwa	Commissioned	Binwa Khad	
			Kilhi Bahl	Proposed	Binwa & Awa Nala	
			Pong Dam	Commissioned	Beas River	
11	Beas V Sub- basin	325-2039	Triveni	Proposed	Beas River	1589.19
			Mahadev	Froposed	Proposed Deas Nivel	
			Dhaulasidh	Proposed	Beas River	
			Thana Plaun	Proposed	Beas River	

Figure 4.9: Map of Beas basin showing sub-basins

4.7.1 Beas I Sub-basin

Beas I Sub-basin is the Northern-most sub-basin and is drained by Beas river. The sub-basin is comprised of the catchment of Beas river up to its confluence with Duhangan near Jagatsukh village (**Figure 4.10**). Total catchment area of the sub-basin is about 618.35 sq km. The major right bank tributaries are Sarai Nala, Halindi Nala and Manalsu Nala while the major left bank tributaries are Raoli Khol, Shikari Khol, Khanora Nal, Chhor Nala, Allain Nala and Duhangan Nala. Most of the habitations like Kothi, Ruara, Bahang, Bashist, Koshla, Aleo, Parini, Hamtah and Jagatsukh are found on the left bank of river. Habitations like Marhi, Solang, Buruwah, Goshal, Kalong, Chhyal, Slumsa, Rarsha, Salin are on the right bank of Beas river.

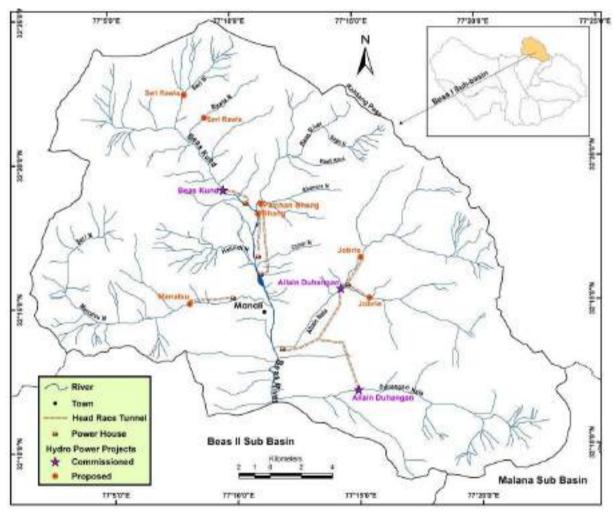


Figure 4.10: Drainage map of Beas I sub-basin

The elevation varies from 1671 m to about 6002 m (**Figure 4.11**). Majority of the sub-basin area i.e. around 54% lies in the 3600 to 4800 m elevation range, followed by 3000 to 3600 m and 2400 to 3000 m elevation range which covers nearly 20% and 13% of the sub-basin area, respectively. Elevation range from 1670 to 2400 m covers around 7% and the balance 6% of the sub-basin area is between 4800 and 6000 m elevation range.

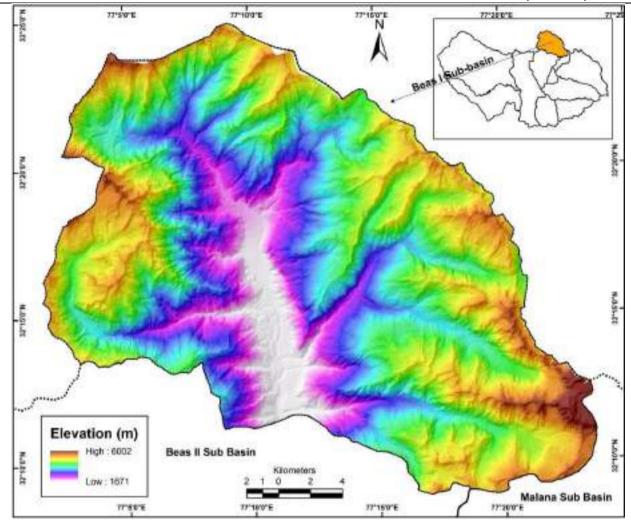


Figure 4.11: DEM of Beas I Sub-basin

Field observations in Beas I sub basin:

Allain Nala:

Allain nala is the left bank tributary of Beas River. Allain Duhangan HEP is an operational project diverting water from Allain Nala. The site is accessible by a metallic road which connects to the State Highway up to Naggar. Project area of Allain Duhangan HEP consists of temperate vegetation mainly represented by coniferous forests. Power house of Allain Duhangan HEP is located at the upstream of Beas and Allain Nala confluence on the left bank of Allain nala near Naggar village. It was observed during field survey in the area that to control the erosion of river banks, check walls have been constructed by project proponents (Bhilwara Group). The topography of the area is moderately steep.

Tail race water of Allain Duhangan HEP has been utilized by small hydro project for generation of 4 MW. One more project is under construction on Allain nala near the confluence of Allain - Beas river. Jobrie SHEP (12MW) is another in the upper most reaches of Allain Nala which is in proposal stage.

A view of Allain nala

Check walls near river bank of Allain nala

Sampling for terrestrial ecology in study area

Landscape view of Allain nala

Aquatic Sampling in Allain nala

Beas Kund:

Beas river originates from Beas Kund near Rohtang Pass at an elevation of 3978 m. The area is devoid of vegetation due to high altitude except for few species of grasses. Marhi SHEP (5 MW) is the first upper most operational project in the Beas catchment. Diversion site and power house of Marhi SHEP are located along the Manali - Keylong road. Bhang SHEP (9 MW) is also upstream of Marhi SHEP on Beas river which is in proposal stage. Palchan Bhang SHEP (9MW) project is another project near Bhang SHEP on Kothi Nala which is in proposal stage.

There is a motorable road, so accessibility in this area is easy. Main economic source in the area is tourism.

Beas Kund temple near Rohtang Pass

Water sample collection at Beas Kund

Diversion site of Marhi SHEP

Board showing location of Marhi SHEP

Sheep herds seen on the road near Marhi SHEP

4.7.2 Beas II Sub-basin

Beas Sub-basin-II is comprised of catchment area of Beas river between the confluence point of Duhangan nala with river Beas near Jagatsukh village and confluence point of Parbati river with river Beas near Bhuntar in Kullu district (**Figure 4.12**). Total catchment area of the sub-basin is about 798.21 sq km. Some of the major right bank tributaries in the sub-basin are Sanjoin nala, Phojal nala, Shirir Gad, Mandrol nala, Babeli nala, Sarbari Khad and Mahul Khad, while the major left bank tributaries are Kanoi nala, Pakhnoj nala, Chhak nala, Nashala nala, Machin ala, Raogi nala, Kais nala and Balindhi nala. Some of the major habitations on the left bank of the river in the sub-basin are Khaknal, Karjan, Haripur, Chakki, Nagar, Laran, Archhandi, Jana, Barogi, Seo Bagh, Kukri Ser, Jagot, Kinja, Talogi while major villages on the right bank are Rampur, Baragran, Patli Kuhl, Dobhi, Phojal, Kothi, Raisan, Jola, Banogi, Sarwari, Akhara, Kullu, Dhalpur, Dughilog, Shanghan, Mahul, Shamshi.

Final Report: Chapter 4

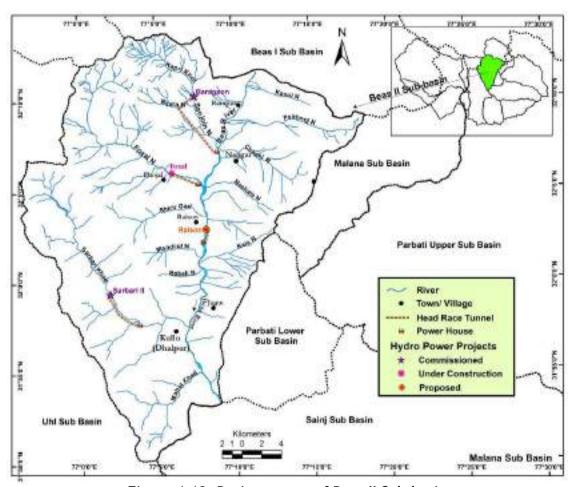


Figure 4.12: Drainage map of Beas II Sub-basin

The elevation varies from 1160 m to about 4900m (**Figure 4.13**). Elevation range of up to 1800 m covers only 17% of the sub-basin area. Around 68% of the area almost falls under elevation range of 1801 to 2400 m, 2401 to 3000 m and 3001 to 3600 m i.e. 26%, 24% and 18%, respectively. About 10% of the area falls under 3601 to 4200 m elevation range and the rest 5% of the sub-basin area is between 4201 and 4900 m elevation range.

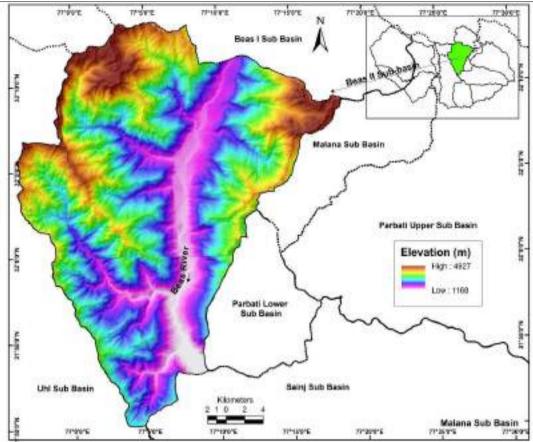


Figure 4.13: DEM of Beas II Sub-basin

Field observations in Beas II sub basin:

Sanjoin Nala: Sanjoin nala is the right bank tributary of Beas river, upstream of Fozal Nala. One operational project Baragaon SHEP (24 MW) is there at this nala.

<u>Fojal Nala:</u> Fojal Nala is a right bank tributary of Beas river which meets at Dobhi on Kullu Manali Highway. The area is well connected through metallic road via Kullu- Manali highway. One project is under construction at this nala named as Fozal SHEP (9MW). The area is rich in apple orchards, which are the main economy of this area. Apple is a cash crop in the area; in addition, some other crops are also cultivated by the local people for their livelihood.

Sarbari Khad: Sarbari khad is the right bank tributary of Beas river. There is an operational project on this khad; Sarbari II SHEP (5.4 MW).

Fozal Nala

Apple Tree in Fozal Nala catchment

4.7.3 Malana Sub-basin

Malana Sub-basin comprises of the catchment area of Malana nala, a right bank tributary of river Parbati. Malana nala is the largest tributary of Parbati river which originates from an unnamed glacier and travels about 25.52 km before joining river Parbati. Total catchment area of the sub-basin is about 158 sq km (Figure 4.14). Important streams joining Malana nala at its right bank are Bare nala, Bukora nala, Khirui nala, Nihani nala, Kabadang nala, Rangcha nala and Lahri nala while the important left bank stream is Thuchaning nala. Almost entire area on the left bank of nala is uninhabited except Thuchaning and Bhutoling villages. Villages on the right bank of the nala are Weohun, Atudang, Ragrang chin, Majigh, Malana, Bhelang Sharn, Bashona, Pohal.

Final Report: Chapter 4

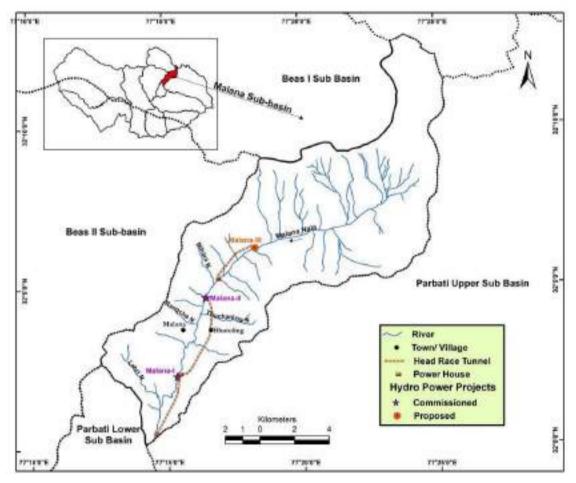


Figure 4.14: Drainage map of Malana Sub-basin

The elevation varies from 1400 m to about 5700 m (**Figure 4.15**). The area upto 2400 m elevation band covers nearly 6% of the sub-basin area. Elevation band between 2401 to 3000 m covers around 13% of the area. Around 70% of the area almost falls under elevation range of 3001 to 3600 m, 3601 to 4200 m and 4201 to 4800 m i.e. 24%, 26% and 19%, respectively. Rest 12% of the sub-basin area lies between 4801 to 5700 m elevation range.

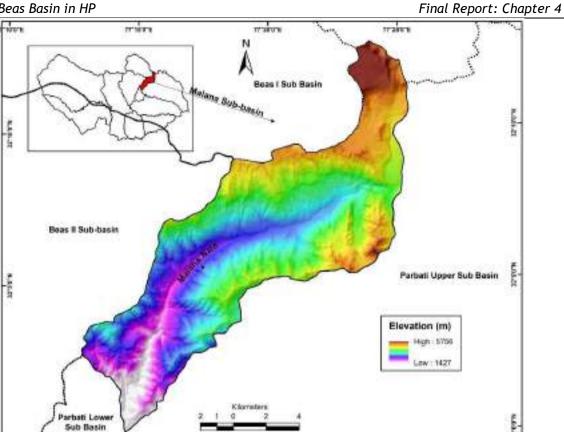


Figure 4.15: DEM of Malana Sub-basin

Field observations in Malana sub basin:

Malana Nala:

Malana Nala is the right bank tributary of Parbati river and meets near village Jari. There are two commissioned hydro-electric projects on Malana River i.e. Malana I (86 MW), and Malana II (100MW). Malana I HEP is the downstream project utilizes tail race water of Malana II. During field surveys even in monsoon season, it was observed that intermediate stretch between diversion site of Malana I till tailrace outlet is devoid of flows which can also be seen on enclosed photographs taken during field surveys shown below. One more project is upstream of existing Malana II which is in proposal stage and is called Malana III.

Dry stretch of between diversion and power house site of Malana I HEP

Phytosociological sampling in the study area (downstream of Malana I HEP)

Diversion site of Malana II HEP

Reservoir of Malana II HEP

Aquatic sampling downstream of barrage in Malana river

Bird watching and terrestrial sampling in Malana catchment downstream of barrage

Site of Cannabis sativa cultivation in Malana Village

Area upstream of Malana II HEP

River bank stabilization in Malana Nala

4.7.4 Parbati Upper Sub-basin

Parbati Upper sub-basin comprises of the catchment area of Parbati river from its origin at Pin Parbati Pass up to its confluence with Malana Nala (Figure 4.16). Parbati river is the largest tributary of Beas river. It meets Beas river at its left bank near Shamshi village. The river originates from Pin Parbati Pass at an elevation of around 5400m. Total catchment area of the sub-basin is about 1437.11 sq km. The major tributaries joining Parbati river at its right bank are Dibi ka Nal, Gohru Khol, Tosh nala, Galigad nala, Rashkar Gad, Brahamganga Nala, Gohar nala, Rasol nala, Reoni nala, while the left bank tributaries are Bakar Bihar Khol, Dauns Par Khol, Tundabhuj Khol, Bakar Kiara Khol, Jari nala, Khanora nala. Sub-basin area from the origin of Patbati river up to its confluence with Tosh nala near Pulga village is almost uninhabited. Most of the settlements are found near the river bank and is evenly distributed among both the banks. Major villages in the sub-basin are Tosh, Barsheni, Tulga, Pulga, Nakthan, Shila, Lapas, Balargha, Manikaran, Kasol, Chhalal, Jari.

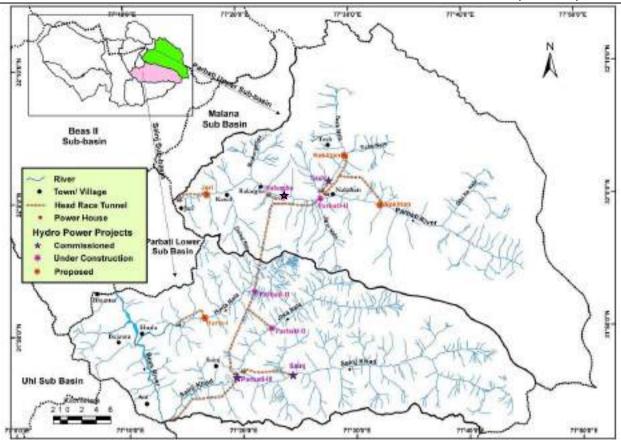


Figure 4.16: Drainage map of Parbati Upper and Sainj sub-basins

The elevation varies from 1400 m to about 6600 m (**Figure 4.17**). Elevation range of up to 1800 m covers only 5% of the sub-basin area. Elevation band between 2401 to 3600 m covers around 15% of the area. Elevation bands between 3601m to 4200 m, 4201m to 4800 and 4801m to 5400 m cover almost 73% of sub-basin area i.e. 12%, 25% and 36%, respectively. The balance 8% of the area lies in the higher elevation band of 5401 to 6600 m.

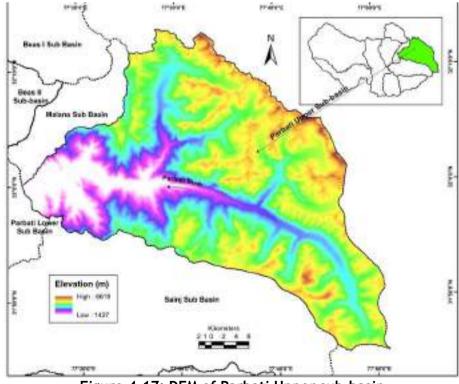


Figure 4.17: DEM of Parbati Upper sub-basin

Field observations in Parbati Upper sub-basin:

Bhuntar (Beas- Parbati Confluence):

Bhuntar is the main town of Kullu district well connected by national highway and also has an airport. Bhuntar town is at confluence of Beas and Parbati rivers. The area is surrounded by hills having good vegetation cover.

Final Report: Chapter 4

A view of confluence of Beas and Parbati rivers Settlements along river bank of Beas

Parbati River:

Parbati river is left bank tributary of Beas river which is joined first with Tosh river near Tosh Village and then confluences with Beas river near Bhuntar. Upstream of the confluence, Khirganga hot water spring is main tourist attraction in the area. This area is well connected with road network, nearest airport is Bhuntar. There is an operational project on Tosh river named Tosh SHEP (10 MW). Diversion site of Parbati II HEP is located just downstream of the confluence of Tosh and Parbati river which diverts water of Parbati river to Sainj Khad. Power house of Parbati II HEP is located in the right bank on Sainj Khad near Siund village. Nakthan HEP (520MW) project which is in proposal stage, has two diversion structures one each on Tosh nala and Parbati river with power house at confluence of Tosh Nala with Parbati river.

Balaragha HEP has recently became operational and is located on Parbati river. Balaragha HEP is located downstream of Parbati II HEP. Power house is located in the right bank of Parbati river along the Bhuntar-Pulga road opposite to the Adit-1 of Parbati II HEP.

Downstream of Balaragha HEP, there are five HEPs have been proposed which are Jari, Parbati, Sharni, Sarsadi and Sarsadi-II.

PH site of Balaragha HEP

Final Report: Chapter 4

Balaragha HEP and its surroundings

Tosh Nala and Parbati River Confluence Under construction dam of Parbati II HEP

4.7.5 Sainj Sub-basin

Sainj sub-basin comprises of the catchment area of Sainj Khad from its confluence with Parbati river and a part of Beas river catchment from Bhuntar town up to its confluence with Sainj Khad near dam site of Larji HEP (see Figure 4.16). This sub-basin includes the catchment of two major tributaries of Beas river i.e. Hurla nala and Sainj Khad. Hurla nala meets Bear river on its left bank near Hurla village at 1020m. The total length of the nala is about 33.3 km with a catchment area of about 188.5 sq km. Further about 13 km downstream of Hurla Nala, Beas is fed by Sainj Khad which traverses a distance of about 59.5 km from its origin to join Beas River on left bank. The catchment area of the river is 747 sq km. It originates from unnamed glacier at an elevation of about 4200 m. The major tributaries joining Sainj Khad on its right bank are Rakti Nal, Chyos Nal, Jiun Nal, Riasa Nal, Jiwa Nal, Phagla Gad, Baga Gad while the left bank tributaries are Gahru Nal, Kuli Gad, Dhaugi Gad, Kanon Gad, Tirthan River. The other major tributaries joining Beas river at its right bank are Bajaura khad, which also happens to be the district boundary of Kullu and Mandi districts and Shiri gad. The sub-basin is densely populated with settlements on banks of Beas river, Hurla nala and Saini Khad. Major villages on the banks of river Beas are Bhuntar, Bajaura, Nagwain, Panarsa and Aut. Major villages in the catchment of Hurla nala are Hurla, Narogi, Tharas, Sharan, Hawai, Kayund, Manihar, Garsha etc. Major villages in the catchment of Sainj khad are Sainj, Dushahar, Deori Dhar, Shansher, Bhallan, Raila, Gadaparli, Kanon, Madana, Khain, Bahli, Parkachi, etc.

The elevation varies from 1100 m to about 5700 m (**Figure 4.20**). Only 16% of the sub-basin area lies in the 1101 to 1800m elevation band. Around 60% of the area almost falls under elevation range of 1801 to 2400 m, 2401 to 3000 m, 3001 to 3600 and 3601 to 4200 m i.e. 17%, 15%, 14% and 14%, respectively. Elevation band between 4201 to 4800 m covers around 16% of the area. Rest 8% of the sub-basin area lies between 4801 to 5700 m elevation range.

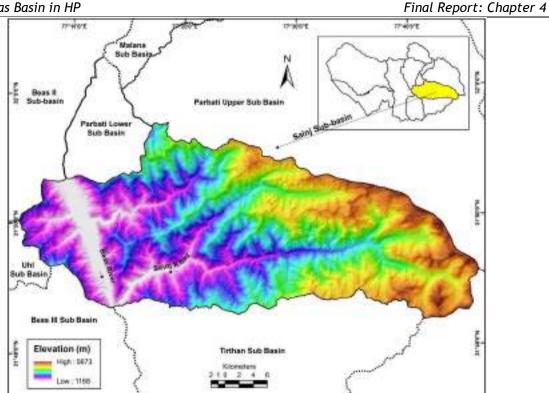
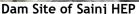


Figure 4.18: DEM of Sainj Sub-basin

Field observations in Sainj sub basin:


trigger.

Hurla Nala: Hurla nala is the left bank tributary of Beas river. Hurla-I SHEP is proposed on this nala.

Sainj Khad:

Sainj Khad is the left bank tributary of Beas river. Sainj HEP (100MW) is an under construction project developed by HPPCL on Sainj Khad. Dam site is located approximately 8 km from Neuli and approximately 16 km from Sainj HEP Power house site. Powerhouse site is located on right bank of Sainj Khad near Jiwa Nala and Sainj Khad confluence. Parbati II HEP Power house is also located adjacent to confluence of Jiwa nala and Sainj Khad. Parbati stage II is inter-basin project as it utilizes the water of Parbati river (Dam site of Parbati stage II located near Tosh- Parbati confluence at Pulga) and diverts water of Parbati river to Sainj Khad catchment. Tailrace of Parbati II HEP outfalls in the reservoir of Parbati III HEP i.e. upstream of diversion site of Parbati III HEP. It was observed that fish ladder has been provided in the dam structure of Sainj project. (Shown below)

Intake structure of Saini HEP

Fish Ladder in Dam structure of Sainj HEP

Confluence of Sainj Khad and Jiwa Nala and Power House site of Sainj HEP

Panoramic view of Parbati II HEP (Power House site) and Sainj HEP (Power House Site)

4.7.6 Parbati Lower sub-basin

Parbati Lower sub-basin comprises of the catchment area of Parbati river from its confluence with Malana nala till it meets river Beas near Shamshi village (**Figure 4.18**). The river flows for only about 18 km in the sub-basin. Total catchment area of the sub-basin is about 137.02 sq km. The major tributary joining Parbati river at its right bank is Baladhi nala, while the left bank tributaries are Charror nala and Shat nala. The sub-basin is thickly populated with settlements on both the banks of river. Major villages in the sub-basin are Baladhi, Ghajyari, Banasha, Chhashni, Danogi, Bharain, Bhuin, Narogi, Barogi, Sarsari, Jalagran, Shat.

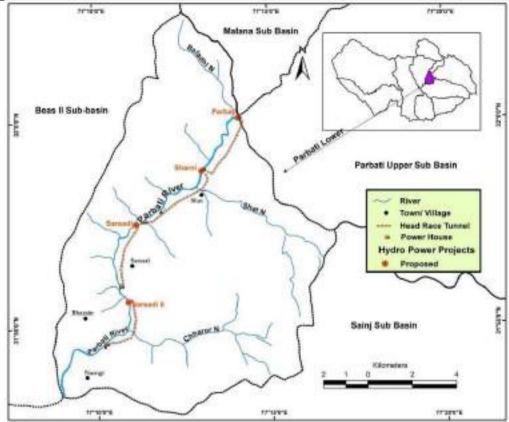


Figure 4.19: Drainage Map of Parbati Lower sub-basin

The river bed level varies from 1100 m to about 3700 m (**Figure 4.19**). About 33% of the sub-basin area lies in the 1101 to 1800 m elevation band. Around 35% of the area is covered by 1801 to 2400 m elevation band. Elevation band between 2401 to 3000 m covers around 25% of the area. The higher elevation band between 3001 and 4200 m covers the balance 7% of the sub-basin area.

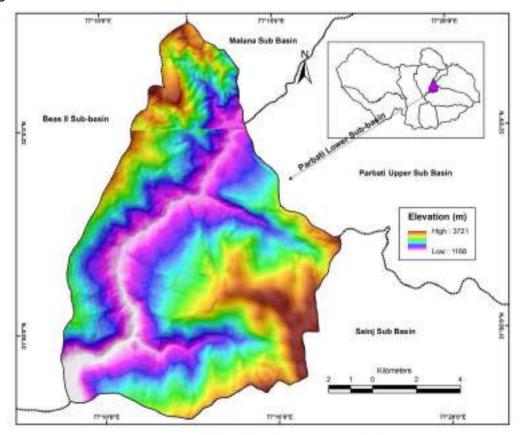


Figure 4.20: DEM of Parbati Lower sub-basin

4.7.7 Tirthan Sub-basin

Tirthan sub-basin comprises of the catchment area of Tirthan river from its origin and upto its confluence with Sainj Khad near Larji village (**Figure 4.21**). It originates from unnamed glacier at an elevation of 4378m and travels a distance of about 50.7 km to join Sainj Khad at its left bank. It is the biggest tributary of Sainj Khad. The Catchment area of Tirthan sub-basin is about 685 sq km. The important tributaries joining Tirthan river at its right bank are Rakhundi nala, Kalwari nala, Ghori gad, Kamand gad, while the important left bank tributaries are Mani nala, Koki gad, Jibhi gad, Maahlra nala and Palachan gad. No project has been proposed in this sub-basin as it has been declared as no go area for hydropower projects by the state government.

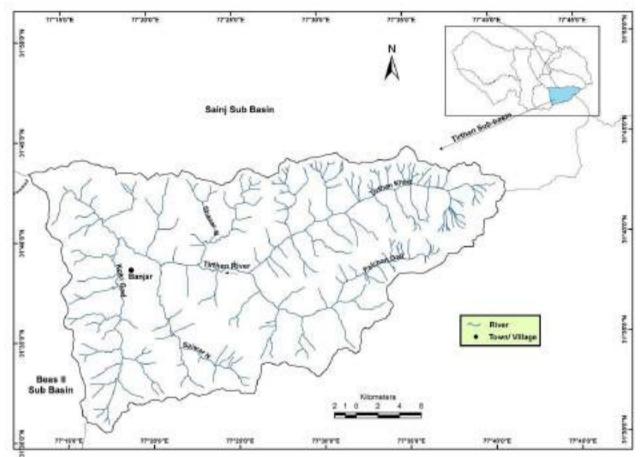


Figure 4.21: Drainage map of Tirthan Sub-basin

The elevation varies from 1100 m to about 5200 m (**Figure 4.22**). Only 11% of the sub-basin area lies in the 1101 to 1800m elevation band. Elevation band between 1801 to 2400 m covers around 20% of the area. Around 52% of the area almost falls under elevation range of 2401 to 3000 m and 3001 to 3600 i.e. 33% and 19%, respectively. Elevation range from 3601 to 4800 m covers around 16% and the balance 1% area lies in the higher elevation band of 4801 to 5400 m.

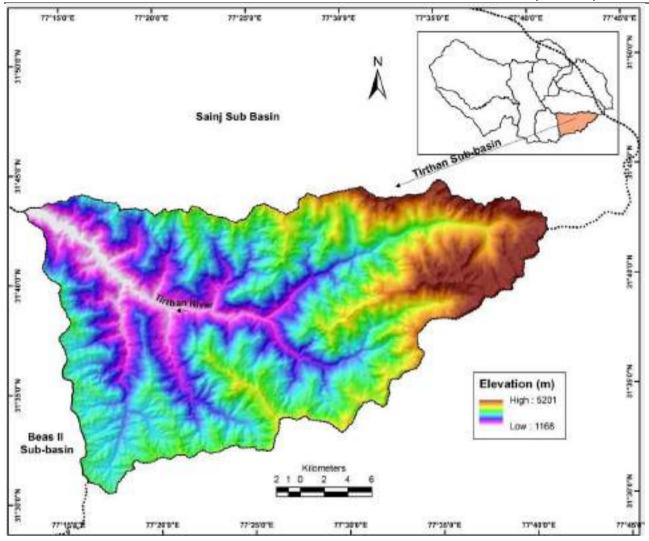


Figure 4.22: DEM of Tirthan Sub-basin

4.7.8 Beas III Sub-basin

Beas Sub-basin-III is comprised of catchment area of Beas river between the confluence point of Tirthan River with river Beas and upstream of Uhl River near Ghamun village (Figure 4.23). Total catchment area of the sub-basin is about 703.44 sq km. Some of the major right bank tributaries in the sub-basin are Chul Nala, Sariwar Khad while the major left bank tributaries are Gurahan Gad, Bakhli Khad and Juni Khad. The sub-basin is thickly populated with settlements on both the banks of river. Some of the major habitations on the right bank of the river in the sub-basin are Khini, Thalat, Jadaorr, Khandli, Kabriana, Shanor, Ranogi, Patajis, Kanda, Norena, Ghamir, Nahogi, Bhabas, Rataun, Nuser, Bota, Thata, Sumar, Banot, Kun, Niyal and Ghamun while major villages on the left bank are Bachhar, Panjal, Dobha, Basahan, Mathej, Thahri, Bhatwara, Jhuli, Thachi, Shiwadhar, Tharan, Thanuta, Ghidha, Marwa, Nulagi, Shiwadhar, Bhakhalwar, Buksaid, Thach, Sianj, Kut, Pandoh, Taryambla, etc.

Figure 4.23: Drainage map of Beas III Sub-basin

The elevation varies from 800 m to about 3400 m (**Figure 4.24**). Only 10% of the sub-basin area lies in the 801 to 1200m elevation band. Elevation band between 1201 to 1800 m and 1801 to 2400m covers almost equal area i.e. 32% each. Around 25% of the area falls under elevation range of 2401 to 3000 m and the rest 1% area lies in the elevation band of 3001 to 3400 m.

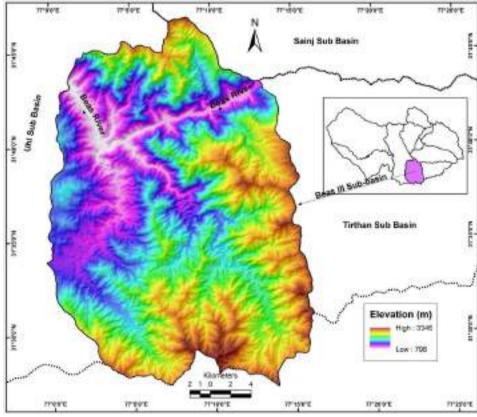


Figure 4.24: DEM of Beas III Sub-basin

Field observations in Beas III sub basin:

Larji HEP reservoir and Dam site:

Larji HEP (126 MW) utilizes water of Sainj Khad, Tirthan river and Beas river. There is a head race tunnel of 3 km (starts near Larji Dam and ends at Aut) along Kullu- Mandi highway. Hills are covered with vegetation. Accessibility in this area is very good. Pandoh HEP is another operational project located downstream Larji HEP on Beas river.

A view of reservoir of Larji HEP

Dam structure of Larji HEP

Outlet of Power House of Larji HEP

Bakhli Khad: Bakhli Khad is the left bank tributary of Beas river which meets near Pandoh HEP. There is an operational project Patikari SHEP (16MW) on this Khad.

4.7.9 Uhl Sub-basin

Uhl sub-basin comprises of the catchment area of Uhl river including catchment area of Beas river from downstream of Pandoh Dam to the confluence of Rana and Arnodi Khads with river Beas in Mandi district (**Figure 4.25**). Major tributaries joining river Beas at its right bank in the sub-basin are Uhl river, Kushak nala, Dev ki Khad, Luni Khad and Rana Khad, while the major tributaries joining river Beas at its left bank in the sub-basin are Suketi Khad, Kasani Khad and Arnodi Khad. Uhl river traverses about 73 km with a catchment area of about 755.6 sq km. Rana Khad meets Beas river near Tudal village. The length of the river is 27.3 km and catchment area of the river is 224.5 sq km. The sub-basin is densely populated, and a large area is under agricultural fields. Major settlements on the banks of river Beas are Mandi, Mangwai, Tamlu, Sari, Kot, Charori.

Major villages in the catchment of Uhl river are Bingahr, Bahladhar, Chumasagran, Tikkar, Ganwag, Chhudhal, Kalangehr, Kortong, Draggar, Chelang, Kaljhar, Garaman, Gahang, Madharwan, etc. Major villages in the catchment of Rana Khad are Banogi, Nauhli, Dagsali, Kaduna, Nagar, etc. Major villages in the catchment of Suketi Khad are Chhachol, Banna, pipli, Gagal, Kehr, Bhangrotu, Maltehr, Sianji, Sundarnagar, Ner Chowk, Tholag, Lohakar, Nanawan, Batwar, etc.

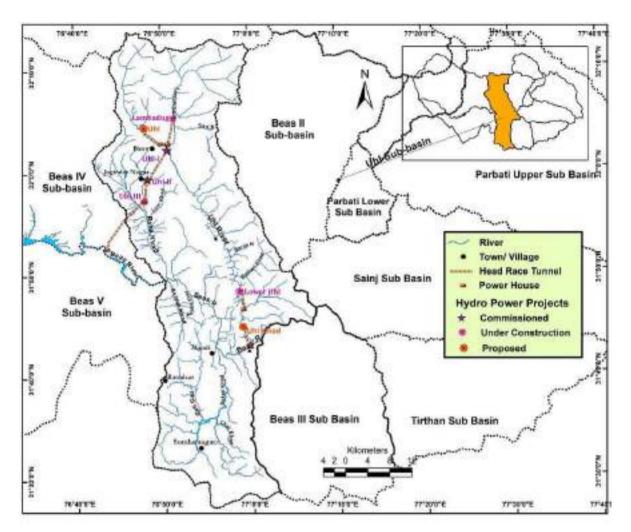
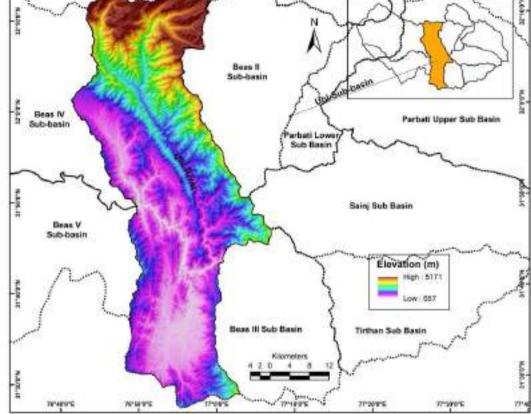
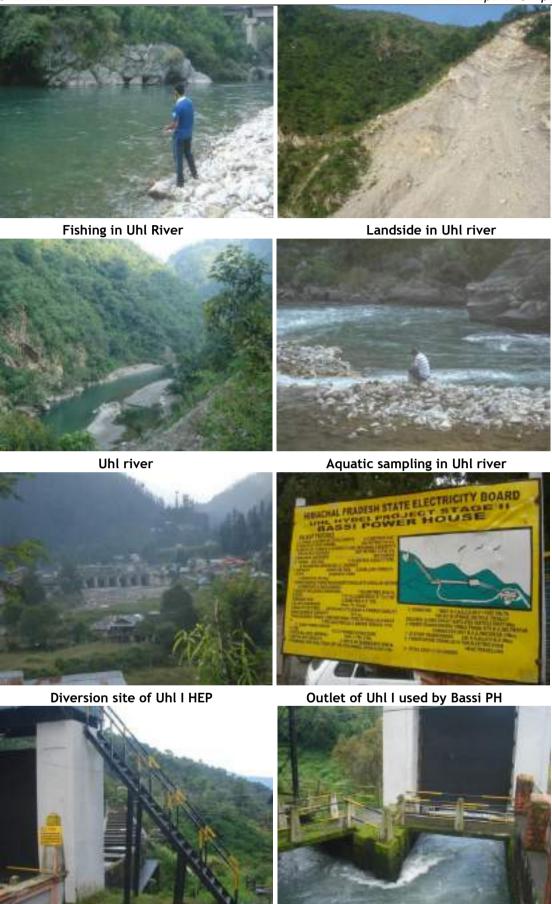


Figure 4.25: Drainage map of Uhl Sub-basin

The elevation varies from 650 m to about 5200 m (**Figure 4.26**). Majority of the sub-basin area i.e. around 32% lies in the 650 to 1200 m elevation range, followed by 1201 to 1800 m and 1801 to 2400 m elevation range which covers nearly 29% and 13% of the sub-basin area respectively. Elevation range from 2401 to 3000 m, 3001 to 3600 and 3601 to 4200m covers around 22% i.e. 9%, 6% and 6% respectively. Rest 4% area lies in the higher elevation band of 4201 to 5400 m.




Figure 4.26: DEM of Uhl Sub-basin

Field observations in Uhl sub basin:

Uhl river:

Uhl river is the right bank tributary of Beas river which meets near Mandi town. During field surveys it was observed that fishing is common practice in Uhl river. Area is covered with good vegetation cover. Lambadug HEP (under construction) is the upper most HEP in the catchment of Uhl river. Diversion site of Uhl-I HEP is located at the downstream of Lambadug power house site. Uhl I HEP (Shanan) is an operational project diverting water from Uhl river to Shannan Khad. Power house of Uhl-I HEP is located along Shanan Khad near Joginder Nagar (Mandi). Uhl II HEP (Bassi Hydro Project) is a tail race development of Uhl-I HEP. Tailrace waters of Uhl II HEP are utilized by Uhl III HEP. Power house of Uhl II HEP is located near Neri Khad near Joginder Nagar town. Power house of Uhl III HEP is at the downstream of Rana Khad-Beas river confluence discharging tailrace water in the reservoir of proposed Triveni Mahadev HEP on Beas river.

Lower Uhl HEP and Uhl SHEP are two under construction hydroelectric projects on Uhl river. Uhl SHEP (14MW) is located near Baltikar village being developed by USP hydro Energy Pvt. Ltd. Lower Uhl (13 MW) is a downstream project of Uhl SHEP located near IIT Mandi. Uhl Khad HEP is the most downstream project on Uhl river. Power house of Uhl Khad is on right bank of Beas river near Uhl-Beas confluence.

Outlet of Uhl I HEP with open trench

4.7.10 Beas IV Sub-basin

Beas IV sub-basin comprises of the right bank catchment area of Beas river from the confluence of Rana and Arnodi Khads with river Beas up to Pong Dam (Figure 4.27). The major tributaries joining river Beas at its right bank in the sub-basin are Binno (Binwa) Khad, Chahan Khad, Ganunu Khad, Harori Khad, Mandh Khad, Neugal Khad, Lohar Khad, Tall Khad, Nakehr Khad, Baner Khad, Minnu Khad, Gaj Khad and Khauli Khad. Binno (Binwa) Khad meets river Beas on its right bank at elevation of 636m. Binwa Khad is also known as Binno Khad in higher reaches. The length of the river is 42 km and catchment area of the river is 375.35 sq km. Neugal Khad meets Beas river on its right bank near Alampur village. The length of the river is 55 km and catchment area of the river is 386 sq km. Baner Khad meets Beas river on its right bank near Mahora village. The length of the river is 63 km and catchment area of the river is 749 sq km. Gaj Khad originates from an altitude of 4400m and travels 64 km to join the Beas river on right bank a little upstream of Pong dam lake. The catchment area of the river is 1246 sq km. The sub-basin is densely populated and a large area is covered by agricultural fileds. Major settlements on the bank of river Beas are Tulah, Molago, Chamar, Tikri, Alampur, Sialkar, Kulehra, Jajwal, Kurhu, Borwari, Kother, Janota, etc. The major towns in the sub-basin are Joginder Nagar, Baijnath, Kangra, Gaggal, Palampur, Dharamshala, etc.

Final Report: Chapter 4

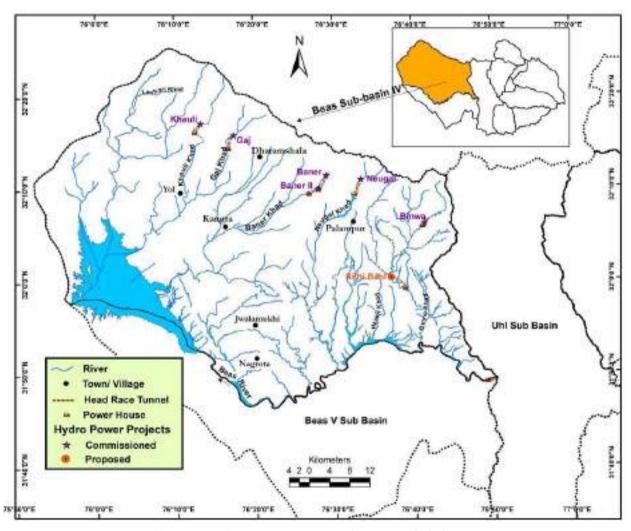


Figure 4.27: Drainage map of Beas IV Sub-basin

The elevation varies from 400 m to about 4900 m (**Figure 4.28**). Elevation range from 401 to 600 m covers around 26% of sub-basin area. Majority of area i.e. 49% lies in 601 to 1200m elevation band. Only 10% of the sub-basin area lies in the 1101 to 1800m elevation range. Elevation band between 1801 to 2400 m and 2401 to 3000 covers around 12% of the area i.e. 6% each. The balance 4% area lies in the elevation band of 3001 to 4800 m.

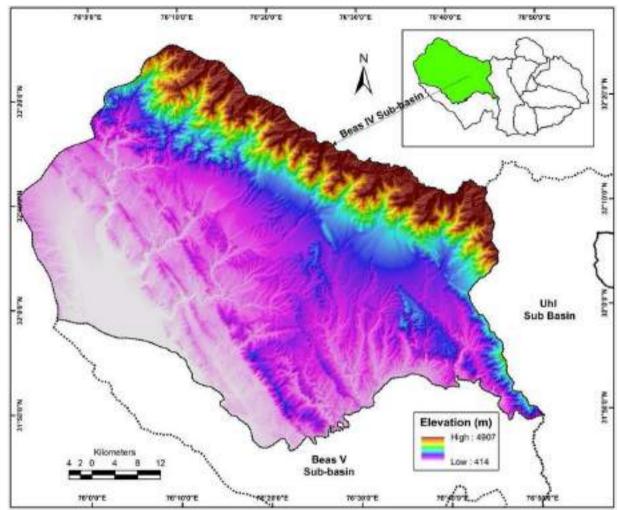


Figure 4.28: DEM of Beas IV Sub-basin

Field observations in Beas IV sub basin:

Binwa Khad:

Binwa Khad is the right bank tributary of Beas river. Binwa SHEP (6MW) is an operational project on this khad. Another project is at the downstream of the Binwa SHEP at Binwa Khad named Kilhi Bahl which is in proposal stage. Binwa Khad passes through Paprola town which is famous for Baijnath temple. This is an archeological site and a famous religious and tourist place. Palampur is another tourist destination which is famous for tea gardens is approximately 16 km from Paprola. A metallic canal was made in Binwa khad near Paprola by the Irrigation Department for irrigation purposes.

Metalled Canal for Irrigation

Final Report: Chapter 4

Baijnath Temple

Metalled canal in Binwa Khad

Aquatic sampling in Binwa Khad

Terrestrial sampling in the study area

Khauli Khad, Gaj Khad, Baner Khad and Neugal Khad:

Khauli Khad, Gaj Khad, Baner Khad and Neugal Khad are the right bank tributaries of Beas river. On Gaj Khad and Khauli Khad; there are one operational projects i.e. Gaj SHEP (10.5 MW) and Khauli SHEP (12MW) and on Baner Khad, there are two operational projects named Baner SHEP and Baner II SHEP, and in Neugal Khad also there is an operational project called Neugal SHEP (15MW). The area is accessible by road from Dharamsala which is a tourist destination.

Gaj Khad Khauli Khad

A view of Baner Khad

Outlet of power house at Baner Khad

Power house site at Baner khad

4.7.11 Beas V Sub-basin

Beas V sub-basin comprises of the left bank catchment area of Beas river from the confluence of Rana and Arnodi Khads with river Beas up to Pong Dam (Figure 4.29). Total area of sub-basin is around 1589 sq km. The major tributaries joining river Beas at its left bank in the sub-basin are Jogi khala, Sun Khad, Sakrain Khad, Thuthuri Khad, Chanehd Khad, Jhangi Khad, Masaut Khad, Naled Khad, Bakar Khad, Sukahd Khad, Jangled Khad, Jamiri Khad, Riani Khad, Pung Khad, Salasi Khad, Kunah Khad, Masinh Khad, Sahri Khad, Nalsoha Khad, Karoa Khad, Barwara Khad, Thor Khad, Chanaur Khad, Bargolan di Khad, Dada Khad, Gurhala Khad. The sub-basin is densely populated and a large area is under agricultural fileds. Major settlements on the bank of river Beas are Bajrana, Dhandor, Khanaur, Haldwara, Baghera, Sujanpur, Majhot, Janglu, Nadaun, Nagrota, Kuhna, Kohala, Nangal, Thor, Chaplah, Kulher etc. The major towns in the sub-basin are Dharampur, Sandhol, Hamirpur, Bangana, Garli, Mairi, Bharwain, Dhaliara etc.

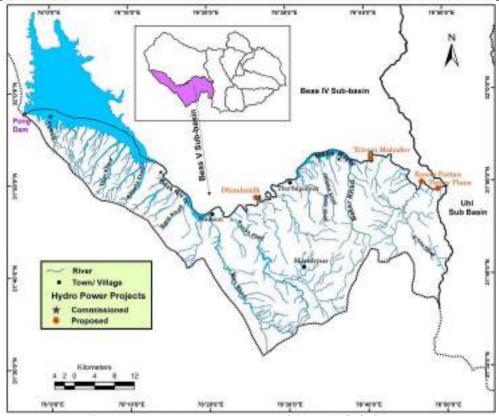


Figure 4.29: Drainage map of Beas V Sub-basin

The elevation varies from 380 m to about 2040 m (**Figure 4.30**). 25% of the sub-basin area lies in the 380 to 600m elevation band. Majority of area i.e. 70% lies in 601 to 1200m elevation band. Around 5% of the area falls under elevation range of 1201 to 2400 m.

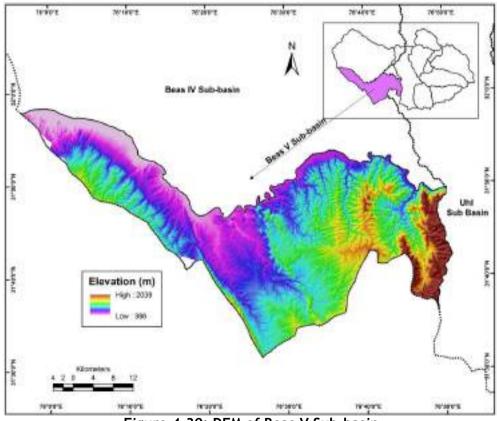


Figure 4.30: DEM of Beas V Sub-basin

Field observations in Beas V sub basin:

<u>Beas River:</u> On Beas river from the downstream of the Pandoh HEP and up to the Pong dam, there are three projects are which are under investigation stage namely Thana Plaun HEP (141MW), Triveni Mahadev HEP (78MW) and Dhaulasidh HEP (66MW). Pong HEP (396MW) is a project on the Beas river which is the border of Himachal Pradesh and Punjab.

Pong Dam Reservoir:

Pong dam reservoir was constructed on Beas river by Bhakra Beas Management Board (BBMB), Himachal Pradesh whose office is in located Talwara town Isituated near the Pong reservoir. The area is well connected by road and rail network. Mukeriyan is the nearest railway station which is approximately 30 km from Talwara town (near Pong reservoir). Topography of the area is almost flat.

Final Report: Chapter 4

Pong Dam Reservoir

Pong Dam downstream view

CHAPTER-5

HYDRO-METEOROLOGY

5.1 INTRODUCTION

The entire Beas Basin within Himachal Pradesh is spread over five districts namely Kullu, Mandi, Kangra, Hamirpur and Chamba. Mainly entire Beas basin is spread over Kullu, Mandi, Kangra and Hamirpur districts and a very small portion falls in Chamba district. In order to understand the climatology of basin data pertaining to climate and rainfall has been given for each of the four main districts covering study area viz Kullu, Mandi, Kangra and Hamirpur districts. The data has been sourced from Indian Meteorological Department, Government of India as well as from the Environmental Impact Assessment (EIA) Reports of different Hydro Electric Power (HEP) Projects in the basin.

In addition, data on worldweatheronline portal has been sourced. World Weather Online's weather API (application programming interface) allows to access current, past and future weather data for use.

The following stations are falling within our study area:

In Kullu District - Kullu and Manali In Mandi District - Jogindernagar, Mandi and Sundernagar In Kangra District - Jwalamukhi, Kangra and Yol

In Hamirpur District - Hamirpur and Tira Sujanpur

Data pertaining to Maximum, Minimum and Average Temperature (0 C), Average Rainfall (mm), Average Humidity (%) and Average and Maximum Wind Speed (Kmph) for a period 2014-2016 has been sourced and shown in pictorial form under respective districts.

5.1.1 Kullu District

The climate of the district is cool and dry. There are three broad seasons viz. cold season from October to February, hot season from March to June and rainy season from July to September. Snowfall generally occurs in December and January at higher hills and most of the regions are cut off from the district headquarters since the mountain passes are closed. The district receives moderate rainfall and bulk of it is received during the months of July, August, December and January. August is the wettest month throughout the district. From climatic point of view the most enjoyable altitude is between 1,500 to 1,800 m as this range is neither too hot nor too cold.

A comparative data of average annual rainfall for five years of district is given in **Table 5.1**. Highest average annual rainfall in the district i.e. 1291.70 mm was recorded during the year 2013 where lowest average annual rainfall i.e. 1017.10 mm was recorded in the year 2016. In addition to this, average annual rainfall data for various years at various locations as sourced from the EIA Reports of different HEPs is given in **Table 5.2**.

Maximum and minimum temperature recorded at Bhunter during the year 2010 is given in Table 5.3, which reflects the month of May as the hottest one, seconded closely by the months of April and June. In addition, monthly maximum and minimum temperature and relative humidity at Bhunter for different period and at Manali from the year 1968-80 is given in Table 5.3.

Table 5.1: Average Monthly Rainfall (mm) of Kullu District

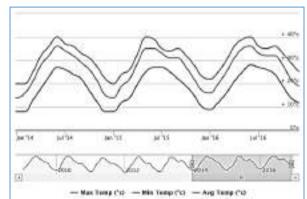
Month	Ye	Year wise Average Monthly Rainfall (mm)							
Month	2012	2013	2014	2015	2016	Average			
January	140.30	110.90	83.10	110.80	37.90	96.60			
February	184.00	274.60	150.70	212.20	74.10	179.12			
March	85.20	117.10	204.90	195.00	186.60	157.76			
April	98.00	40.90	88.30	113.30	92.50	86.60			
May	24.80	41.10	114.60	47.10	57.50	57.02			
June	44.50	155.90	50.00	91.60	58.60	80.12			
July	180.20	214.40	181.00	235.80	185.90	199.46			
August	265.40	205.80	114.20	108.90	282.60	195.38			
September	166.60	63.80	70.80	62.20	36.40	79.96			
October	4.30	10.10	21.30	15.30	4.90	11.18			
November	13.50	21.90	5.10	26.50	0.00	13.40			
December	77.50	35.20	72.60	34.90	0.10	44.06			
Total	1284.30	1291.70	1156.60	1253.60	1017.10	1200.66			

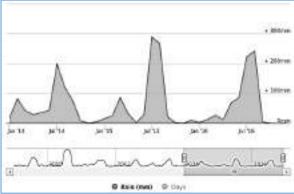
Source: Meteorological Deptt., Govt. of India

CIA&CCS- Beas Basin in HP Final Report: Chapter 5

Table 5.2: Average Monthly Rainfall (mm) at different locations in Kullu District

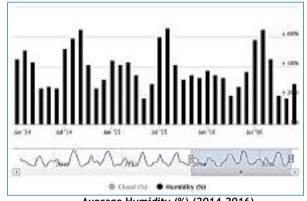
Month	Banjar 1955-88	Kullu 1955- 80	Najan 1968- 77	Larji May 1967-89	Pulga-Gwachha 1965-1977 & Apr 1987-Dec 1990	Kasol 1965-84	Dhara 1965- 84	Sainj 1971- 1983 & Aug 1985- Feb 1990	Naggar 1968-79	Manali 1969-80 & 1987- 88	Niharni June 1985- Dec 1990	Swankanda Dhar Dec 1986- Feb1990	Manali 1968-80
January	75.13	95.32	49.67	78.04	17.40	94.27	57.72	86.44	159.91	58.76	59.00	0.17	145.00
February	95.61	107.20	36.70	67.77	50.12	120.09	78.46	89.18	102.13	150.76	150.38		145.60
March	93.59	111.47	49.20	84.70	51.85	119.63	90.70	134.90	147.83	153.15	144.25	14.83	187.30
April	67.77	57.08	66.04	57.80	64.00	99.52	78.50	71.89	83.86	146.42	24.75	62.67	111.30
May	71.53	46.38	52.48	64.40	54.52	93.11	64.85	90.49	67.16	147.31	68.00	266.67	69.10
June	101.40	58.17	65.62	102.29	74.99	82.03	55.27	94.60	73.69	83.34	123.50	135.75	94.50
July	297.00	151.30	185.47	191.57	181.70	225.66	153.50	218.89	190.88	220.44	256.25	458.25	235.00
August	161.79	130.31	210.50	155.08	170.71	211.91	149.48	191.17	183.17	264.89	249.38	386.25	243.60
September	91.37	85.30	36.33	67.22	77.14	113.74	61.12	86.08	80.65	146.09	101.75	527.50	108.40
October	37.04	37.74	22.94	27.93	31.13	43.79	34.08	28.27	24.17	37.67	35.13	6.00	33.10
November	16.32	16.66	11.33	19.42	5.86	28.64	12.56	22.96	32.49	33.70	0.50		39.80
December	34.58	38.20	12.20	34.36	32.45	46.25	21.07	39.85	30.67	48.15	25.88	0.67	46.50
Total	1143.13	935.13	798.48	950.58	811.87	1278.64	857.31	1154.72	1176.61	1490.68	1238.77	1858.76	1459.20

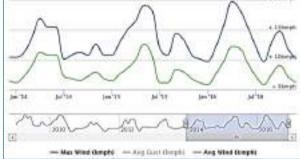

Source: EIA Reports of Nakhtan, Balargha, Jari, Allain Duhangan, Sainj and Malana-II HEPs


Table 5.3: Maximum and Minimum Temperature (°C) at different locations in Kullu District

Month	Temperatu Bhunter for dif			umidity (%) at different period		ure (ºC) at - 1968-80		midity (%) at r 1968-80	Temperati Bhunte	
	Maximum	Minimum	Morning	Evening	Maximum	Minimum	Morning	Evening	Maximum	Minimum
January	20.3	-1.6	89	54	10.1	-1.8	76	68	19	1.5
February	22.9	-0.2	87	50	11.1	-1.0	72	65	18.9	4.4
March	27.8	2.6	80	47	15.9	2.8	60	55	26.8	8.5
April	32.6	5.8	71	40	21.6	6.1	56	48	30.9	11.0
May	36.0	8.6	63	37	24.9	8.6	57	50	32.0	14.8
June	36.8	12.2	65	42	26.6	12.4	71	58	31.3	15.5
July	34.9	15.6	81	60	25.5	14.8	86	75	29.9	19.4
August	33.6	16.1	86	64	25.0	14.6	91	81	30.6	20.2
September	32.9	11.5	80	56	24.7	10.4	86	73	29.4	17.3
October	30.8	5.8	78	46	22.5	5.4	73	65	28.3	10.5
November	26.3	1.1	83	44	18.4	1.3	62	58	24.3	5.7
December	21.6	-1.4	88	53	14.0	-0.3	60	54	18.5	0.5
Average	29.7	6.3	79.3	49.4	20.0	6.1	70.8	62.5	26.7	10.8
Source:	EIA Rep	orts of Nakhtan	, Balargha and	Jari HEPs	EIA Reports of	Allain Duhang	an, Sainj and <i>N</i>	Malana-II HEPs	Meteorological Deptt., Govt. of India	

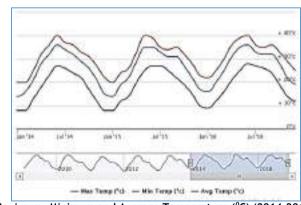
Data pertaining to Maximum, Minimum and Average Temperature (°C), Average Rainfall (mm), Average Humidity (%) and Average and Maximum Wind Speed (Kmph) for a period 2014-2016 for two stations Kullu & Manali falling within Kullu district, sourced from worldweatheronline portal has been shown in pictorial form as below:

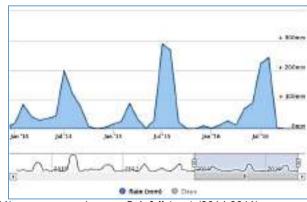

Kullu, Himachal Pradesh



Maximum, Minimum and Average Temperature (°C) (2014-2016)

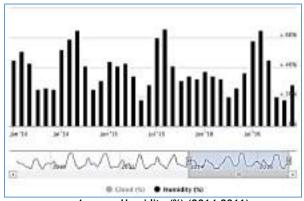
Average Rainfall (mm) (2014-2016)

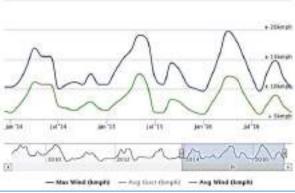




Average Humidity (%) (2014-2016)

Average and Maximum Wind Speed (Kmph) (2014-2016)


Manali, Himachal Pradesh



Maximum, Minimum and Average Temperature (°C) (2014-2016)

Average Rainfall (mm) (2014-2016)

Average Humidity (%) (2014-2016)

Average and Maximum Wind Speed (Kmph) (2014-2016)

5.1.2 Mandi District

The District being mostly hilly, the climate varies according to the altitude of the place. The district being mountainous, the climate is temperate. In upper areas, the climate remains cold throughout the year. The areas of Padhar, Chohar, Seraj and Sonar usually experience sufficient snowfall during winter which often comes down to 1,300 metres altitudes. In summer, other low areas and Balh valley are quite hot. The winter starts from the middle of November and continues till the middle of March. Thereafter, the mercury continues rising till the onset of monsoons which starts from the last week of June or first week of July and continues till the middle of September. During October and November, the nights are pleasant and days are a bit hot. The sub-temperate climatic conditions prevail in Dhauladhar micro sub-region, as it is a mountainous track. Higher reaches of the region receive sufficient snowfall every year during winter and remain cut off from the other parts of the district. The lower areas are comparatively hot. The climatic conditions of the higher reaches of Beas basin are temperate. In winter these areas receive snowfall almost every year where the weather remains cool throughout the year. Lower areas are comparatively hot during the summer. Month of July and August receive heaviest rainfall in this region. Rainfall is mostly received during the monsoon months. In Mandi Lesser Himalaya, the climate is mild during winter in upper areas whereas lower altitudes are hot in summer. The district receives an ample and uniformly distributed rainfall.

A comparative data of average annual rainfall for five years of district is given in **Table 5.4**. Highest average annual rainfall in the district i.e. 1620.70 mm was recorded during the year 2014 where lowest average annual rainfall i.e. 1396.60 mm was recorded in the year 2016. In addition to this, average annual rainfall data from the year 1954 to 1980 at Mandi town as sourced from the EIA Report of Dhaulasidh HEP and from the year 1982 to 1993 at Pandoh Dam as sourced from the working plan of Mandi Forest Division is given in **Table 5.4**.

Maximum and minimum temperature from the month of January to December in Mandi district as recorded for the year 2010 at Meteorological Centre, Sundernagar is given in **Table 5.5**, which reflects the month of May as the hottest one, seconded closely by the months of April and June. In addition, monthly maximum and minimum temperature and relative humidity at Mandi from the year 1954-80 is given in **Table 5.5**.

Table 5.4: Average Monthly Rainfall (mm) of Mandi District

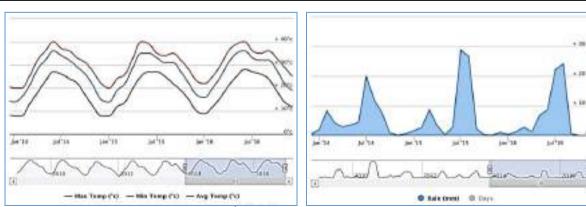
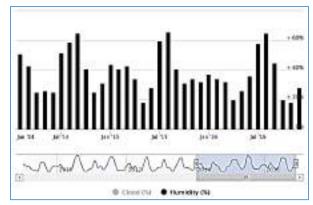
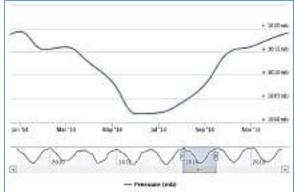

Month	Year w	ise Average	Monthly Rai	nfall at Mand	li (mm)	Mandi 1954-	Pandoh Dam
Month	2012	2013	2014	2015	2016	80	Site 1982-93
January	114.50	62.40	64.10	87.50	13.50	74.30	58.03
February	39.30	142.50	113.20	130.20	42.80	60.20	71.63
March	27.30	71.50	105.90	154.40	93.10	81.80	69.43
April	94.60	29.00	62.10	100.10	24.70	47.60	50.37
May	6.30	18.70	102.90	38.80	165.10	51.10	79.72
June	36.70	381.90	124.70	113.40	208.20	130.00	203.16
July	426.90	393.50	396.90	407.50	314.60	500.00	327.04
August	480.60	321.40	374.60	340.90	415.10	427.60	309.84
September	186.90	97.80	152.10	73.00	108.60	186.80	125.91
October	2.90	14.10	27.50	29.60	10.90	45.80	48.30
November	5.00	17.60	2.30	9.70	0.00	13.80	15.97
December	22.20	23.20	94.40	39.40	0.00	23.20	45.59
Total	1443.20	1573.60	1620.70	1524.50	1396.60	1642.20	1404.99
				EIA Report of	Working Plan		
Source:		Meteorologic	al Deptt., G		Dhaulasidh	of Mandi	
						HEP	Forest Division

Table 5.5: Maximum and Minimum Temperature (°C) at different locations in Mandi District

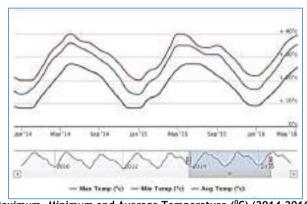
Month			Relative Humidity (%) at		ure (ºC) at Igar 2010
	Maximum	Minimum	Mandi 1954-80	Maximum	Minimum
January	18.5	2.8	73	21.2	2.2
February	21.1	4.2	69	22	5.5
March	25.8	9.0	61	31.3	11.0
April	30.8	13.5	55	34.9	14.6
May	34.7	17.3	48	36.0	17.9
June	36.0	20.1	55	33.7	18.4
July	31.8	21.1	75	30.3	21.5
August	31.0	20.5	81	30.5	22.2
September	30.7	18.4	75	29.8	19.1
October	28.8	12.3	71	29.4	12.6
November	24.9	6.8	74	25.6	6.9
December	20.6	3.1	75	20.1	1.2
Average	27.89	12.43	67.67	28.7	12.8
Source:	EIA I	Report of Dhau	Meteorolog Govt. o		

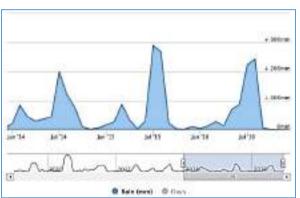

Data pertaining to Maximum, Minimum and Average Temperature (0 C), Average Rainfall (mm), Average Humidity (%) and Average and Maximum Wind Speed (Kmph) for a period 2014-2016 for three stations Jogindernagar, Mandi & Sundernagar falling within Mandi district, sourced from worldweatheronline portal has been shown in pictorial form as below:


Jogindarnagar, Himachal Pradesh

Maximum, Minimum and Average Temperature (°C) (2014-2016)

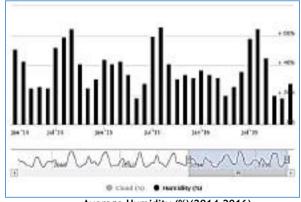
Average Rainfall (mm) (2014-2016)

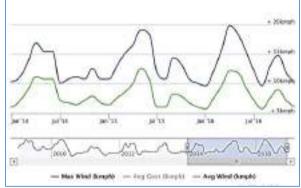




Average Humidity (%)(2014-2016)

Average and Maximum Wind Speed (Kmph) (2014-2016)

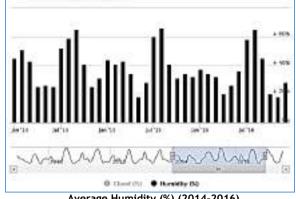

Mandi, Himachal Pradesh



Maximum, Minimum and Average Temperature (°C) (2014-2016)

Average Humidity (%)(2014-2016)

Average and Maximum Wind Speed (Kmph) (2014-2016)


Sundarnagar, Himachal Pradesh



Maximum, Minimum and Average Temperature (°C) (2014-2016)

Average Rainfall (mm) (2014-2016)

Average Humidity (%) (2014-2016)

Average and Maximum Wind Speed (Kmph) (2014-2016)

5.1.3 Kangra District

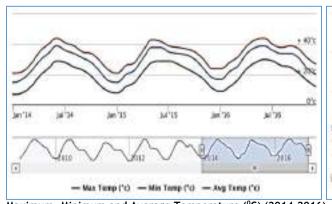
The climate in the district unfolds four broad seasons. The winter generally spreads over from December to February. The period from March to June is summer. Hot and rainy season generally extends from July to September. October and November exhibit autumn. While during the winter months, the places at high altitudes remain covered under snow. The temperature during the winter months even in the lower areas is too cold because of the lashing cold breeze of the mountain ranges of Dhauladhar and Hathi Dhar. The places lying at higher altitudes are too wet in the rainy season. Dharmshala, the headquarters of the district receives plentiful rains during the summer months. In the valleys and southern parts of the district, the days are extremely hot. During the monsoon period the land becomes fresh and green and the small water channels in the hills begin to swell. The climatic conditions prevailing in Kangra district are most useful for growing food crops, forestry, tea plantation, floriculture and other natural herbals.

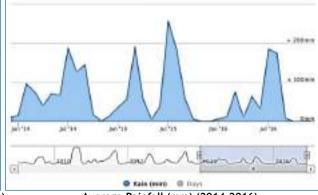
A comparative data of average annual rainfall for five years of district is given in Table 5.6. Highest average annual rainfall in the district i.e. 2403.50 mm was recorded during the year 2013 where lowest average annual rainfall i.e. 1519.10 mm was recorded in the year 2014. In addition to this, average annual rainfall data for various years at various locations as sourced from the EIA Reports of different HEPs is given in Table 5.6.

Maximum and minimum temperature from the month of January to December in Kangra district as recorded for the year 2010 at Meteorological Centre, Dharamshala is given in Table 5.7, which reflects the month of May as the hottest one, seconded closely by the months of April and June. In addition, monthly maximum and minimum temperature and relative humidity at Dharamshala from the year 1954-80 is given in Table 5.7.

Table 5.6: Average Monthly Rainfall (mm) of Kangra District

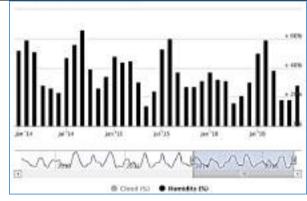
Month	Ye	ear wise Ave	rage Monthly	Lambadug	Dharamshala		
MOTILIT	2012	2013	2014	2015	2016	1988-93	1954-80
January	170.60	52.20	62.00	65.90	7.60	124.00	114.50
February	45.90	121.30	123.80	115.30	36.80	119.00	100.70
March	37.30	72.50	98.00	180.60	98.80	255.80	98.80
April	53.30	28.90	52.70	66.30	13.20	111.40	48.60
May	9.90	26.50	45.20	32.20	89.80	117.60	59.10
June	35.90	370.40	100.20	160.60	132.60	125.00	202.70
July	603.90	666.00	449.20	624.70	529.60	283.22	959.70
August	940.20	739.60	386.30	576.90	585.40	236.40	909.20
September	308.90	169.40	119.10	109.60	111.50	171.60	404.80


Month	Ye	ear wise Ave	Lambadug	Dharamshala			
MOTILIT	2012	2013	2014	2015	2016	1988-93	1954-80
October	9.10	89.40	38.00	28.30	3.90	12.25	66.30
November	4.00	19.80	0.70	8.60	0.00	35.12	16.70
December	31.60	47.50	43.80	27.40	3.40	52.10	54.00
Total	2250.60	2403.50	1519.00	1996.40	1612.60	1643.49	3035.10
Source:	,	Meteorologic	al Deptt., Go	EIA Report of Lambadug HEP	EIA Report of Dhaulasidh HEP		


Table 5.7: Maximum and Minimum Temperature (°C) at Dharamshala

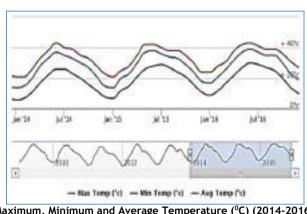
Month		ure (ºC) at la 1954-80	Relative Humidity (%) at		ure (ºC) at nala 2010
Month	Maximum	Minimum	Dharamshala 1954-80	Maximum	Minimum
January	14.5	5.9	59	19.5	7
February	16.6	7.7	55	18.8	5.3
March	21.1	11.8	48	26.8	11.1
April	26.2	16.3	39	32.3	16.1
May	30.5	20.1	35	34.0	17.8
June	31.4	21.8	52	33.1	17.5
July	27.2	20.7	80	27.6	16.9
August	26.3	20.2	84	25.4	17.4
September	26.3	18.7	75	26.3	16.2
October	24.8	15.3	56	25.8	13
November	20.7	10.7	52	24.6	9.4
December	16.7	7.4	57	19.1	4.9
Average	23.53	14.72	57.67	26.1	12.7
Source:	EIA I	Report of Dhau		ical Deptt., of India	

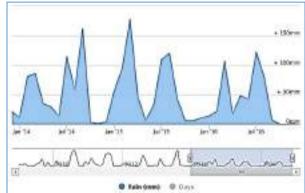
Data pertaining to Maximum, Minimum and Average Temperature (°C), Average Rainfall (mm), Average Humidity (%) and Average and Maximum Wind Speed (Kmph) for a period 2014-2016 for three stations Jwalamukhi, Kangra & Yol falling within Kangra district, sourced from worldweatheronline portal has been shown in pictorial form as below:


Jawala Mukhi, Himachal Pradesh

Maximum, Minimum and Average Temperature (°C) (2014-2016)

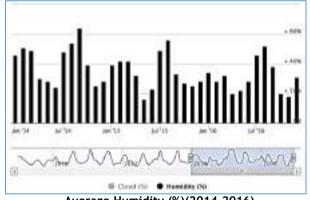
Average Rainfall (mm) (2014-2016)

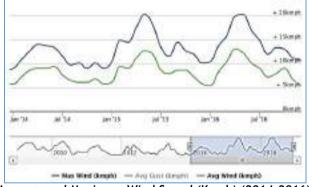



Arg Good (Direpti) --- Avg Wind Guren's

Average Humidity (%) (2014-2016)

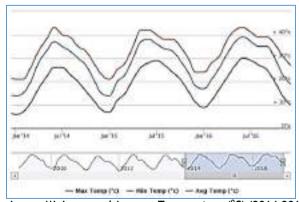
Average and Maximum Wind Speed (Kmph) (2014-2016)

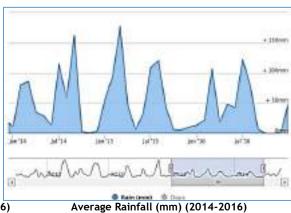

Kangra, Himachal Pradesh



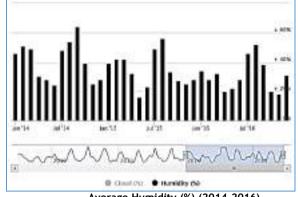
Maximum, Minimum and Average Temperature (°C) (2014-2016)

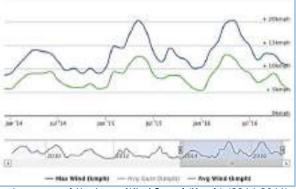
Average Rainfall (mm) (2014-2016)





Average Humidity (%)(2014-2016)


Average and Maximum Wind Speed (Kmph) (2014-2016)


Yol, Himachal Pradesh

Maximum, Minimum and Average Temperature (°C) (2014-2016)

Average Humidity (%) (2014-2016)

Average and Maximum Wind Speed (Kmph) (2014-2016)

5.1.4 Hamirpur District

The district falls in the humid sub-tropical zone. The climate of the district has four broad seasons. The winter generally spread over from December to February. The period from March to June is summer. Hot and rainy season generally extends from July to September. October and November exhibit autumn. The temperature during the winter months is too cold. The district receives the plentiful rains during the monsoon period. During summer the days are extremely hot. Climate plays a vital role in the field of life style and economic growth of the state, especially the performance of agriculture, horticulture and tourism sector is closely related to the performance of rain and snowfall during the season.

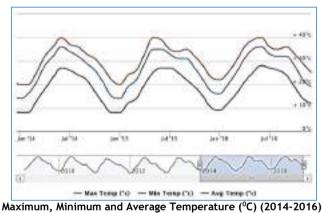
A comparative data of average annual rainfall for five years of district is given in Table 5.8. Highest average annual rainfall in the district i.e. 1482.40 mm was recorded during the year 2015 where lowest average annual rainfall i.e. 1198.80 mm was recorded in the year 2016.

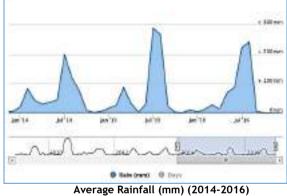
Maximum and minimum temperature recorded during the year 2010 is given at Table 5.9. The maximum and minimum temperature is recorded at Una, which is nearest center for this purpose. In Hamirpur the maximum temperature is recorded in the month of May whereas minimum temperature is recorded in January month.

Table 5.8: Average Monthly Rainfall (mm) of Hamirpur District

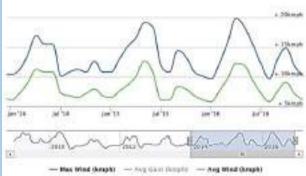
Month	Ye	ear wise Ave	rage Monthly	, Rainfall (mi	m)	Average
Month	2012	2013	2014	2015	2016	Average
January	132.00	45.10	42.10	79.00	11.20	61.88
February	32.10	121.40	91.70	106.90	25.70	75.56
March	25.50	80.30	107.40	153.40	67.60	86.84
April	44.90	9.70	37.30	72.50	7.20	34.32
May	1.30	13.90	55.50	28.40	87.90	37.40
June	14.80	295.00	71.40	143.00	165.00	137.84
July	374.60	441.40	349.00	368.10	275.80	361.78
August	557.30	280.80	374.40	396.00	469.10	415.52
September	235.70	73.40	95.10	83.20	86.60	114.80
October	5.00	24.40	24.00	15.50	0.20	13.82
November	4.00	12.80	0.10	8.40	0.00	5.06
December	28.10	29.80	55.50	28.00	2.50	28.78
Total	1455.30	1428.00	1303.50	1482.40	1198.80	1373.60

Source: Meteorological Deptt., Govt. of India

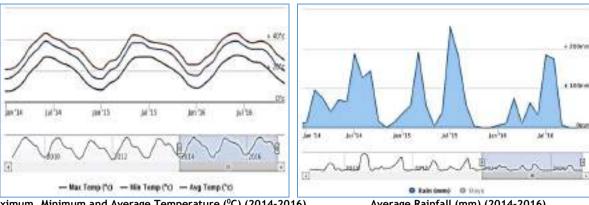

Table 5.9: Maximum and Minimum Temperature (°C) at Hamirpur, 2010


Month	Maximum	Minimum
January	20.0	7.0
February	22.0	9.0
March	31.0	16.0
April	37.0	21.0
May	40.0	24.0
June	38.0	24.0
July	34.0	23.0
August	31.0	22.0
September	29.0	19.0
October	29.0	15.0
November	25.0	11.0
December	21.0	6.0
Average	30.0	16.0

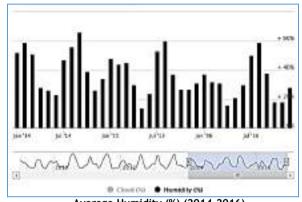

Source: worldweatheronline.com

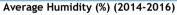

Data pertaining to Maximum, Minimum and Average Temperature (0 C), Average Rainfall (mm), Average Humidity (%) and Average and Maximum Wind Speed (Kmph) for a period 2014-2016 for two stations Hamirpur & Tira Sujanpur falling within Hamirpur district, sourced from worldweatheronline portal has been shown in pictorial form as below:

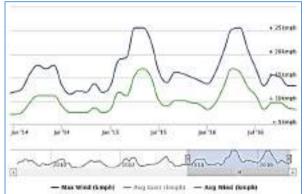
Hamirpur, Himachal Pradesh



Average Humidity (%)(2014-2016)


Average and Maximum Wind Speed (Kmph) (2014-2016)


Tira Sujanpur, Himachal Pradesh



Maximum, Minimum and Average Temperature (°C) (2014-2016)

Average Rainfall (mm) (2014-2016)

Average and Maximum Wind Speed (Kmph) (2014-2016)

Rainfall Scenario of Beas Basin using TRMM Data 5.1.5

In addition, the rainfall scenario of Beas basin has been studied and analyzed using TRMM data which is shown in Figure 5.1. The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA) designed to measure rainfall for weather and climate research. TRMM is designed to measure tropical precipitation and its variation from a low-inclination orbit combining a suite of sensors to overcome many of the limitations of remote sensors previously used for such measurements from space. TRMM is a comprehensive and systematic program designed to increase the extent and accuracy of tropical rainfall measurement. The TRMM science program consists of a broad research effort which includes development of cloud models, rain retrieval algorithms for the space sensors, use of TRMM measurements with other satellite data to improve sampling, a surface-based verification system, and a TRMM science data and information system (TSDIS).

The average annual rainfall for the period 1998-2009 is available for the tropic region in Geotiff format which gives a fairly good assessment of hypsometric variation in rainfall in Himalayan region and same has been presented as Figure 5.1, which shows that in Beas basin area, rainfall varies from < 500 mm per year in most upstream catchment in Kullu district at places such as origin of Beas Kund Nala, Tosh Nala and Parbati River to > 4000 mm per year in the upstream reaches of Kangra district. This rainfall data has been assessed for comparative estimation of yields during environment flow assessment.

CIA&CCS- Beas Basin in HP Final Report: Chapter 5

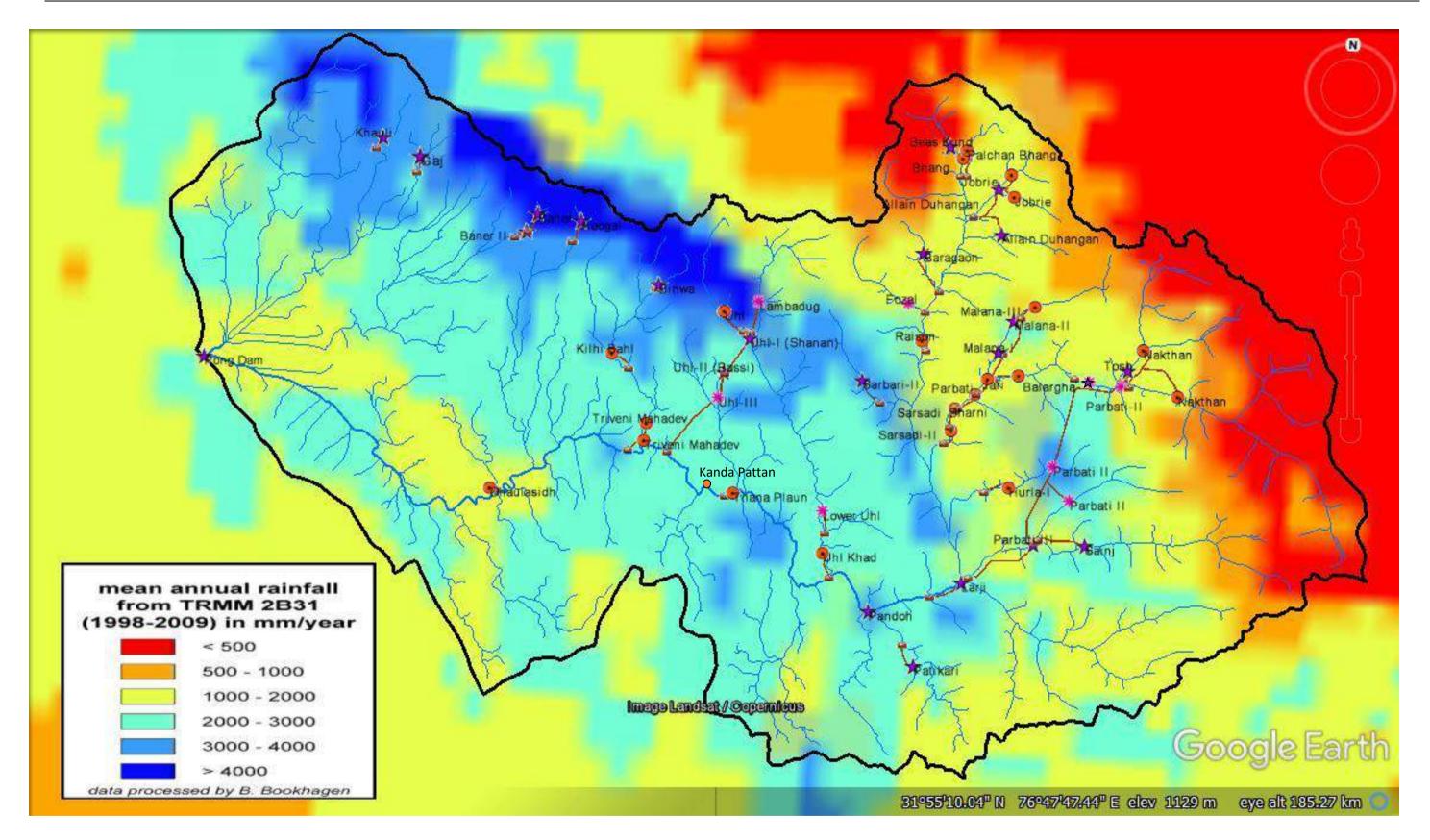


Figure 5.1: Rainfall Scenario of Beas Basin

CIA&CCS- Beas Basin in HP Final Report: Chapter 5

5.2 WATER DISCHARGE AND AVAILABILITY

Efforts have been made to procure 10 daily discharge series for various projects from various sources. There are 50 hydro projects in the Beas river basin, out of which 18 projects are with installed capacity of 25 MW or more i.e. projects which are covered under EIA notification and can be studied for environment flow assessment by habitat simulation and hydraulic modelling. Smaller projects (less than 25 MW installed capacity) do not give good results when subjected to modelling and therefore for all such projects environment flow is recommended based on present norms of EAC/MoEF&CC.

Out of 18 projects, considered for modelling study for the purpose of environment flow assessment, 10 are commissioned projects, 3 are under construction and 5 are under different stages of survey & investigations. Downstream of Pong dam is outside the study area and therefore it was not considered for environment flow assessment. Similarly, Uhl II (Bassi) is tailrace development of Uhl I without any additional diversion and therefore, the water release from Uhl I will remain in Uhl river and no additional release is considered from Uhl II. For Uhl III, in the absence of discharge data, assessment could not be carried out.

Data was sought for all above projects from project developers through the Office of Director, Ministry of Environment, Forests & Climate Change. Data for following 10 projects have been made available by the respective project developers.

- Nakhtan
- Parbati II
- Sainj
- Parbati III
- Malana I
- Malana II
- Than Plaun
- Triveni Mahadev
- Dhaulasidh
- Allain Duhangan

Discharge series for following five projects have been derived based on catchment area proportions and taking into account relevant interception catchment proportions:

- Malana III
- Lambadug
- Uhl I (Shanan)
- Larji
- Beas Satluj Link (Pandoh)

Hydro dynamic modelling has been carried out for above 15 projects. Input data used for present modeling study has been described below:

RS Envirolink Technologies Pvt. Ltd.

		Nakh	tan HEP	Parbati-	II HEP	Sainj HEP			Parbati-III HEP
		River)	.44 (Parbati + 332.67 Iala) sq km	CA: 1155 River) + 4 Nala) s	4 (Jigrai	CA: 434.33 sq km			CA: 650 sq km
			06-07	1994	-	1998-99			1994-95
			in cumec	Flow in		Flow in cumec			Flow in cumec
		Parbati river	Tosh Nala	Pulga Dam	Jigrai Nala	Sainj khad			Sainj khad
Jun	I	22.87	14.89	42.25	1.73	17.69	Jan	I	8.152
	II	19.7	13.12	62.65	2.34	26.99		II	8.016
	III	24.5	16.84	82.18	2.89	36.89		III	7.796
Jul	I	56.08	37.56	117.42	3.8	37.42	Feb	I	5.928
	II	49.17	32.6	141.8	4.4	40.31		II	4.662
	III	66.66	45.74	152.74	4.66	39.45		≡	6.833
Aug	I	60.08	40.84	169.64	5.05	15.62	Mar	I	6.39
	II	49.6	32.49	159.34	4.81	17.5		II	9.296
	III	44.88	29.96	148.54	4.56	12.96		III	10.586
Sep	I	28.53	18.47	92.49	3.16	9.09	Apr	I	13.633
	II	26.9	17.48	55.89	2.14	7.5		II	15.857
	III	21.31	13.98	37.62	1.58	6.12		III	18.27
Oct	I	18.52	12.08	24.86	1.48	5.17	May	ı	27.285
	II	16.4	10.69	22.87	1.38	4.15		II	35.774
	III	15.5	10.31	23.75	1.42	3.73		III	33.923
Nov	I	14.56	9.39	21.71	1.32	3.39	Jun	I	35.385
	II	11.71	7.29	21.27	1.3	3.09		II	48.316
	III	9.1	5.93	19.57	1.21	3.13		III	53.668
Dec	I	8.04	5.34	18.77	0.76	2.99	Jul	I	50.936
	II	7.15	4.98	17.98	0.74	2.78		II	59.088
	III	6.92	4.66	16.79	0.72	2.56		III	47.935
Jan	I	6.44	4.04	14.59	0.67	2.49	Aug	I	106.587
	II	5.26	3.41	13.41	0.64	2.45		II	79.016
	III	4.96	3.01	12.52	0.62	2.39		III	80.729
Feb		4.81	2.96	12.77	0.63	5.59	Sep	I	55.27
	II	4.41	2.9	11.97	0.61	5.75		II	34.646
	III	4.68	3.13	11.83	0.6	5.87		III	25.438
Mar	I	4.98	3.22	12.45	0.62	6.33	Oct	I	21.63
	II	4.89	3.15	13.66	0.65	6.22		II	15.884
	III	5.81	3.99	14.92	0.68	6.86		III	14.003
Apr	I	5.39	5.76	16.43	0.98	7.19	Nov	I	11.662
	II	11.69	8.01	17.17	1.02	7.46		II	9.925
	III	12.88	8.78	18.56	1.1	12.39		III	8.779
May	I	16.58	11.28	22.41	1.31	20.42	Dec	I	7.876
	II	21.7	14.85	24.84	1.45	19.2		II	7.419
	III	22.42	15.04	53.24	2.99	29.59		Ш	7.548

		Malana-I HEP			Malana-II HEP	Malana-III HEP
		Malana river			Malana river	Malana river
		CA: 178.50 sq km			CA: 158.00 sq km	CA: 124.75 sq km
		1994-95			1990-91	1998-99
		Flow in cumec			Flow in cumec	Flow in cumec
	I	4.95	Jun	ı	15.82	12.52
Apr-15	II	7.96		=	11.7	9.26
	III	13.11		Ш	17.17	13.58
May-15	İ	15.15	Jul	I	20.45	16.18

		Malana-I HEP			Malana-II HEP	Malana-III HEP
		Malana river			Malana river	Malana river
		CA: 178.50 sq km			CA: 158.00 sq km	CA: 124.75 sq km
		1994-95			1990-91	1998-99
		Flow in cumec			Flow in cumec	Flow in cumec
	II	16.07		Ш	17.99	14.23
	III	14.31		Ш	16.79	13.28
	ı	11.59	Aug	I	18.11	14.33
Jun-15	II	15.20		Ш	19.16	15.16
	III	21.02		Ш	17.56	13.89
	ı	25.75	Sep	I	18.17	14.38
Jul-15	II	35.72		II	17.57	13.90
	III	38.66		Ш	14.31	11.32
	ı	29.67	Oct	I	8.67	6.86
Aug-15	II	29.36		Ш	7.69	6.08
	III	20.27		Ш	6.95	5.50
	ı	15.60	Nov	I	5.85	4.63
Sep-15	II	13.72		II	5.73	4.53
	III	9.38		Ш	3.59	2.84
	I	6.79	Dec	Ι	2.95	2.33
Oct-15	II	5.93		II	2.53	2.00
	III	4.21		Ш	2.3	1.82
	I	3.89	Jan	Ι	2.18	1.72
Nov-15	II	3.79		II	2.09	1.65
	III	3.46		Ш	2.2	1.74
	I	3.08	Feb	Ι	2.18	1.72
Dec-15	II	2.93		II	2.41	1.91
	III	2.45		Ш	2.56	2.03
	I	2.24	Mar	ı	2.71	2.14
Jan-16	II	2.26		II	2.86	2.26
	III	2.07		Ш	4.37	3.46
	I	2.12	Apr	I	6.77	5.36
Feb-16	II	2.10		II	6.78	5.36
	III	2.13		Ш	8.42	6.66
	I	2.42	May	Ι	11.08	8.77
Mar-16	II	2.93		II	12.31	9.74
	III	2.61		Ш	11.77	9.31

		Larji HEP	Beas Satluj Link (Pandoh) HEP			Thana Plaun HEP		Mahadev EP	Dhaulasidh HEP
		Beas river	Beas river			Beas river	Beas	river	Bear River
		CA:	CA: 5280.00			CA: 7378.00	CA:	8155	CA: 9580 sq km
		4921.00 sq	sq km			sq km	(7740+	·415) sq	
		km					k	m	
		1994-95	1990-91			2002-03	2002-	2007-	2003-04
							03	08	
		Flow in	Flow in			Flow in	Flow in	n cumec	Flow in cumec
		cumec	cumec			cumec			
		Beas river	Beas river			Beas river	Beas	Binwa	Beas River
							river	khad	
Jan	ı	61.72	98.43	June	I	214.55	264.96	17.12	136.71
	II	60.69	102.73		П	245.69	299.93	28.38	111.91
	Ш	59.02	116.43		III	335.50	399.79	32.00	158.56
Feb	1	44.88	122.00	July	- 1	450.68	530.8	50.06	157.69
	П	35.29	97.01		II	360.67	429.74	29.44	325.76

ciria e e s		us busili ili mr			1	Thana Plaun	Trivoni	Mahadev	Dhaulasidh HEP
		Larji HEP	Beas Satluj Link (Pandoh)			HEP		manadev EP	Dhaulasian HEP
			HEP			HEF	"	LF	
		Beas river	Beas river			Beas river	Reas	river	Bear River
		CA:	CA: 5280.00			CA: 7378.00		8155	CA: 9580 sq km
		4921.00 sq	sq km			sq km		·415) sq	CA. 7500 34 KIII
		km	34 KIII			3 4 KIII		m	
		1994-95	1990-91			2002-03	2002-	2007-	2003-04
							03	08	
		Flow in	Flow in			Flow in	Flow in	cumec	Flow in cumec
		cumec	cumec			cumec			
		Beas river	Beas river			Beas river	Beas	Binwa	Beas River
							river	khad	
	Ш	51.73	95.48		III	255.68	311.87	38.31	495.15
March	I	48.38	98.03	Aug	I	290.16	350.59	38.65	763.14
	II	70.38	167.01		II	564.71	635.28	47.20	364.01
	Ш	80.14	141.19		III	356.74	425.4	35.12	381.6
April	I	103.21	144.19	Sept	I	239.49	293.69	23.99	360.89
	П	120.05	181.91		Ш	361.52	306.84	16.13	221.7
	III	138.32	147.61		III	54.32	75.12	11.81	154.45
May	I	206.57	217.94	Oct	I	66.43	82.34	11.57	59.78
	П	270.84	278.03		II	42.04	52.73	9.25	39.2
	Ш	256.82	264.40		Ш	44.25	53.8	6.35	40.66
June	I	267.89	277.04	Nov	I	53.45	60.05	7.94	28.59
	П	365.79	370.76		II	29.03	34.13	8.03	21.98
	Ш	406.31	409.77		III	20.26	23.2	4.43	21.77
July	I	385.62	389.12	Dec	I	20.40	23.42	5.76	23.61
	II	447.34	450.87		II	20.60	23.72	4.25	21.66
	Ш	362.90	368.11		III	30.43	34.92	9.42	19.69
Aug	I	806.95	809.93	Jan	I	17.46	18.93	5.14	16.46
	II	598.21	601.11		II	16.93	18.12	3.89	35.09
	Ш	611.18	613.94		III	16.14	16.92	1.65	50.28
Sept	I	418.44	422.46	Feb	I	23.50	24.89	0.91	54.48
	II	262.30	268.98		II	39.08	42.13	1.85	44.4
	Ш	192.59	195.32		III	15.97	16.66	2.33	44.4
Oct	I	163.76	169.23	March	I	31.99	41.09	5.50	45.92
	II	120.25	127.25		II	40.91	48.86	5.79	41.37
	Ш	106.01	122.29		III	95.14	108.98	8.31	29.34
Nov	I	88.29	103.30	April	I	87.69	101.15	9.23	13.54
	II	75.14	93.04		II	104.60	129.52	9.55	24.37
	Ш	66.46	79.83		III	78.11	101.04	10.08	24.37
Dec	I	59.63	75.77	May	I	94.36	118.38	12.01	49.68
	II	56.17	76.42		II	118.37	156.97	14.30	25.77
	Ш	57.14	78.99		III	127.65	164.65	18.44	27.81

		Allain D	uhangan HEP	Lambadug HEP	Uhl-I (Shanan) HEP
) (Allain Nala) + angan Nala) sq km	CA: 197.00 sq km	CA: 365.00 sq km
		2002-03	2007-08	1990-91	1998-99
		Flow in cumec		Flow in cumec	Flow in cumec
		Allain Nala	Duhangan Nala	Lambadug khad	Uhl River
Jan	I	2.19	0.86	1.00	1.86
	II	2.06	0.82	1.00	1.85
	III	1.87	0.77	0.89	1.65
Feb	I	1.79	0.74	0.95	1.76

		Allain D	uhangan HEP	Lambadug HEP	Uhl-I (Shanan) HEP
		CA: 128.90 (Allain Nala) + 66.2 (Duhangan Nala) sq km		CA: 197.00 sq km	CA: 365.00 sq km
		2002-03	2007-08	1990-91	1998-99
		Flow	in cumec	Flow in cumec	Flow in cumec
		Allain Nala	Duhangan Nala	Lambadug khad	Uhl River
	II	1.82	0.70	1.19	2.21
	III	1.94	0.77	1.41	2.62
Mar	I	1.91	0.80	1.83	3.39
	II	1.92	0.75	2.15	3.98
	III	2.53	0.98	2.93	5.43
Apr	I	3.50	1.27	3.93	7.28
-	IJ	4.34	1.48	4.60	8.53
	III	4.71	1.54	4.65	8.61
May	I	9.04	3.23	5.62	10.42
·	II	11.65	4.63	5.79	10.73
	III	10.89	4.36	9.15	16.96
Jun	I	12.80	5.00	5.67	10.50
	II	15.42	6.24	6.79	12.59
	III	15.66	6.84	6.21	11.50
Jul	I	15.14	6.87	8.42	15.59
	II	17.25	7.26	12.71	23.54
	III	16.00	6.65	14.86	27.53
Aug	ı	27.94	10.65	14.33	26.55
	II	21.44	8.33	13.59	25.18
	III	20.11	7.27	7.68	14.24
Sep	I	15.14	5.94	5.48	10.15
-	II.	9.64	3.58	3.62	6.71
	III	7.60	2.37	2.89	5.35
Oct	I	6.04	1.99	2.77	5.14
	II	4.52	1.37	2.37	4.38
	III	4.01	1.31	1.94	3.60
Nov	I	3.48	1.02	1.53	2.84
	II	3.15	0.85	1.45	2.69
	III	2.76	0.79	1.31	2.42
Dec	ı	2.68	0.74	1.16	2.15
	II	2.39	0.66	1.10	2.05
	III	2.20	0.61	1.10	2.04

CHAPTER-6

ECOLOGICAL ASPECTS- TERRESTRIAL

6.1 LAND USE/ LAND COVER

Himachal Pradesh is one of the Himalayan biodiversity hot spots and is endowed with rich diversity of terrestrial and aquatic species. The diversity of topographical and climatic condition has favoured the growth of luxuriant forests, which are home to myriad plant and animal species.

As per legal status, the Recorded Forest Area in the state is 37033 sq km, which is 66.52% of its geographic area. Reserved Forests, Protected Forests and Unclassed Forests constitute 5.12%, 89.23% and 2.63% of the total Recorded Forest area, respectively. The Protected Areas constitute 11.68% of the geographic area of the state.

Land use/ Land cover map derived for entire state as per data of 2015 procured from FSI, Dehradun under different classes is given in **Table 6.1**. As seen from the **Table 6.1** non-forest constitutes main land use in the state and accounts for more than 73.06 % of the entire state. Very Dense forest constitutes 5.79% while Moderately Dense forest covers 11.46 % of the total area.

Table 6.1: Area under different Forest cover categories in Himachal Pradesh

S. No.	Land use/ land cover	Area (sq km)	Area (%)
1	Very Dense Forest	3224	5.79
2	Moderately Dense Forest	6381	11.46
3	Open Forest	5091	9.14
4	Scrub	301	0.54
5	Non-Forest	40676	73.06
	Total	55673	100.00

(Source: Indian State of Forest Report, 2015, Forest Survey of India)

Major part of Beas river basin is comprised of the Beas river system traversing the districts of Kullu, Mandi, Hamirpur and Kangra of Himachal Pradesh.

6.1.1 Forest Cover in Beas Basin

Total forest cover as per Forest Survey of India (2015) of four districts viz. Kullu, Mandi, Hamirpur and Kangra, comprised Beas basin was summarized in **Table 6.2**. Among the four districts Kullu has the maximum area under Very Dense (586 sq km), while Kangra district has maximum area under Moderately Dense forest (1221 sq km) (see **Table 6.2**).

Forest cover map prepared for the entire basin delineated as described above from the data of 2015 procured from FSI, Dehradun is given at **Figure 6.1** and area under different density classes is given in **Table 6.3**. As seen from the **Table 6.3** non-forest constitutes main land use in the basin and accounts for more than 60.60 % of the entire basin area. Very Dense forest constitutes 9.31% while Moderately Dense forest covers 17.79% of the total area.

CIA&CCS- Beas Basin in HP

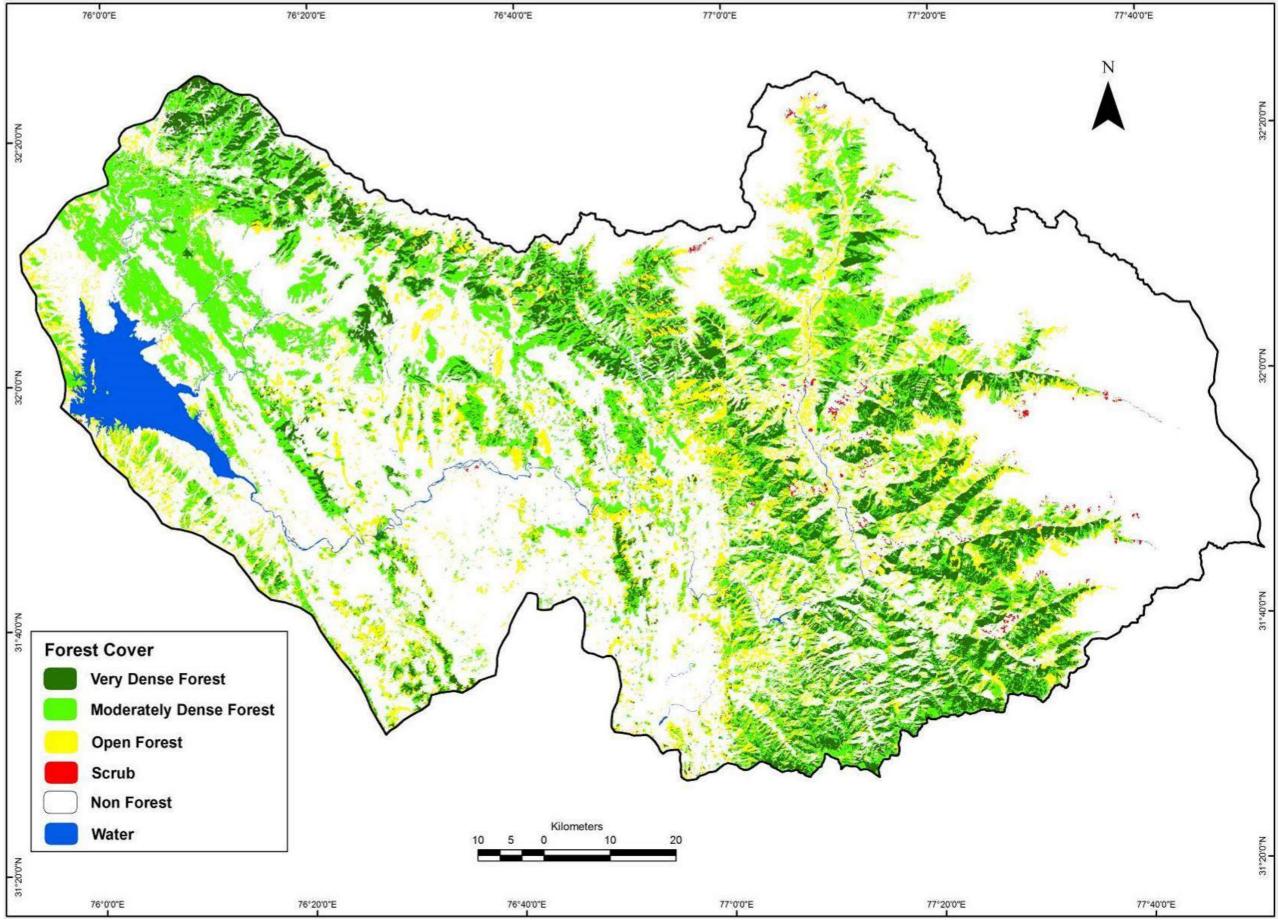


Figure 6.1: Forest cover map of Beas Basin based upon FSI data (2015)

Final Report: Chapter 6 Table 6.2: Area under different forest cover classes in four districts covering Beas basin

District		Fore	Total Geographic area	Scrub (sq	Non- forest			
	Very Dense	Moderately Dense	Open	Total	% of Geographic Area	(Sq km)	km)	(sq km)
	Delise			(Sq km)	Alea			
STATE	3224	6381	5091	14696	26.40	55673	301	40676
Kullu	586	785	588	1959	35.60	5503	23	3521
Mandi	373	735	568	1676	42.43	3950	29	2245
Hamirpur	39	91	115	245	21.91	1118	0	873
Kangra	310	1221	537	2068	36.03	5739	4	3667

(Source: Indian State of Forest Report, 2015, Forest Survey of India)

Table 6.3: Area under different forest cover classes in Beas basin (2015 Data)

S. No.	Land use/ land cover	Area (sq km)	Area (%)
1	Very Dense Forest	1171.97	9.31
2	Moderately Dense Forest	2240.09	17.79
3	Open Forest	1260.01	10.01
4	Scrub	21.47	0.17
5	Non-Forest	7630.50	60.60
6	Waterbody	266.76	2.12
	Total	12590.79	100.00

6.2 **FOREST TYPES**

The forests in the Beas basin, the study area are covered under four administratice Circles viz. Kullu, Hamirpur, Dharamshala and Mandi. Entire study area falls under 11 Forest Divisions with Kullu and Parbati Forest Divisions under Kullu Circle; Suket, Mandi, Nachan and Joginder Nagar under Mandi Circle, Dharamshala, Nurpur and Palampur under Dharamshala Circle and Dehra under Hamirpur Circle.

In addition a forest type/ vegetation map of the basin was also prepared based upon the digital data downloaded from Biodiversity Information System portal of Indian Institute of Remote Sensing (IIRS), Dehradun - http://bis.iirs.gov.in/.

Forest type map of the entire beas basin is given at Figure 6.2. It can be seen from the data compiled in Table 6.4 that more tha 28% of study area is under Semi-Evergreen forests confined mainly in the lower elevations of the basin. Agriculture is the main land use in the basin accounting for nearly 20% of the basin area. Snow and barren land is next dominant land cover in the basin with 12.44% of basin area. Mosit alpine scrun scrub constitutes one of the dominant forest type in the basin followed by Temperate coniferous forest and Grassland scrub. Degraded forest comprised of scrub formations also constitute about 9% of the basin area.

Montane wet temperate forests constitute nearly 4% of the basin area.

Major forest types in represented in the Beas basin as per the 'Revised Survey of the Forest Types of India' by Champion and Seth (1968) have been listed in Table 6.5. Forests are represented by 7 major Groups in the basin. Species composition of major Groups and Subgroups is given in the following paragraphs.

Table 6.4: Area under different forest types in Beas basin

Table 0.4. Area under unite		
Forest/ Vegetation Type	Area (sq km)	(%)
Agriculture	2514.77	19.97
Barren land	11.59	0.09
Grassland scrub	657.19	5.22
Mixed moist deciduous	15.50	0.12
Moist alpine scrub	1392.28	11.06
Montane Wet Temperate	486.00	3.86
Plantation	0.08	0.00
Scrub	1130.99	8.98
Semi-evergreen	3585.28	28.48
Settlements	70.11	0.56
Snow	1555.33	12.35
Temperate coniferous	763.34	6.06
Water bodies	408.33	3.24
Total	12590.79	

Table 6.5: Forest Types found in the Beas Basin

Major Group	Type Group	Sub Group	Forest Type
DRY TROPICAL	5-Tropical Dry Deciduous Forest	5-B: Northern Dry Mixed deciduous forests	5B/C2 Northern Dry Mixed Deciduous forest
MONTANE SUB- TROPICAL	9-Sub Tropical Pine Forest		9C1a: Himalayan sub-tropical pine forest 9/C1b: Upper or Himalayan Chir Pine Forest 9/ C1/DS1: Himalayan sub tropical scrub 9/C1/DS2: Sub tropical <i>Euphorbia</i> scrub
SUB TROPICAL DRY EVERGREEN FOREST	10-Sub Tropical Dry Evergreen Forest		10/C1a Olea cuspidata Scrub forest
MONTANE TEMPERATE FORESTS	12-Himalayan Moist Temperate Forest	12-C1: Lower Western Himalayan Temperate forests C2: Upper West Himalayan Temperate forest	12/C1a: Ban Oak Forests (<i>Quercus incana</i>) 12/C1b: Moru Oak Forest (<i>Q. dilatata</i>) 12/C1b: (a, b) DS1/Oak scrub 12/C1c: Moist Deodar Forests 12/C1d: Western Mix Coniferous Forest 12/C1e: Moist Temperate deciduous forests 12/C1f: Low-level blue pine forest (<i>Pinus wallichiana</i>) 12/C2a: Kharsu Oak forest (<i>Quercus semecarpifolia</i>) 12/C2b: Himalayan upper oak-fir forest 12/DS1: Montane Bamboo brakes 12/DS3: Himalayan Temperate pastures 12/C1/DS2: Himalayan temperate secondary scrub
SUB ALPINE FOREST	14-Sub Alpine Forest	14-C:West Himalayan Sub Alpine birch/fir Forest (Betula/Abies)	14/C1a: West Himalayan Sub Alpine fir forest 14C1b: West Himalayan Sub Alpine Birch/fir forests
ALPINE SCRUB	15-Moist Alpine Scrub		15C1: Birch-Rhododendron scrub forest 15/C3: Alpine Pastures
DRY ALPINE SCRUB	16-Dry Alpine Scrub		16C1: Dry alpine scrub

CIA&CCS-Beas Basin in HP

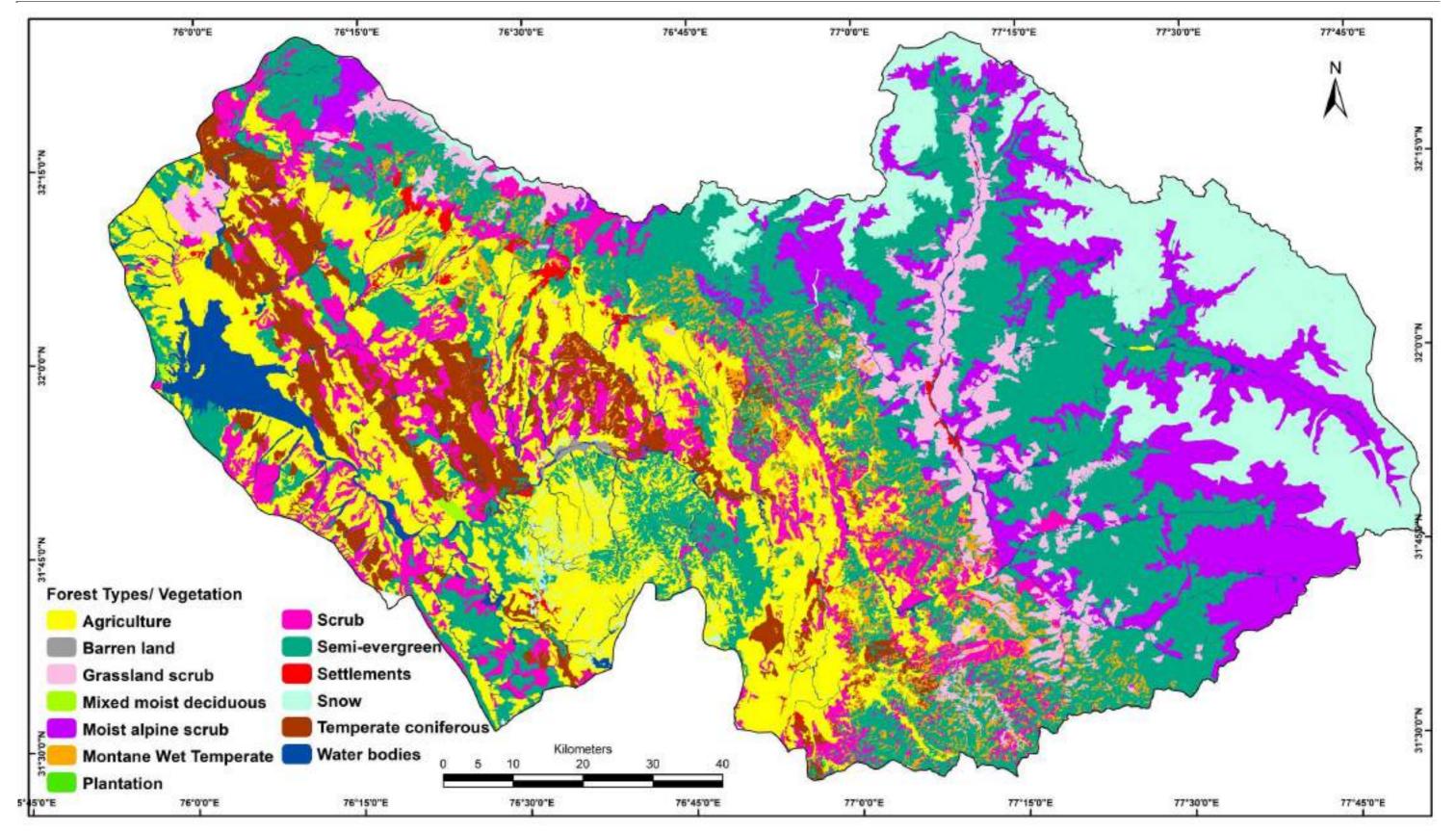


Figure 6.2: Forest /Vegetation type map of Beas basin based upon IIRS data

6.2.1 Group 5 Tropical Dry Deciduous Forest

Sub-Group 5B Northern Tropical Dry Deciduous Forest

This is a dry deciduous forest in which the upper canopy is light but probably fairly even and continuous in the climax form. The canopy is formed of mainly deciduous trees. The undergrowth is thin represented mainly by shrubs including some xerophytic evergreen species.

Final Report: Chapter 6

a) 5B/C2 Northern dry mixed deciduous forest

This is an open, dry deciduous forest in which the top canopy is thin but probably complete. Most trees have low spreading crowns and leafless during the hot weather. The main tree species occurring in the top storey are Acacia catechu, Aegle marmelos, Anogeissus latifolia, Ehretia acuminata, Flacourtia indica, Holarrhena pubescens, Mitragyna parvifolia, and Ougeinia oojeinensis. Second storey consists of trees like Butea monosperma, Cassia fistula, Diospyros cordifolia, Mallotus philippensis, Nyctanthes arbor-tristis, Phyllanthus emblica, etc. The common shrubs are Justicia adhatoda, Bauhinia vahlii, Carissa opaca, Dendrocalamus strictus, Murraya koenigii and Woodfordia fruticosa. This type of forest observed throughout the dry areas in Joginder Nagar, Dharamshala, Mandi and Sainj area (Beas sub-basins III, IV and V). The common grasses which colonise the riverine soil include Heteropogon contortus, Imperata cylindrica, Neyraudia arundinacea, Saccharum spp., etc.

6.2.2 Group 9 Sub-tropical Pine Forest

This is a forest dominated by chir pine in the top canopy. Broad-leaved, especially evergreen oaks increase with increasing altitude and leaving the pine on the warmer and drier ridges. Towards the lower limit of this forest there is an increase in the trees of the dry deciduous type. Climbers and bamboos are usually absent. The important forest types that form a part of this forest are described below.

a) 9/C1a Himalayan sub-tropical pine forest

This is a more or less pure forest of chir pine forest with a scattered lower canopy of deciduous trees and a low scrub growth of xerophytic shrubs. The top canopy of the forest is dominated by *Pinus roxburghii* either singly or with a scattered group of deciduous tree storey. The main tree associates of the second storey include *Acacia catechu*, *Dalbergia sissoo*, *Mallotus philippensis*, *Phyllanthus emblica*, *Pyrus pashia* and *Syzygium cumini*. The common shrubs are *Berberis aristata*, *Carissa spinosa*, *Colebrookea oppositifolia*, *Dodonaea viscosa*, *Murraya koenigii*, *Myrsine affricana*, *Rubus ellipticus* and *Woodfordia fruticosa*. This type of forest observed throughout the low hill areas in Joginder Nagar, Mandi and Kangara area (Beas sub-basins III, IV and V). Herbaceous vegetation is represented by dry habitat loving grasses like *Chrysopogon fulvus*, *Cymbopogon* spp., *Dichanthium annulatum* and *Themeda anathera*.

b) 9C1/b Upper or Himalayan Chir pine forest

This is a high forest in which the top storey is dominated by chir pine (*Pinus roxburghii*) and scattered deciduous species restricted to the middle storey. This forest type is found in the lower Himalaya between 1200 and 1800 m which towards upper limits give way to temperate forests. The main broad-leaved tree species found in the middle storey are *Engelhardtia*

spicata, Lyonia ovalifolia, Myrica esculenta, Pyrus pashia, Quercus leucotrichophora, Sapindus mukorosii and Rhododendron arboreum. The common Shrubs in the forest are Berberis lycium, Colebrookea oppositifolia, Indigofera heterantha, Leptodermis lanceolata, Prinsepia utilis, Rubus ellipticus, etc. This type of forest observed in the sub-basins like Sainj, Parvati, Malana, Uhl, Beas III, IV and V.

c) 9/C1/DS1 Himalayan Sub-tropical scrub

This type of low scrub are found over considerable areas in the siwalik chir zone, extending up into the Himalayan chir forest and passes down into the lower mixed deciduous forests. The dominant species vary place to place and often one or two of them predominating. Both edaphic and biotic factors are involved in determining the species. *Carissa opaca, Dodonaea viscosa, Rubus ellipticus* and *Woodfordia fruticosa* are the important shrubs found in these forests. This type of forest is observed in Uhl and Beas IV and V sub-basin areas.

d) 9/C1/DS2 Sub-tropical Euphorbia scrub

This type of forest occurs below the height of chir forests especially on rocky southern aspects. *Euphorbia royleana* is found abundantly throughout the dry rocky ridges either pure form or mixed with other shrubs like *Justicia adhatoda*, *Dodonaea viscosa*, *Maytenus senegalensis*, *Woodfordia fruticosa*, etc. Their distribution is mainly related to edaphic factors especially dry rocky ridges. But due to some biotic pressure like lopping, their population is becoming denser and purer in the entire lower catchment. This type Scrub forest is observed in Tirthan and Sainj sub-basins.

6.2.3 Group 12 Himalayan Moist Temperate Forest

These are rich and diverse forests comprised of coniferous and broad-leaved species found in the moist temperate regions of the Himalaya from Kashmir to Arunachal Pradesh. The top canopy is comprised of coniferous or broad-leaved species or their mixture. These forests extend along the whole length of the Himalaya above the sub-tropical forests and towards higher elevations they give way to sub-alpine forests. The altitudinal range is from 1500 to 3300 m depending on the latitude, aspect and configuration of the ground. These forests may be the following types:

a) 12/ C1a Ban oak forest (Quercus leucotricophora)

Dominated by ban oak (*Quercus leucotrichophora*), this forest is found on relatively moister sites. The trees form a close canopy when they are not affected by biotic pressure. These forests are found in the lower part of the temperate belt of the western Himalaya, between 1800 m and 2300 m, but it often reaches as low elevation as 1200 m where it occupies the moister ravines and other favourable sites. The main associates are *Carpinus viminea*, *Ilex dipyrena*, *Litsea umbrosa*, *Lyonia ovalifolia*, *Myrica esculenta*, *Persea odoratissima*, *Pyrus pashia*, *Symplocos paniculata*, *Rhododendron arboreum*, etc. Climbers are few such as *Clematis montana*, *Hedera nepalensis*, *Parthenocisus semicordata*, *Smilax aspera*, etc. Shrubs are *Benthamida capitata*, *Berberis lycium*, *Indigofera heterantha*, *Leptodermis suaveolans*, *Rosa brunonii*, *Rubus ellipticus* and *Viburnum cotinifolium*. This type of forest is observed in Sainj, Uhl and Beas III, IV and Beas V sub-basins areas.

b) 12/CI b Moru oak forest

This forest is dominated by Moru oak (*Quercus dilatata*) and occur in a narrow belt above the ban oak forests between 2000 and 2500 m elevations. The height of trees is between 20 to 30m, though taller trees having long boles may also be found in the first storey. There is relatively greater admixture of secondary species in the top canopy and well marked evergreen second storey. The main species found in the first storey are *Abies pindrow*, *Acer caesium*, *Quercus dialata* and *Q. leucotrichophora*. Second storey represented by *Buxus wallichiana*, *Ilex dipyrena*, *Litsea umbrosa*, *Lyonia ovalifolia* and *Rhododedndron arboreum*. The undergrowth constitutes *Berberis aristata*, *Deutzia corymbosa*, *Rosa macrophyla*, *Rubus spp.*, *Sinarundinaria* spp. and *Viburnum cotinifolium*. The herbaceous growth consists of *Anemone obtusiloba*, *Geranium wallichianum*, *Paeonia emodi*, *Valeriana hardwickii*, etc. This type of forest is observed in the upper reaches of Parbati I, II, Malana, Beas II, and Uhl subbasin.

c) 12/C1c Moist deodar forest

This is more or less pure forest of deodar with a little proportion of other species. These forests are found in the temperate areas of western Himalaya from Garhwal, Himachal Pradesh to Kashmir, between 1700 to 2500 m elevation. The canopy is fairly complete though not very dense. The main tree species found in the first storey are *Cedrus deodara* and *Pinus wallichiana*. Second storey consists of *Acer caesium*, *Aesculus indica*, *Quercus leucotricophora* and *Rhododendron arboreum*. Climbers and epiphytes are few. The prominent climbers are *Clematis montana*, *Hedera nepalensis*, *Jasmium officinale*, *Parthenocissus semicordata*, and *Rubia cordifolia*. Understorey consists of few shrubs like *Berberis lycium*, *Deutzia staminea*, *Indigofera heterantha*, *Lonicera angstifolia* and *Rosa macrophylla*. This type of forest is observed in Beas I, Beas II, Malana, Parbati Upper and II, Sainj, Trithan and Uhl sub-basins.

d) 12/C1d Western mixed coniferous forest

This is a mixed coniferous forest of the temperate areas comprised of fir, spruce, deodar and blue pine. These forests are found above the deodar forests in western Himalaya from Kashmir to Kumaon between 2400 and 3000 m elevations. Varying admixture of evergreen and deciduous broad-leaved trees may occur mixed in this forest. The main species in the first storey include Abies pindrow, Cedrus deodara, Picea smithiana and Pinus wallichiana. Second storey consists of Acer acuminatum, A. caesium, Corylus jacquemonti, Euonymus pendulus, Juglans regia, Rhododendron arboreum and Taxus baccata. Shrubs are dominated by small bamboo thickets with others tall spreading shrubs. Berberis spp., Cotoneaster microphyllus, Deutzia corymbosa, Ribes spp., Sorbaria tomentosa, Thamnocalamus falcata, T. spathiflora, Viburnum nervosum, etc. are common shrubs in the understorey. This type of forest is observed in Parbati Upper and II, Great Himalayan National Park (Sainj) and Trithan sub-basins.

e) 12/C1e Moist temperate deciduous forest

This is a deciduous forest in which individual trees may attain 20-30 m height. The tree have large girths. This type of forest is found between elevations 1800 and 2700 m. The main tree species in the first storey are *Abies pindrow*, *Acer caesium*, *Aesculus indica*, *Carpinus viminea*, *Fraxinus micrantha*, *Juglans regia*, *Prunus cornuta*, etc. Second storey include *Cornus macrophylla*, *Corylus jaquemontii*, *Lyonia ovalifolia*, *Rhus succadanea*, *Rhododendron*

Final Report: Chapter 6

arboreum and Taxus baccata. Shrubs are Berberis spp., Cotoneaster microphyllus, Deutzia corymbosa, Jasminum humile, Ribes spp., Sarcococca saligna, Sorbaria tomentosa, Thamnocalamus falcata and Viburnum cotinifolium. This type of forest is observed in Malana, Parbati Upper and II, Great Himalayan National Park (Sainj) and Trithan sub-basins. Herbaceous growth belonging to species of Aconitum, Impatiens, Lilium, Paeonia, Polygonatum, Spiraea, etc.

f) 12/C1f Low level blue pine forest (Pinus wallichiana)

This forest is dominated by blue pine (*Pinus wallichiana*) but there are other species found mixed with it. Blue pine is a primary colonizer though other species may come up after sometime in vacant areas. This type of forest is found in the temperate areas of western Himalaya especially in reverain soil though it is not as widely distributed as the moist deodar forest. The other tree species found in the forest are *Acer caesium, Cedrus deodara* and *Rhododendron arboreum*. Undergrowth is represented by species of *Berberis, Cotoneaster, Rabdosia* and *Sarcococca*. This type of forest is observed in Sainj, Trithan, Beas II, Parvati II, Malana and Uhl sub-basins.

g) 12/CI/DS2 Himalayan temperate secondary scrub

An irregular or dense scrub cover with a few predominating and scattered residual trees of the Oak-deodar forest occur on excessively grazed and lopped areas of the temperate forest. Berberis lycium, Indigofera gerardiana, Prinsepia utilis and Pyrus pashia are the important secondary nature of scrub communities which occur especially on southern aspect. This type of scrub forest is observed in Sainj, Trithan and Uhl sub-basins.

h) 12/C2a Kharsu oak (Quercus semecarpifolia)

This forest is dominated by Kharsu oak (*Quercus semecarpifolia*) and forms a dense crop. The main tree species found in the first storey are *Abies pindrow*, *Acer caesium*, *Picea smithiana*, *Pius wallichiana* and *Quercus semecarpifolia*. Second storey consists of *Betula utilis*, *Ilex dipyrena*, *Prunus cornuta*, *Rhododendron arboreum*, and *Sorbus foliolosa*. Understorey consists of few tall spreading shrubs like *Cotoneaster bacillaris*, *Ribes glaciale*, *Rosa macrophylla*, *Rhododendron campanulatum*, *Viburnum cotinifolium*, etc. This type of forest is observed in Beas II, Parbati Upper and II, Sainj, Trithan and Beas IV sub-basins.

i) 12/C2b West Himalayan Upper oak-fir forests

This type of forest occurs above the mixed coniferous forest along the higher ranges of the Western and Central Himalaya, between 2600 and 3400 m elevations. The main tree species found in the first storey are *Abies pindrow*, *Picea smithiana* and *Pius wallichiana* Second storey consists of *Acer caesium*, *Aesculus indica*, *Corylus jacquemontii* and *Quercus semecarpifolia*. Undergrowth constitutes spreading shrubs like *Rosa macrophylla*, *R. sericea*, *Rubus niveus*, *Thamnocalamus spathiflora* and *Viburnum foetens*. Herbs belonging to species of *Ainsliaea*, *Fragaria*, *Galium*, *Valeriana*, etc. This type of forest is observed in Malana and Parbati Upper and II sub-basins.

i) 12/DS1 Montane bamboo brakes

Dense bamboo brakes occur throughout the moist temperate forest of Himalaya from western Himachal Pradesh to eastern part of Arunachal Pradesh. Small bamboos species like

Sinarundinaria falcata and Thamnocalamus spathiflora form dense and impenetrable brakes as an undergrowth in higher oak, rhododedndron and coniferous forest. This type of bamboo brakes is observed as an underwood in Sainj and Parbati Lower sub-basins.

k) 12/ DS3 Himalayan temperate pastures

These Himalayan grasslands occur on ridges and slopes especially where moist or wet conditions are present. The common grasses in the mixed coniferous forest zone of western Himalaya are *Agrostis* spp., *Calamagrostis* spp., *Dactylis glomerata*, *Danthonia* spp., *Festuca* spp. and *Poa* spp.

l) 12/1SI Alder forest

These forests occur along the banks of the large streams and sometimes extending up to ravines and moist unstable hill slopes along the whole Himalaya range, except from Kashmir. The altitudinal range is wide from 1500 to 3000m. The top storey is dominated by *Alnus nitida*, *Celtis tetradra*, *Populus ciliata* and *Ulmus villosa*. The undergrowth is thin and vary place to place depend on site and conditions. This type of subsidiary Alder forest is observed in Beas II sub-basin, Malana (Kulu valley) sub-basin and Sainj sub-basin.

6.2.4 Group14 Sub-alpine Forest

These forests are a typically dense growth of small crooked trees or large shrubs with patches of coniferous overwood. These forests are the topmost tree forests of the Himalaya forming the tree line at elevations of more than 2900 m and extending to over 3500 m. The forest of this group are comprised of the following types.

a) 14/CI West Himalayan sub-alpine birch-fir forests

This is an irregular forest consisting mainly of fir, birch and rhododendron. This type of forest is found above 3000 m in the western Himalaya. The underwood is fairly dense. They may further be of the following sub-types:

b) 14/C1a West Himalayan sub-alpine high level fir forest

The main species found in the first storey are *Abies spectabilis*, *Picea smithiana* and *Pinus wallichiana*. Second storey is comprised of *Betula utilis*, *Prunus cornuta*, *Rhododendron campanulatum* and *Taxus baccata*. Undergrowth is composed of *Berberis* spp., *Cotoneaster acuminatus*, *Deutzia corymbosa*, *Ribes* spp., and *Viburnum foetens*. Among herbs are *Anemone obtusiloba*, *Geranium* spp., *Osmunda claytoniana*, *Trillidium govanianum*, etc. This type of forest is observed in Beas II and Parbati Upper and II sub-basins.

c) 14/C1b West Hiamalayan birtch/fir forest

The main species found in this forest are *Betula utilis*, *Abies spectabilis* and *Pinus wallichiana*. Second storey is composed of *Betula utilis*, *Quercus semecarpifolia*, *Rhododendron campanulatum*, *Sorbus foliolosa* and *Taxus baccata*. Understorey is composed of *Cotoneaster acuminatus*, *Lonicera* spp., *Ribes glaciale*, *Rosa sericea*, *Rubus niveus* and *Smilax* sp.

6.2.5 Group 15 Moist Alpine Scrub

This consists of the alpine zone vegetation found just below the snowline and usually above the tree line in the moister tracts of Himalaya. Arctic climatic conditions are experienced in this tract of vegetation. The vegetation of this group consists of the following forest types:

a) 15/C1 Birch-Rhododendron scrub forest

This is low evergreen forest dominated by Rhododendron and also including other deciduous species. The trunks of trees are short and may be bent at the base. This type of forest is found in the alpine areas along the whole length of the Himalaya. The main species in the first storey are *Betula utilis*, *Rhododendron campanulatum* and *Sorbus foliolosa*. Undergrowth constitutes *Berberis* spp., *Gaultheria trichophylla*, *Lonicera* spp. and *Rhododendron lepidotum*. This is an alpine xerophytic formation in which dwarf shrubs predominate. This type is found at high elevations near Tibet. The characteristic plants are *Artemisia maritima*, *Caragana* spp., *Kobresia duthei*, *Lonicera* spp. and *Potentilla* spp.

b) 15/C3 Alpine meadows

These are meadows lying below the snowline all along the higher Himalaya. They are composed of perennial mesophytic herbs, sedges and few grasses. The important herbs are species of *Aconitum*, *Anemone*, *Fritillaria*, *Gentiana*, *Festuca*, *Iris*, *Kobresia*, *Primula* and *Ranunculus*.

6.2.6 Group 16 Dry Alpine Scrub

This is the alpine vegetation of the cold and dry tracts of the trans-Himalaya and the inner dry valleys of the main Himalayan ranges.

a) 16/CI Dry alpine scrub

This is an alpine xerophytic formation in which dwarf shrubs predominate. This type of forest is found at high elevations in the cold deserts. The main species are *Caragana* spp., *Juniperus communis*, *Kobresia duthei*, *Lonicera* spp. and *Potentilla* spp. This type of vegetation is observed in Beas I sub-basin, Parbati Upper and Parbati Lower sub-basin and Uhl sub-basin areas.

6.3 FLORISTICS

Bio-geographically, the study area i.e. Beas basin is situated in the Biogeographic zone- 2A of North West Himalaya (Rodgers *et al.*, 1988). The entire area is comprsed of complex hill system with elevation ranging from 325 m to about 6620 m, traversed throughout by a number of rivers and rivulets.

The flora of the study area covers the vast canvas of Himalayan ecosystem along an altitudinal gradient, a meeting ground of cold deserts of trans Himalayan region to the temperate and alpine Himalayan flora. At lower altitudes, there are forests of pine and at higher altitudes the presence of oak-rhododendron forests with horse chestnuts and maples. The temperate zone has coniferous forest of cedar, fir and spruce. The alpine areas harbor herbaceous flora like species of *Aconitum*, *Corydalis*, *Delphinium*, *Gentiana*, *Meconopsis*, *Pedicularis*, *Primula*, *Saxifraga*, etc. At higher elevations, the flora is of the cold desert type

with prominence of species of *Astragalus*, *Caragana*, *Ephedra*, *Juniperus* and stunted *Hippophae* and rhododendrons.

The floristic studies covered the following parameters:

- · Taxonomic Diversity and preparation of inventory of plant species
- Preparation of checklist of higher plants including groups like Angiosperms (trees, shrubs and herbs), Gymnosperms and Pteridophytes and lower plants groups like bryophytes, lichens and macro-fungi.

6.3.1 Taxonomic Diversity

Botanically the Beas basin and adjacent areas is part of north western Himalaya and has been a centre of floristic studies from the last two centuries. Willium Moorcroft was the first botanist who collected plants from Kangra, Kullu, Lahul and Spiti in 1821. Other workers explored plant species from different regions of Himachal Pradesh were Colonel Munro, Lt. Co. Edward Madden, J. E. Winterbottom, Richard Strachey. J. S. Gamble, Brandis (1881), J.F. Duthie (1892 and 1893).

During the 2nd half of 20th century Scientists from Botanical Survey of India Northern Circle (BSD), Dehra Dun, like M. A. Rau, T. A. Rao, N. C. Nair, P. K. Hajra, H. J. Chowdhery made frequent and periodical visits to various parts of Himachal Pradesh. Chowdhery and Wadhwa (1984) have published a comprehensive list of flowering plants of Himachal Pradesh. Apart from the above a number of contributions have also been made on vegetation, medicinal, ethnobotanical and ecology by various workers (Samant and Dhar, 1997; Samant *et al.*, 1998; Dhaliwal and Sharma, 1999; Singh and Rawat, 2000; Kaur and Lal, 2011; Kumar *et al.*, 2013; Kumar and Kumar, 2014 Kumar, 2014).

For the documentation of floristics of Beas basin data was collected from secondary sources made available by Botanical Survey of India (BSI) through MoEF&CC and also collected from other secondary sources like published reports, research articles and literature. An inventory of different plant groups was prepared based upon the data collected as above. According to this 1727 species of plants have been documented so far from the study area. A brief overview of number of plant species in various taxonomic groups is given in **Table 6.6** and discussed in following paragraphs.

Total no. **GROUP Families** Genera **Species** of species **Angiosperms Dicots** 133 600 1263 29 Monocots 165 318 Total 162 765 1581 1727 **Gymnosperms** 3 7 14 Pteridophytes 18 36 113 **Bryophytes** 12 19 11

Table 6.6: Summary of number plants species in Beas basin

The detailed inventory of angiosperm plant species reportedly found in the basin prepared from secondary data/literature is given at **Annexure-I** of **Volume II** of the report. The plant species nomenclature is based upon http://www.theplantlist.org.

6.3.1.1 Angiosperms

In all total 1581 species of angiosperms could be documented compiled from primary as well as secondary sources. These angiosperm species belong to 699 genera and 161 families. Most dominant family in the basin is Poaceae with 153 species followed by Asteraceae with 122 species, Fabaceae with 119 species, Lamiaceae 79 species, Rosaceae with 69 species and Ranunculaceae with 49 species (see Table 6.7).

Table 6.7: List of dominant angiospem families along with number of species

Family	Number of Species	Family	Number of species
Poaceae	153	Acanthaceae	27
Asteraceae	122	Rubiaceae	26
Fabaceae	119	Plantaginaceae	25
Lamiaceae	79	Boraginaceae	24
Rosaceae	61	Boraginaceae	24
Ranunculaceae	49	Caryophyllaceae	23
Brassicaceae	44	Euphorbiaceae	23
Polygonaceae	44	Gentianaceae	23
Cyperaceae	40	Orchidaceae	22

6.3.1.2 Gymnosperms

The gymnosperms are represented by 8 geners 14 species belonging to three families with Pinaceae as most dominant family represented by 7 species. A detailed list of the same is given in **Table 6.8**. *Juniperus* is most common genus represented by 6 species followed by *Pinus* with 3 species.

Table 6.8: List of Gymnosperms reportedly found in Beas basin

S.No.	Family	Scientific Name
1	Cupressaceae	Juniperus communis
2	Cupressaceae	Juniperus indica
3	Cupressaceae	Juniperus pseudosabina
4	Cupressaceae	Juniperus recurva
5	Cupressaceae	Juniperus indica
6	Cupressaceae	Juniperus communis
7	Ephedraceae	Ephedra gerardiana
8	Pinaceae	Abies pindrow
9	Pinaceae	Abies spectabilis
10	Pinaceae	Cedrus deodara
11	Pinaceae	Picea smithiana
12	Pinaceae	Pinus roxburghii
13	Pinaceae	Pinus wallichiana
14	Pinaceae	Taxus wallichiana

6.3.1.3 Pteridophytes

This group is represented by 113 species belonging to 18 families with Pteridaceae, Dryopteridaceae, Polypodiaceae and Woodsiaceae being the largest families. A detailed list of the same is given in **Table 6.9**. Pteridaceae with 28 species is the largest family followed by Dropteridaceae with 23 species. The genus *Polystichum* is most common species found represented by 11 species followed by *Dryopteris* and *Thelypteris* with 9 species each.

Table 6.9: List of Pteridophytes reportedly found in Beas basin

S.No.	Family	Scientific Name
1	Aspleniaceae	Asplenium dalhousiae
2	Aspleniaceae	Asplenium laciniatum
3	Aspleniaceae	Asplenium trichomanes
4	Athyriaceae	Athyrium foliolosum
5	Athyriaceae	Athyrium schimperi
6	Athyriaceae	Diplazium esculentum
7	Blechnaceae	Woodwardia unigemmata
8	Davalliaceae	Araiostegia beddomei
9	Davalliaceae	Araiostegia delavayi
10	Davalliaceae	Araiostegia pulchra
11	Dennstaedtiaceae	Dennstaedtia scabra
12	Dennstaedtiaceae	Hypolepis polypodioides
13	Dennstaedtiaceae	Pteridium aquilinum
14	Dryopteridaceae	Cyrtomium anomophyllum
15	Dryopteridaceae	Cyrtomium caryotideum
16	Dryopteridaceae	Dryopteris carolihopei
17	Dryopteridaceae	Dryopteris cochleata
18	Dryopteridaceae	Dryopteris juxtaposita
19	Dryopteridaceae	Dryopteris nigropaleacea
20	Dryopteridaceae	Dryopteris ramosa
21	Dryopteridaceae	Dryopteris redactopinnata
22	Dryopteridaceae	Dryopteris wallichiana
23	Dryopteridaceae	Dryopteris xanthomelas
24	Dryopteridaceae	Dryopteris zayuensis
25	Dryopteridaceae	Polystichum discretum
26	Dryopteridaceae	Polystichum lentum
27	Dryopteridaceae	Polystichum mehrae
28	Dryopteridaceae	Polystichum nepalense
29	Dryopteridaceae	Polystichum obliquum
30	Dryopteridaceae	Polystichum piceopaleaceum
31	Dryopteridaceae	Polystichum setiferum
32	Dryopteridaceae	Polystichum squarrosum
33	Dryopteridaceae	Polystichum squarrosum
34	Dryopteridaceae	Polystichum thomsonii
35	Dryopteridaceae	Polystichum yunnanense
36	Equisetaceae	Equisetum diffusum
37	Equisetaceae	Equisetum ramosissimum
38	Lygodiaceae	Lygodium flexuosum
39	Lygodiaceae	Lygodium japonicum
40	Oleandraceae	Oleandra wallichii
41	Ophioglossaceae	Botrychium schaffneri
42	Osmundaceae Osmundaceae	Osmunda claytoniana Osmunda claytoniana subsp. vestita
43 44		Osmunda japonica
45	Osmundaceae Polypodiaceae	Drynaria mollis
46	Polypodiaceae	Lepisorus mehrae
46	Polypodiaceae	Lepisorus menrae Lepisorus nudus
4/	г отурошасеае	Lepisorus riuuus

J Deas Da	ISIII III I IF	т тас керогс. Спар
S.No.	Family	Scientific Name
48	Polypodiaceae	Lepisorus pseudonudus
49	Polypodiaceae	Lepisorus sesquipedalis
50	Polypodiaceae	Lepisorus tenuipes
51	Polypodiaceae	Microsorum membranaceum
52	Polypodiaceae	Phymatopteris melacodon
53	Polypodiaceae	Phymatopteris oxyloba
54	Polypodiaceae	Polypodiodes amoena
55	Polypodiaceae	Polypodiodes lachnopus
56	Polypodiaceae	Polypodiodes microrhizoma
57	Polypodiaceae	Pyrrosia flocculosa
58		
59	Polypodiaceae	Pyrrosia porosa
	Pteridaceae	Adiantum capillus-veneris
60	Pteridaceae	Adiantum edgeworthii
61	Pteridaceae	Adiantum incisum
62	Pteridaceae	Adiantum philippense
63	Pteridaceae	Adiantum venustum
64	Pteridaceae	Adiantum venustum subsp. tibeticum
65	Pteridaceae	Aleuritopteris albomarginata
66	Pteridaceae	Aleuritopteris anceps
67	Pteridaceae	Aleuritopteris bicolor
68	Pteridaceae	Aleuritopteris farinose var. grisea
69	Pteridaceae	Aleuritopteris formosa
70	Pteridaceae	Aleuritopteris rufa
71	Pteridaceae	Coniogramme intermedia
72	Pteridaceae	Coniogramme pubescens
73	Pteridaceae	Coniogramme serrulata
74	Pteridaceae	Didymochlaena truncatula (Syn. Adiantum lunulatum)
75	Pteridaceae	Gymnopteris vestita
76	Pteridaceae	Onychium cryptogrammoides
77	Pteridaceae	Onychium japonicum
78	Pteridaceae	Onychium siliculosum
79	Pteridaceae	Paraceterach vestita (Syn. Gymnopteris vestita)
80	Pteridaceae	Pellaea nitidula
81	Pteridaceae	Pteris aspericaulis
82	Pteridaceae	Pteris cretica
83	Pteridaceae	Pteris quadriaurita
84	Pteridaceae	Pteris terminalis
85	Pteridaceae	Pteris vittata
86	Selaginellaceae	Selaginella chrysocaulos
87	Selaginellaceae	Selaginella chrysorhizos
88	Selaginellaceae	Selaginella subdiaphana
89	Thelypteridaceae	Thelypteris arida
90	Thelypteridaceae	Thelypteris auriculata
91	Thelypteridaceae	Thelypteris dentata
92	Thelypteridaceae	Thelypteris erubescens
93	Thelypteridaceae	Thetypteris erubescens Thelypteris nudata
94	Thelypteridaceae	Thelypteris nadata Thelypteris papilio
95	Thelypteridaceae	Thetypteris papitio Thelypteris prolifera
96	Thelypteridaceae	Thetypteris protifera Thelypteris pyrrhorhachis
97	Thelypteridaceae	Thelypteris tylodes
98	Woodsiaceae	
98	Woodsiaceae	Athyrium anisopterum Athyrium atkinsonii
100		-
	Woodsiaceae	Athyrium fimbriatum
101	Woodsiaceae	Athyrium micropterum
102	Woodsiaceae	Athyrium pectinatum
103	Woodsiaceae	Athyrium rupicola
104	Woodsiaceae	Athyrium setiferum

S.No.	Family	Scientific Name
105	Woodsiaceae	Athyrium strigillosum
106	Woodsiaceae	Deparia allantodioides
107	Woodsiaceae	Deparia boryana
108	Woodsiaceae	Deparia peterseni
109	Woodsiaceae	Diplazium maximum
110	Woodsiaceae	Hypodematium crenatum
111	Woodsiaceae	Woodsia elongata
112	Pteridaceae	Onychium contiguum
113	Oleandraceae	Oleandra wallichii

6.3.1.4 Bryophytes

A list of 19 species of bryophytes belonging to 11 families reported from Beas basin was prepared from the published data and the same is given at **Table 6.10**. Marchantiaceae, Bryaceae and Anthocerotaceae are most dominant families with 3 species each.

Table 6.10: List of Bryophytes reportedly found in Beas basin

S. No.	Family	Scientific Name
1	Anthocerotaceae	Anthoceros himalayensis
2	Anthocerotaceae	Anthoceros erectus
3	Anthocerotaceae	Anthoceros chambensis
4	Aytoniaceae	Fimbraria dilatata
5	Bryaceae	Bryum argenteum
6	Bryaceae	Bryum cellulare
7	Bryaceae	Bryum dichotomum
8	Funariaceae	Funaria hygrometrica
9	Marchantiaceae	Marchantia palmata
10	Marchantiaceae	Marchantia nepalensis
11	Marchantiaceae	Marchantia polymorpha
12	Meteoriaceae	Aerobryidium filamentosum
13	Polytrichaceae	Polytrichum densifolium
14	Polytrichaceae	Pogonatum microstomum
15	Porellaceae	Madotheca porella
16	Pottiaceae	Barbula convoluta
17	Ricciaceae	Riccia fluitans
18	Ricciaceae	Riccia discolor
19	Sphagnaceae	Sphagnum palustre

6.3.2 Rare, Endangered and Threatened (RET) Plant Species

As the basin is characterized by wide elevational range and it harbours rich diversity of plant species. Some of the species endemic to Western Himalaya and the state are found in the basin. Also due to specific habitats, it is home to number of rare, endangered and threatened plant species. An exercise was undertaken to document all such species listed in IUCN Redlist (2017-2), BSI Red Data Book of Indian Plants (Vol. 1-3), by Nayar & Sastry (1987-88) and Conservation Assessment and Management Prioritisation (CAMP) Reports for the Threatened Wild Medicinal Plants of Himachal Pradesh (1998; 2003 & 2012) in addition to other published literature and articles.

Nayar and Sastry (1987-1990) have reported 22 species of rare and endangered plant species from Himachal Pradesh. In Beas basin, there are 14 plant species that are under different threat categories as per Red Data Book of Plants published by Botanical Survey of India (see **Tables 6.11 & 6.12**). According to Red-list Status of candidate species as per Shimla

Conservation Assessment Management Prioritisation (CAMP) December, 2010 by Foundation for Revitalisation of Local Health Traditions (FRLHT), there are 41 species found in Beas basin (Table 6.13). However according to IUCN (2017-2) only 107 species have been assessed for their conservation status globally and most of them are listed in 'Least Concern' category and only 8 are in VU category, 2 in Near Threatened, 4 each in Critically Endangered and Endangered category. Four species are listed as Data Deficient category and one species is reported extinct in wild (see Table 6.14).

Table 6.11: RET species reported from Beas basin and their conservation status based upon BSI Red Data Book

S.No.	Family	Scientific Name	Conservation Status
1	Aceraceae	Acer caesium	VU
2	Asteraceae	Saussurea costus	EN
3	Amaryllidaceae	Allium stracheyi	VU
4	Cyperaceae	Carex munroi	1
5	Liliaceae	Eremurus himalaicus	R
6	Orchidaceae	Cypripedium cordigerum	R
7	Ranunculaceae	Aconitum ferox	VU
8	Valerianaceae	Nardostachys grandiflora	VU
9	Plantaginaceae	Picrorhiza kurroa	VU
10	Dioscoreaceae	Dioscorea deltoidea	VU
11	Brassicaceae	Erysimum thomsonii	Rare
12	Fabaceae	Hedysarum astragaloides	Rare
13	Fabaceae	Hedysarum microcalyx	VU
14	Campanulaceae	Campanula wattiana	Rare

EN=Endangered; VU=Vulnerable; R=Rare; I= Indeterminate

Table 6.12: RET species occurring in Beas basin according to H.J. Chowdhery (1999). In: Mudgal, V. & Hajra, P.K.

S.No.	Family	Scientific Name	
1	Amaryllidaceae	Allium stracheyi Baker	
2	Apiaceae	Angelica glauca Edgew.	
3	Asteraceae	Jurinea dolomiaea Boiss.	
4	Asteraceae	Saussurea obvallata (DC.) SchBip.	
5	Betulaceae	Betula utilis D. Don	
6	Boraginaceae	Arnebia euchroma I.M. Johnst.	
7	Caprifoliaceae	Nardostachys jatamansi DC.	
8	Cupressaceae	Juniperus communis Thunb.	
9	Dioscoreaceae	Dioscorea deltoidea Wall.	
10	Ephedraceae	Ephedra gerardiana Wall. ex Florin	
11	Polygonaceae	Rheum spiciforme Royle	
12	Polygonaceae	Rheum webbiana Royle	
13	Scrophulariaceae	Picrorhiza kurrooa Royle	

Table 6.13: RET species occurring in Beas basin according to CAMP' Workshop by FRLHT 2010 held at Shimla

S.No.	Family	Scientific Name	Conservation Status
1	Amaryllidaceae	Allium stracheyi	VU
2	Apiaceae	Angelica glauca	EN

S.No.	Family.	Scientific Name	Conservation
5.NO.	Family	Scientific Name	Status
1	Apiaceae	Selinum connifolium	VU
		(=S. tenuifolium)	
2	Apiaceae	Selinum vaginatum	VU
5	Asparagaceae	Polygonatum cirrhifolium	EN
6	Asparagaceae	Polygonatum multiflorum	EN
7	Asparagaceae	Polygonatum verticillatum	EN
8	Asteraceae	Jurinea dolomiaea (=J. macrocephala)	CR
9	Asteraceae	Saussurea obvallata	EN
10	Berberidaceae	Berberis aristata	EN
11	Berberidaceae	Sinopodophyllum hexandrum	EN
12	Betulaceae	Betula utilis	EN
13	Bignoniaceae	Oroxylum indicum	NE
14	Boraginaceae	Arnebia benthamii	EN
15	Cupressaceae	Juniperus communis	VU
16	Dioscoreaceae	Dioscorea deltoidea	EN
17	Fabaceae	Desmodium gangeticum	NE
18	Gentianaceae	Gentiana kurroo	CR
19	Gentianaceae	Swertia chirayita	CR
20	Hypericaceae	Hypericum peforatum	VU
21	Lauraceae	Cinnamomum tamala	VU
22	Lauraceae	Litsea glutinosa	VU
23	Liliaceae	Lilium polyphyllum	CR
24	Liliaceae	Fritillaria roylei	EN
25	Orchidaceae	Malaxis muscifera	CR
26	Orchidaceae	Dactylorhiza hatagirea	CR
27	Pinaceae	Taxus wallichiana (= T. baccata)	EN
28	Plantaginaceae	Picrorhiza kurroa	CR
29	Polygonaceae	Rheum moorcroftianum	EN
30	Polygonaceae	Rheum speciforme	NT
31	Polygonaceae	Rheum webbianum	VU
32	Ranunculaceae	Aconitum laeve	NE
33	Ranunculaceae	Aconitum violaceum	VU
34	Rutaceae	Skimmia laureola	VU
35	Rutaceae	Zanthoxylum armatum	EN
36	Solanaceae	Atropa acuminata	CR
37	Solanaceae	Hyoscyamus niger	NT
38	Symplocaceae	Symplocos paniculata	VU
39	Valerianaceae	Nardostachys grandiflora	EN
40	Zingiberaceae	Roscoea alpina	VU

 $\textit{CR=Critically Endangered; EN=Endangered; VU=Vulnerable; NT=Near\ Threatened}$

Table 6.14: Plant species found in Beas basin listed in Red List of Plants by IUCN (2017-2)

S.No.	Family	Scientific Name	Conservation Status
1	Asteraceae	Saussurea costus	CR
2	Apiaceae	Angelica glauca	EN
3	Bignoniaceae	Jacaranda mimosifolia	VU
4	Boraginaceae	Myosotis alpestris	NT
5	Caprifoliaceae	Nardostachys jatamansi (Syn. Nardostachys grandiflora)	CR
6	Fabaceae	Indigofera heterantha (Syn. Indigofera gerardiana)	VU
7	Fabaceae	Tephrosia angustissima (Syn. Tephrosia purpurea)	EN
8	Fabaceae	Saraca asoca	VU

S.No.	Family	Scientific Name	Conservation Status
9	Gentianaceae	Gentiana kurroo	CR
10	Juglandaceae	Juglans regia	NT
11	Liliaceae	Lilium polyphyllum	CR
12	Orchidaceae	Cypripedium cordigerum	VU
13	Orchidaceae	Cypripedium himalaicum	EN
14	Orchidaceae	Malaxis muscifera	VU
15	Plantaginaceae	Plantago lanceolata	VU
16	Ranunculaceae	Aconitum heterophyllum	EN
17	Ranunculaceae	Aconitum violaceum	VU
18	Solanaceae	Brugmansia suaveolens	EX in Wild
19	Ulmaceae	Ulmus wallichiana	VU

CR= Critically Endangered; EN= Endangered; VU= Vulnerable; NT= Near Thraetened

6.3.3 Endemic Plant Species

In order to understand the floristic importance of Beas basin an exercise was undertaken to enumerate plant species which are endemic to Himalaya and occur in the basin. Here a list of plant species endemic to Himalaya was which included species occuring the Himalayan Mountain Range (i.e. the Himalaya) above about 1000 m. Of 333 endemic and near endemic vascular plants so far recorded from Himalaya (Behera *et al.*, 2002; Grierson & Long, 1983; Hara, 1972; Jain & Rao, 1983; Kanai, 1963; Malik *et. al.*, 2007; Nayar, 1996; Rau, 1974) 182 species are found in Western Himalaya. Of 84 plant species endemic to North West Himalaya (Included here are the Himalaya above about 1000 m in the area westward of the Kali Gandaki River Gorge in Central Nepal - Jain & Rao, 1983; Kanai, 1963; Rau, 1974) and Himachal Pradesh (Chaudhery, 1999) 64 species are reported from Beas basin. Detailed list is given at **Table 6.15**.

Table 6.15: List of plant species endemic to Western Himalaya and Himachal Pradesh and found in Beas basin

S. No.	Family	Name of the Species
1	Amaryllidaceae	Allium stracheyi
2	Apiaceae	Bupleurum falcatum
3	Apiaceae	Cortia depressa
4	Apiaceae	Heracleum wallichii
5	Apiaceae	Pleurospermum brunonis
6	Apiaceae	Selinum vaginatum
7	Asteraceae	Aconitum ferox
8	Asteraceae	Anaphalis royleana
9	Asteraceae	Aster falconeri
10	Asteraceae	Erigeron bellidioides
11	Asteraceae	Saussurea costus
12	Berberidaceae	Berberis aristata
13	Berberidaceae	Berberis jaeschkeana
14	Berberidaceae	Berberis lycium
15	Betulaceae	Alnus nitida
16	Betulaceae	Corylus jacquemontii
17	Buxaxeae	Sarcococca pruniformis
18	Campanulaceae	Codonopsis clematidea
19	Cannabaceae	Celtis australis

S. No.	Family	Name of the Species
20	Caryophyllaceae	Stellaria media
21	Crassulaceae	Rhodiola heterodonta
22	Elaeagnaceae	Hippophae salicifolia
23	Fabaceae	Desmodium elegans
24	Fabaceae	Hedysarum astragaloides
25	Fabaceae	Hedysarum microcalyx
26	Fabaceae	Oxytropis mollis
27	Fagaceae	Quercus floribunda
28	Juglandaceae	Juglans regia
29	Lamiaceae	Phlomis bracteosa
30	Moraceae	Morus serrata
31	Oleaceae	Fraxinus micrantha
32	Oleaceae	Fraxinus xanthoxyloides
33	Oleaceae	Syringa emodi
34	Onagraceae	Epilobium latifolium
35	Orchidaceae	Dactylorhiza hatagirea
36	Orobanchaceae	Pedicularis bicornuta
37	Orobanchaceae	Pedicularis pectinata
38	Papaveraceae	Corydalis crassifolia
39	Papaveraceae	Corydalis govaniana
40	Papaveraceae	Meconopsis aculeata
41	Plantaginaceae	Veronica biloba
42	Poaceae	Agrostis munroana
43	Poaceae	Agrostis pilosula
44	Polygonaceae	Rheum spiciforme
45	Polygonaceae	Rheum webbianum
46	Ranunculaceae	Aconitum heterophyllum
47	Ranunculaceae	Caltha palustris
48	Ranunculaceae	Delphinium brunonianum
49	Ranunculaceae	Ranunculus arvensis
50	Rosaceae	Rosa macrophylla
51	Rosaceae	Rosa webbiana
52	Rosaceae	Rubus niveus
53	Rosaceae	Sorbus lanata
54	Rosaceae	Spiraea canescens
55	Rubiaceae	Galium asperuloides
56	Rubiaceae	Rubia cordifolia
57	Salicaceae	Salix denticulata
58	Sapindaceae	Acer acuminatum
59	Sapindaceae	Acer caesium
60	Sapindaceae	Aesculus indica
61	Saxifragaceae	Bergenia stracheyi
62	Scrophulariaceae	Picrorhiza kurroa
63	Ulmaceae	Ulmus wallichiana
64	Xanthorrhoeaceae	Eremurus himalaicus
· · · · · · · · · · · · · · · · · · ·		

6.3.4 Medicinal & Economically Important Plants

This region harbours a wide range of medicinal plants used in Ayurvedic, Homoeopathic and Unani medicines or used by the local people. An inventory of medicinal plant species used by local tribal people was prepared from data collected through literature survey. These plants are used internally for treating stomachic diarrhoea, dysentery, cough, cold, fever and asthma and externally for rheumatism, skin diseases, cuts, boils and injuries. Detailed list of the medicinally important plants species is given in **Annexure II** of **Volume II** of the report.

Final Report: Chapter 6

In addition to plants being used for medicinal purposes, these are used for many other purposes like as timber, fuelwood, etc. List of important plants species used for miscellaneous purposes is given at **Table 6.16**.

Table 6.16: List of important plant species used for medicinal purposes

S.No.	Family	Name of Species	Common Name	Habit	Parts used
1	Acanthaceae	Barleria cristata	-	Herb	Root
2	Acanthaceae	Justicia adhatoda	Vasinga	Shrub	Roots
3	Aceraceae	Acer caesium	Kinchula	Tree	Bark
4	Acoraceae	Acrous calamus	Vacha	Herb	Roots/ Rhizome
5	Amaranthaceae	Achyranthes aspera	Chirchita	Herb	Whole plant
6	Anacardiaceae	Pistacia integerrima	Kakra singi	Tree	Galls
7	Apiaceae	Carum carvi	Kalajiri	Herb	Seeds
8	Apiaceae	Chaerophyllum reflexum	-	Herb	Roots
9	Apiaceae	Ferula jaeschkeana	-	Herb	Roots
10	Apocynaceae	Holarrhena pubescens	Hartaki	Tree	Frut-pods
11	Araceae	Arisaema tortuosum	-	Herb	Tubers
12	Araliaceae	Hedera nepalensis	-	Climber	Stems, twigs
13	Asclepiadaceae	Cryptolepis buchananii	-	Climber	Stems, twigs
14	Asparagaceae	Asparagus adscendens	Satavar	Shrub	Root/Tubers
15	Asteraceae	Achillea millefolium	-	Herb	Roots, Leaves
16	Asteraceae	Ageratum conyzoides	Phulya	Herb	Leaves
17	Asteraceae	Artemisia indica	Kunja	Herb	Leaves, young twigs
18	Asteraceae	Bidens pilosa	Kuri	Herb	Flowers
19	Asteraceae	Echinops cornigerus	Kandaru	Herb	Roots, Seeds
20	Asteraceae	Eclipta prostrate	BHANGRA	Herb	Whole plant
21	Asteraceae	Emilia sonchifolia	-	Herb	Root
22	Asteraceae	Jurinea macrocephala	Dolu	Herb	Roots
23	Asteraceae	Saussurea costus	Kuth	herb	Roots
24	Asteraceae	Saussurea obvallata	Brhamkamal	herb	Flowers
25	Asteraceae	Sonchus asper	Kaduyeh	Herb	Leaves
26	Asteraceae	Tanacetum dolichophillum	Dhup	Herb	Roots
27	Asteraceae	Tridex procumbens	Pathar chatta	Herb	Roots, Leaves
28	Asteraceae	Vernonia anthelmintica	Kala jeera	Herb	Seeds
29	Berberidaceae	Berberis aristata	Rasut	Shrub	Root, bark
30	Berberidaceae	Berberis lycium	-	Shrub	Roots, barks
31	Bignoniaceae	Oroxylum indicum	-	Tree	Bark
32	Bombacaceae	Bombax ceiba	Semal	Tree	Barks, Fruits
33	Boraginaceae	Arnebia benthami	Balchhad	Herb	Roots
34	Brassicaceae	Cardamine impatiens	-	Herb	Leaves
35	Brassicaceae	Megacarpea polyandra	Barmula	Herb	Roots
36	Caesalpiniaceae	Bauhinia variegata	Kachnar	Tree	Floral buds

89

90

Bark

Fruit

Acacia catechu

Syzygium cumini

Khair

Jamun

Tree

Tree

Mimosaceae

Myrtaceae

S.No.	Family	Name of Species	Common Name	Habit	Parts used
91	Nyctaginaceae	Boerhavia diffusa	Punernava	Herb	Whole plant
92	Oleaceae	Jasminum humile	-	Shrub	Leaves
93	Orchidaceae	Cypripedium cordigerum	-	Herb	Roots
94	Orchidaceae	Dactylorhiza hatagirea	Hat-jari	Herb	Roots
95	Oxalidaceae	Oxalis corniculata	Khatibuti	Herb	Leaves
96	Paeoniaceae	Paeonia emodi	Mamekh	Herb	Roots
97	Papaveraceae	Argemone mexicana	-	Herb	Seeds
98	Papaveraceae	Corydalis govaniana	Bhutkesi	Herb	Roots
99	Papaveraceae	Meconopsis aculeata	-	Herb	Roots
100	Fabaceae	Abrus precatorius	Rati	Climber	Roots, seeds
101	Fabaceae	Astragalus candolleanus	Rudravanti	Herb	Roots
102	Fabaceae	Butea monosperma	Plaas	Tree	Flowers
103	Fabaceae	Clitoria ternata	Aprajita	Climber	Root
104	Fabaceae	Desmodium triquetrum	-	Shrub	Roots
105	Fabaceae	Indigofera heterantha	Sakina	Shrub	Floral buds
106	Fabaceae	Lespedeza gerardiana	-	Herb	Roots
107	Fabaceae	Robinia pseudo-acacia	-	Tree	Bark
108	Plataginaceae	Plantago erosa	Isabgol	Herb	Seeds
109	Plumbaginaceae	Plumbiga zeylanica	Chtrak	Herb	Roots
110	Poaceae	Cynodon dactylon	Doob	Herb	Whole plant
111	Podophyllaceae	Sinopodophyllum hexandrum	Van-kakri	Herb	Fruits
112	Polygonaceae	Rheum australe	Dolu	Herb	Roots
113	Polygonaceae	Rumex nepalensis	Kholya	Herb	Leaves
114	Ranunculaceae	Aconitum chasmanthum	Mohra	Herb	Tubers
115	Ranunculaceae	Aconitum heterophyllum	Patish	Herb	Tubers
116	Ranunculaceae	Aconitum violaceum	Meetha	Herb	Tubers
117	Ranunculaceae	Actaea acuminata	-	Herb	Roots
118	Ranunculaceae	Anemone rivularis	Jakri	Herb	Roots
119	Ranunculaceae	Delphinium denudatum	Nirvishi	Herb	Roots
120	Ranunculaceae	Thalictrum foliolosum	Mamiri	Herb	Leaves, roots
121	Rhamnaceae	Rhamnus purpurea	-	Shrub	Roots
122	Rosaceae	Potentilla atrosanguinea	-	Herb	Roots
123	Rosaceae	Prinsepia utilis	Bhenkal	Shrub	Seeds
124	Rosaceae	Prunus cerasoides	Padam	Tree	Bark
125	Rosaceae	Rosa brunonii	Kunja	Shrub	Flowers
126	Rosaceae	Rubus ellipticus	Hinsol	Shrub	Young twigs
127	Rubiaceae	Galium aparine	Kuri	Herb	Whole plant
128	Rubiaceae	Randia tetrasperma	Medanphal	Shrub	Fruits
129	Rubiaceae	Rubia cordifolia	Manjishta	Climber	Seeds
130	Rutaceae	Aegle marmelos	Bel	Tree	Fruits, Leaves
131	Sapindaceae	Cardiospermum helicacabum	-	Herb	Roots
132	Saururaceae	Houttuynia cordata	Brahmi Pata	Herb	Leaves
133	Saxifragaceae	Bergenia ciliata	Silphari	Herb	Roots
134	Scrophulariaceae	Picrorhiza kurroa	Kutaki	Herb	Roots
135	Scrophulariaceae	Verbascum thapsus	Akal vir	Herb	Flower buds
136	Solanaceae	Atropa acuminata	-	Herb	Roots
137	Solanaceae	Hyocyamus niger	Khurasini ajwaayan	Herb	Whole plant
138	Solanaceae	Withania somnifera	Aswgandha	Herb	Roots
139	Symplocaceae	Symplocos paniculata	Lodh	Tree	Bark
140	Taxaceae	Taxus baccata	Thuner	Tree	Bark, leaves
141	Tiliaceae	Triumfeta rhomboidea	-	Herb	Leaves
142	Urticaceae	Boehmeria platyphylla	Khagsa	Shrub	Leaves
	ear on sparesonal s	4 AC	5	1	

6.3.5 Floristic Profile across the Basin

The species richness across the terrain and eco-zones i.e. in different sub-basins ranges from 94 to 171 with maximum in the Parbati Upper sub-basin and minimum in Beas I (see Table 6.17). Important trees of this basin are Taxus wallichiana, Cedrus deodara, Pinus wallichiana, Picea smithiana, Abies pindrow. It is home to latge number of medicinal plants also. Uhl sub-basin is another biodiversity rich due to diverse habitats congenial for growth of different species. Dominant trees of Uhl sub-basin are Aegle marmelos, Bauhinia variegata, Cinnamomum tamala, Neolitsea umbrosa, Mallotus philippensis and Sapium insigne. At lower to mid elevations *Pinus roxburghii* is a very common species. However, with the increasing altitude montane Himalayan species become more prominent and lowland species are rare or absent. Beas I and Beas II sub-basins located in the high altitudinal zone are mainly comprised of coniferous species like Abies pindrow, Cedrus deodara, Picea smithiana and Pinus wallichiana.

As already discussed in previous section on medicinal plants large number of medicinal plants are found in the basin owing diverse habitats and elevation range. Some of the important medicinal plants like Aconitum chasmanthum, A. heterophyllum, Arnebia benthami, Dactylorhiza hatagirea, Dioscorea deltoidea, Ephedra gerardiana, Ferula jaeschkeana, Nardostachys grandiflora, Picrorhiza kurroa, Rheum australe, etc. are found in higher altitude areas of Beas I, Beas II, Parbati Upper, Sainj and Tirthan sub-basins.

Table 6.17: Floristic profile of different sub-basins

Sub-Basin	Total no. of species	RET- FRLHT	RET- IUCN Redlist (2017- 2)	RET- BSI Red Data Book	Endemic to Western Himalaya
Beas I	129	10	4	2	13
Beas II	111	2	1	-	7
Malana	94	2	1	1	6
Parbati Upper	171	9	3	3	16
Parbati Lower	125	30	3	1	12
Sainj	101	1	1	•	4
Tirthan	108	33	10	1	7
Beas III	133	1	1	-	4
Uhl	143	3	1	-	10
Beas IV	154	2	2	0	8
Beas V	101	1	1	0	6

Sub-basin wise assessment of ecological values has been dealt with in a separate chapter i.e. Chapter 7 - Assessment of Ecological Values.

6.3.6 Community Structure

The phytosociological studies were carried out for the analysis of community structure coverings all three season (pre-monsoon, monsoon and winter). The sampling for the same was conducted at the 60 locations mentioned in **Table 6.18**.

Table 6.18: Sampling locations for phytosociological studies

Sub-basin	Sampling Site	Name of Project	Name of Site	
Beas I	V1	Beas Kund HEP	Near Power House site: Beas river	
	V2	Palchan Bhang HEP	Project area of Proposed Palchan Bhang HEP: Beas river	
V3		Bhang HEP	Project area of Proposed Bhang HEP: Beas river	
	V4	Jobrie HEP	Project area of Proposed Jobrie HEP: Allian Nala	
	V5		Power House site: Allain Nala	
	V6	Allain Duhangan HEP	Downstream of diversion site: Duhangan Nala	
	V7	Malana III HEP	Proposed project area: Malana Nala	
	V8	Malana II HEP	Upstream of Dam site	
Malana	V9	mataria ii iizi	Upstream of Power House site	
	V10	Malana I HEP	Downstream of Barrage site: Malana Nala	
	V11	Mataria 11121	Upstream of Power house Site	
	V12	Tosh HEP	Downstream of Diversion site near Tosh village	
	V13		Near proposed Diversion site at Tosh Nala	
	V14	Nakthan HEP	Near proposed Power house site	
Parbati	V15		Near proposed Diversion site at Parbati river	
Upper	V16		Upstream of Dam site along Parbati river	
	V17	Parbati II HEP	Upstream of Dam along Tosh Nala	
	V18		Downstream of Dam site	
	V19	Balargha HEP	Near Proposed Power House site	
V20		Parbati HEP	Proposed project area of Parbati HEP	
	V21	Baragaon HEP	Near Power house site	
Beas II	V22	Sarbari II HEP	Near Power house site	
	V23	Fozal HEP	Near Diversion site	
	V24	Sharni HEP	Proposed project area of near Sarsadi Village Sharni village	
Parbati Lower	V25	Sarsadi HEP	Proposed project area of near Sarsadi Village	
	V26	Sarsadi II HEP	Proposed project area of near Sarsadi Village	
	V27	Hurla HEP	Proposed project area of Hurla HEP	
	V28	Sainj HEP	Upstream of Dam site	
Sainj	V29	Janny HEI	Near Power House site	
Janny	V30		Upstream of Reservoir area	
	V31	Parbati III HEP	Downstream of Diversion site	
	V32		Near Power house site	
	V33	Lambadug HEP	Downstream Diversion site	
	V34	Uhl I HEP	Upstream of Barrage site	
Uhl	V35	Uhl HEP	Proposed diversion site	
	V36	Lower Uhl HEP	Downstream of proposed diversion site	
	V37	Uhl Khad HEP	Proposed Power house site: right bank of	

CIA&CCS-Beas Basin in HP			Final Report: Chapter 6
Sub-basin	Sampling Site	Name of Project	Name of Site
			Beas river
	V38	Uhl II HEP	Near Bassi Power House
	V39	Uhl III HEP	Along the power channel
	V40	OIR III FILE	Near Balancing reservoir near Rana Khad
	V41		Right Bank of reservoir area
	V42	Beas Satluj Link (Pandoh Dam)	Near Dam Site
Beas III	V43		Downstream of Dam site
Deas III	V44	Larji HEP	Along the reservoir area
	V45	-	Downstream of Dam site
	V46	Patikari HEP	Upstream of Power house site
	V47	Khauli Khad	Near diversion weir
	V48	Gaj Khad HEP	Near Power house site
	V49	Neogal HEP	Upstream of Power house site
Beas IV	V50	Binwa HEP	Near Powerhouse site
	V51	Baner I HEP	Upstream of Power house site
	V52	Baner HEP	Downstream of Diversion weir
	V53	Kilhi Bahl HEP	Proposed project area of Kilhi Bahl HEP
	V54	Dong Dom UED	Right bank of reservoir
	V55	Pong Dam HEP	Left Bank of reservoir
	V56	Thana Plaun HEP	Proposed Dam site
Beas V	V57	I IIIaiia Plauli NEP	Downstream of Dam site
	V58	Triveni Mahadev HEP	Upstream of Proposed dam site
	V59	Dhaulacidh UED	Upstream of Proposed dam site
	V60	Dhaulasidh HEP	Near Proposed Dam site

Details of site wise phyto-sociological data for all seasons has been given at Annexure-III of Volume II of the report of the report. The description of the results of the same is given in the following paragraphs.

6.3.6.1 Density of Trees

Upper catchment of Beas basin (Manali- Kullu) is comprised of temperate forest. Pinus wallichiana, Cedrus deodara, Picea smithiana and Corylus colurna were dominant tree species in these forests and are found in association with Aesculus indica, Acer caesium, Alnus nepalensis, Celtis australis, Ulmus villosa, Fraxinus floribundus, Populus ciliata, Juglans regia, Quercus semecarpifolia, Salix fragilis, Salix tetrasperma, Ilex dipyrena and Betula utilis.

In the middle stretch covering area between Kullu to Mandi forest is comprised of temperate to sub-tropical forest type. Pinus wallichiana, Cedrus deodara Quercus semecarpifolia, Salix fragilis and Betula alnoides are dominant at higher elevations in temperate areas, while at lower elevations Adina cordifolia, Bauhinia variegata, Bombax ceiba, Celtis australis, Dalbergia sissoo, Mallotus philippensis, Rhus succedanea, Ficus palmata, Grewia optiva, Morus alba, Toona hexandra, Albizia sp., Boehmeria rugulosa, Phoebe lanceolata, Populus ciliata, etc. are common.

The area downstream of Mandi up to Pong Dam forest is generally classified under tropical forest type. Tree component is mainly comprised mainly of Syzygium cumini, Albizia lebbeck, Albizia chinensis, Boehmeria rugulosa, Delonix regia, Dalbergia sissoo, Sapium insigne, Bombax ceiba, Adina cordifolia, Eucalyptus citriodora, Mallotus philippensis, Lannea grandis, Bombax ceiba, Azadirachta indica, etc.

The density of trees varied from site to site. The overall tree density throughout the study area ranged from minimum of 120 number of trees/ha to maximum of 530 trees/ha (**Table 6.19**). Highest tree density was recorded at sampling site located near diversion site of Fozal HEP (left bank of Fozal Nala) and Sampling site located near the Diversion weir of Khauli Khad HEP, where *Pinus roxburghii*, *Quercus* spp. and *Bauhinia variegata* are the dominant species followed by sampling site located upstream of Uhl-I HEP barrage site (Right Bank of Ulh river) and lowest density of tree species were recorded at sampling site located in proposed project area of Jobrie HEP (right bank of Allain Nala).

Table 6.19: Density of trees (no./ha) recorded at different sampling sites

Sampling Sites	Density (no./ha)
Site V1	330
Site V2	320
Site V3	360
Site V4	120
Site V5	370
Site V6	270
Site V7	219
Site V8	280
Site V9	420
Site V10	160
Site V11	390
Site V12	250
Site V13	200
Site V14	380
Site V15	310
Site V16	260
Site V17	340
Site V18	360
Site V19	330
Site V20	220
Site V21	460
Site V22	400
Site V23	530
Site V24	440
Site V25	450
Site V26	490
Site V27	423
Site V28	500
Site V29	270
Site V30	490
Site V31	370

Sampling Sites	Density (no./ha)
Site V32	270
Site V33	490
Site V34	510
Site V35	340
Site V36	410
Site V37	295
Site V38	470
Site V39	410
Site V40	260
Site V41	250
Site V42	260
Site V43	250
Site V44	430
Site V45	230
Site V46	290
Site V47	530
Site V48	280
Site V49	310
Site V50	360
Site V51	390
Site V52	360
Site V53	360
Site V54	190
Site V55	170
Site V56	350
Site V57	310
Site V58	440
Site V59	340
Site V60	330

6.3.6.2 Dominance

Among the trees *Pinus wallichiana*, *Cedrus deodara*, *Picea smithiana* and *Fraxinus floribunda* are the most frequent occurring species. *Cedrus deodara* was the most dominant species in temperate zone covering area of Upper catchment of Beas river up to Kulu, Malana Nala, Parbati river, Upper catchment of Uhl river areas. Pure stands of *Cedrus deodara* were recorded with high IVI values at most of the sites. *Pinus wallichiana* were the other dominant trees of the forests in this region. However, *Juglans regia* and *Picea smithiana* were also found dominant at some places. While at lower elevation comprising of temperate and sub-tropical region *Pinus wallichiana* was more commonly found at higher elevation ridges while species of *Quercus*, *Pinus*

roxburghii, Alnus nepalensis, Celtis australis are dominant in tropical forests. In the tropical region of Beas basin Dalbergia sissoo, Populus ciliata, Adina cordifolia, Bombax ceiba, Albizia species, Eucalyptus citriodora, Mallotus philippensis, Lannea grandis show frequent distribution with high IVI value. In all 91 species of trees were recorded from different sites.

Figure 6.3 to **Figure 6.10** shows the Importance Value Index of dominant tree species at various sampling sites however, detailed data of the same are given at **Annexure-III** of **Volume II** of the report.

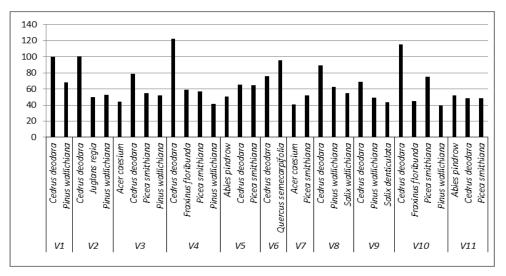


Figure 6.3: Importance Value Index of dominant tree species at sampling sites V1 - V11

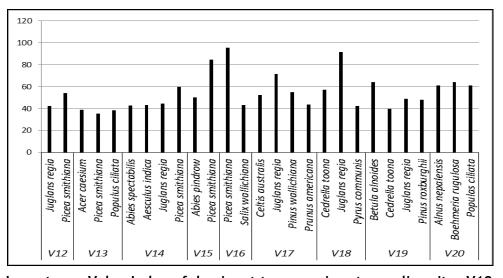


Figure 6.4: Importance Value Index of dominant tree species at sampling sites V12 - V20

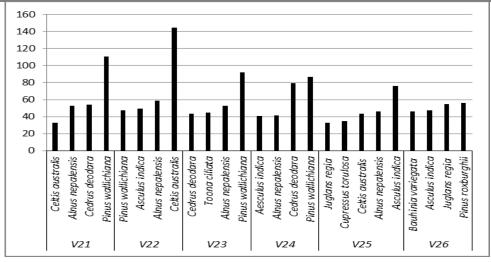


Figure 6.5: Importance Value Index of dominant tree species at sampling sites V21 - V26

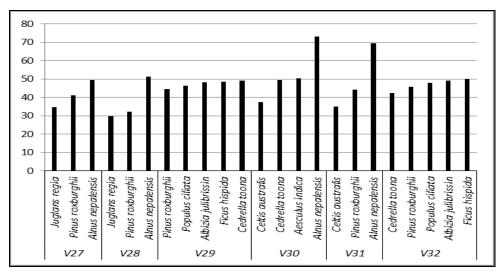


Figure 6.6: Importance Value Index of dominant tree species at sampling sites V27 - V32

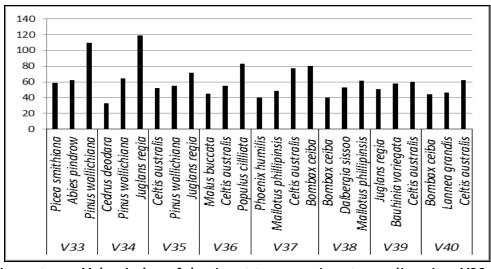


Figure 6.7: Importance Value Index of dominant tree species at sampling sites V33 - V40

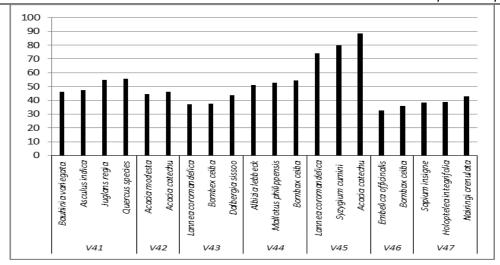


Figure 6.8: Importance Value Index of dominant tree species at sampling sites V41 - V47

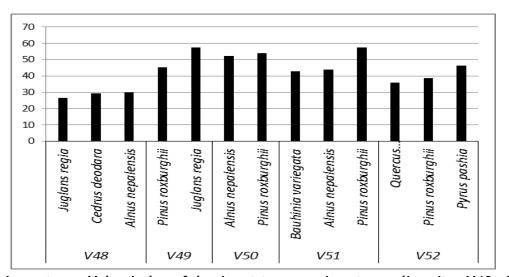


Figure 6.9: Importance Value Index of dominant tree species at sampling sites V48 - V52

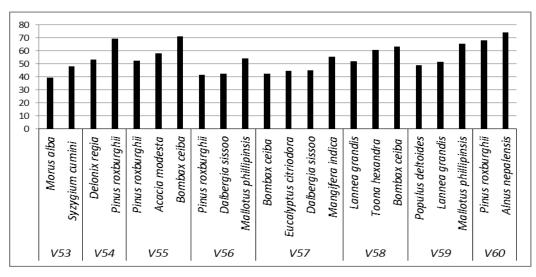


Figure 6.10: Importance Value Index of dominant tree species at sampling sites V53 - V60

During the field surveys 128 species of shrubs were recorded, species like *Rhododendron* anthopogon, Rosa webbiana, and Juniperus communis with other species like *Ephedra* vulgaris, Cotoneaster bacillaris, Sorbaria tomentosa, Berberis jaeschkeana, Berberis lycium,

Artemisia nilagirica and Berberis aristata, were the most dominant shrub species in temperate region of Beas basin. Sorbaria tomentosa, Artemisia nilagirica and Berberis aristata were dominant at sites located at lower elevations in all seasons whereas Rosa webbiana, Berberis lycium and Rhododendron campanulatum were dominant at sites located at higher elevations. In the middle stretch of Beas basin where vegetation is of temperate and sub-tropical forest type

In the middle stretch of Beas basin where vegetation is of temperate and sub-tropical forest type Berberis aristata, Debregeasia longifolia, Boehmeria platyphylla, Leucosceptrum canum, Maesa chisia, Melocalamus compactiflorus, Oxyspora paniculata, Sarcococca saligna, Colebrookea oppositifolia Indigofera gerardiana Debregeasia longifolia are the dominant shrub species with IVI values more than 50. At the lower elevations comprised of sub-tropical and tropical forest type Lantana camara, Murraya koenigii and Justicia adhatoda are the dominant shrub species with high IVI values. Predominant shrub species recorded from the study are in the lower catchment of Beas river are Boehmeria macrophylla, Caryopteris odorata, Debregeasia salicifolia, Urtica dioica, Desmodium elegans, Woodfordia fruticosa, etc. (see Table 6.20).

In all 250 species of herbs were recorded during field surveys. *Gentiana kurroo*, *Iris kemaonesis*, *Poa alpina*, *Dactylis glomerata*, *Thymus serpyllum*, *Bistorta macrophylla*, *Axyris hybrida*, *Senecio chrysanthemoides*, *Origanum vulgare*, *Ageratum conyzoides*, *Artemisia nilagirica*, *Argemone mexicana*, *Achyranthes aspera*, *Anaphalis contorta*, *Nepeta ciliaris*, *Urena lobata*, *Datura stramonium*, *Fragaria vesca*, *Micromeria biflora*, *Mentha longifolia*, *Eragrostis pilosa*, *Buddleja asiatica*, *Curcuma aromatica*, *Parthenium hysterophorus*, *Cyperus rotundus* and *Chrysopogon fulvus* were found dominant at different sampling sites with each of them having IVI of more than 30. In general species like *Artemisia maritima*, *Gentiana kurroo*, *Ageratum conyzoides* and *Argemone mexicana* were the most dominant species at most of the sites during the surveys (see **Table 6.21**).

Table 6.20: IVI of dominant shrub species at different sampling sites

Site

Site	Name of Species	IVI
	Rosa webbiana	43
V1	Berberis jaeschkeana	47
	Rhododendron anthopogon	78
	Cotoneaster bacillaris	13
V2	Spiraea sorbifolia	51 52
\ \Z	Artemisia nilagirica	
	Lonicera quinquelocularis	69
	Spiraea sorbifolia	40
V3	Artemisia nilagirica	40
	Lonicera quinquelocularis	54
V4	Indigofera pulchella	56
٧٠	Artemisia nilagirica	85
	Berberis aristata	22
V5	Rosa webbiana	53
	Daphne cannabina	62
	Rosa webbiana	33
V6	Urtica dioica	40
	Sorbaria tomentosa	46
V7	Berberis lycium	34
٧,	Solanum indicum	37
	Leycesteria formosa	33
V8	Sinarundinaria falcata	36
	Zanthoxylum armatum	38
V9	Cannabis sativa	31
V 7	Rhamnus triqueter	34

Site	name of Species	171
	Chenopodium album	35
V10	Prinsepia utilis	30
V 10	Rubus niveus	44
V11	Indigofera pulchella	42
V 1 1	Elsholtzia fruticosa	58 20
	Sorbaria tomentosa	
V12	Cotoneaster bacillaris	20
V 12	Indigofera gerardiana	41
	Viburnum nervosum	45
	Berberis glaucocarpa	32
V13	Desmodium elegans	34
V 13	Rosa brunonii	44
	Indigofera gerardiana	76
	Viburnum nervosum	36
	Buddleja crispa	36
V14	Indigofera gerardiana	37
	Rosa macrophylla	38
	Staphylea emodi	39
V15	Sorbaria tomentosa	64
	Solanum surattense	43
V16	Chromolaena odoratum	45
	Brassiopsis mitis	46
	Trevesia palmata	41
V17	Strobilanthes extensa	43
	Melocalamus compactiflorus	62

Name of Species

IVI

CIA&CCS-Beas Basin in HP

CIAG	CC3-Deus Dusiii iii iir	
Site	Name of Species	IVI
	Debregeasia longifolia	53
V18	Maesa chisia	54
' ' '	Oxyspora paniculata	73
	Maesa chisia	52
V19	Leucosceptrum canum	90
V20		71
VZU	Melocalamus compactiflorus	
V21	Debregeasia longifolia	50
	Boehmeria platyphylla	56
	Boehmeria platyphylla	47
V22	Berberis aristata	48
	Berberis lycium	104
V23	Colebrookea oppositifolia	59
VZ3	Berberis aristata	97
V2.4	Boehmeria platyphylla	41
V24	Sarcococca saligna	85
	Sarcococca saligna	50
V25	Indigofera tinctoria	56
	Rubus ellipticus	44
V26	Desmodium elegans	48
V20		88
	Sarcococca saligna	
V27	Sinarundinaria falcata	30
	Viburnum mullaha	43
V28	Sinarundinaria falcata	39
120	Viburnum mullaha	50
V29	Desmodium gangeticum	31
VZ	Zanthoxylum armatum	43
	Cannabis sativa	27
	Girardinia diversifolia	27
V30	Desmodium gangeticum	27
	Sinarundinaria falcata	30
	Viburnum mullaha	43
	Sinarundinaria falcata	39
V31	Viburnum mullaha	50
	Desmodium gangeticum	31
V32		43
	Zanthoxylum armatum	58
\/ 2 2	Juniperus communis	
V33	Spiraea sorbifolia	66
	Rosa webbiana	84
V34	Gerardiana heterophylla	52
,,,	Lonicera quinquelocularis	82
V35	Rosa webbiana	86
7 3 3	Sorbaria tomentosa	89
	Cotoneaster affinis	56
V36	Berberis lycium	57
	Rosa webbiana	70
	Eupatorium adenophorum	38
V37	Rhamnus virgatus	40
, 0,	Artemisia capillaris	43
	Artemisia capillaris	32
V38	Cannabis sativa	35
¥30	Urtica dioica	46
	Justicia adhatoda	34
V39		41
V 3 9	Urtica dioica	
	Berberis asiatica	41
	Urtica dioica	42
V40	Eupatorium adenophorum	44
	Justicia adhatoda	44
V41	Desmodium elegans	56
771	Sarcococca saligna	83

Site Name of Species IVI W12 Murraya koenigii 53 V42 Woodfordia fruticosa 53 Lantana camara 68 Justicia adhatoda 45 Lantana camara 55 V44 Justicia adhatoda 41 Lantana camara 73 Murraya koenigii 43 V45 Carissa spinarum 47 Boehmeria macrophylla 53 Boehmeria macrophylla 61 Murraya koenigii 53 Lantana camara 58 Indigofera tinctoria 39 Lantana camara 58 Indigofera tinctoria 39 Lantana camara 40 Rosa brunonii 42 Artemisia capillaris 34 Rubus ellipticus 35 Indigofera tinctoria 36 Sarcococca saligna 40 Rosa brunonii 32 V50 Berberis aristata 33 Debregeasia salicifolia 36 <		Final Report:	Chapter 6
V42 Murraya koenigii 53 Woodfordia fruticosa 53 Lantana camara 68 V43 Justicia adhatoda 45 Lantana camara 55 V44 Justicia adhatoda 41 Lantana camara 73 Murraya koenigii 43 V45 Garissa spinarum 47 Boehmeria macrophylla 61 Murraya koenigii 69 V47 Murraya koenigii 53 Lantana camara 58 Indigofera tinctoria 39 Debregeasia salicifolia 40 Rosa brunonii 42 Artemisia capillaris 34 Rubus ellipticus 35 Indigofera tinctoria 36 Sarcococca saligna 40 Rosa brunonii 32 V50 Berberis aristata 33 Debregeasia salicifolia 36 Inula cuspidata 37 V51 Eupatorium adenophorum 32 V52 <td< th=""><th>Site</th><th>Name of Species</th><th>IVI</th></td<>	Site	Name of Species	IVI
V42 Woodfordia fruticosa 53 Lantana camara 68 V43 Justicia adhatoda 45 V44 Justicia adhatoda 41 Lantana camara 73 Murraya koenigii 43 V45 Garissa spinarum 47 Boehmeria macrophylla 53 Boehmeria macrophylla 61 Murraya koenigii 53 Lantana camara 58 Indigofera tinctoria 39 Debregeasia salicifolia 40 Rosa brunonii 42 Artemisia capillaris 34 Rubus ellipticus 35 Indigofera tinctoria 36 Sarcococca saligna 40 Rosa brunonii 32 W50 Berberis aristata 33 Debregeasia salicifolia 36 Inula cuspidata 37 V51 Eupatorium adenophorum 38 Debregeasia salicifolia 40 Eupatorium adenophorum 32 V52			53
Lantana camara	V42		53
V43 Justicia adhatoda 45 Lantana camara 55 V44 Justicia adhatoda 41 Lantana camara 73 Murraya koenigii 43 V45 Carissa spinarum 47 Boehmeria macrophylla 53 V46 Boehmeria macrophylla 61 Murraya koenigii 53 Lantana camara 58 Indigofera tinctoria 39 Debregeasia salciifolia 40 Rosa brunonii 42 Artemisia capillaris 34 Rubus ellipticus 35 Indigofera tinctoria 36 Sarcococca saligna 40 Rosa brunonii 32 Berberis aristata 33 Debregeasia salicifolia 36 Inula cuspidata 37 V51 Eupatorium adenophorum 38 Debregeasia salicifolia 40 Eupatorium adenophorum 32 V52 Debregeasia salicifolia 41 Cannabis sativa <td></td> <td></td> <td></td>			
V44 Justicia adhatoda 41 Lantana camara 73 Murraya koenigii 43 V45 Carissa spinarum 47 Boehmeria macrophylla 53 V46 Boehmeria macrophylla 61 Murraya koenigii 53 Lantana camara 58 Indigofera tinctoria 39 V48 Debregeasia salicifolia 40 Rosa brunonii 42 Artemisia capillaris 34 Rubus ellipticus 35 Indigofera tinctoria 36 Sarcococca saligna 40 Rosa brunonii 32 Berberis aristata 33 Debregeasia salicifolia 36 Inula cuspidata 37 V51 Eupatorium adenophorum 38 Debregeasia salicifolia 40 Colebrookea oppositifolia 41 Colebrookea oppositifolia 49 Eupatorium adenophorum 41 Rhamnus virgatus 43 Myrsine africana 43 V54 Artemisia capillaris 50 Myrsine africana 43 Caryopteris odorata 62 Artemisia capillaris 51 Urtica dioica 52 Desmodium elegans 52 Myrsine africana 44 Artemisia capillaris 51 Urtica dioica 52 Desmodium elegans 52 Myrsine africana 44 Artemisia capillaris 61 Lantana camara 62 Myrsine africana 44 Artemisia capillaris 61 Lantana camara 62 Myrsine africana 44 Artemisia capillaris 51 Urtica dioica 52 Desmodium elegans 52 V57 Artemisia capillaris 61 Lantana camara 62 Myrsine africana 44 Artemisia capillaris 61 Lantana camara 58 Ziziphus jujuba 31 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44		Justicia adhatoda	
V44Justicia adhatoda41Lantana camara73Murraya koenigii43V45Carissa spinarum47Boehmeria macrophylla53V46Murraya koenigii69V47Murraya koenigii53Lantana camara58Indigofera tinctoria39Debregeasia salicifolia40Rosa brunonii42Artemisia capillaris34Rubus ellipticus35Indigofera tinctoria36Sarcococca saligna40Rosa brunonii32Berberis aristata33Debregeasia salicifolia36Inula cuspidata37V51Eupatorium adenophorum38Debregeasia salicifolia40Eupatorium adenophorum32V52Debregeasia salicifolia41Cannabis sativa41Colebrookea oppositifolia46V53Justicia adhatoda47Debregeasia salicifolia49Eupatorium adenophorum41Rhamnus virgatus43Myrsine africana47Caryopteris odorata50Myrsine africana43V54Artemisia capillaris51Urtica dioica52Desmodium elegans52V57Artemisia capillaris61Lantana camara62Myrsine africana44V58Artemisia capillaris61Lantana camara58Ziziphus jujuba31 <td>V43</td> <td></td> <td></td>	V43		
Lantana camara 73 Murraya koenigii 43 V45 Carissa spinarum 47 Boehmeria macrophylla 53 Boehmeria macrophylla 61 Wurraya koenigii 69 W47 Murraya koenigii 53 Lantana camara 58 Indigofera tinctoria 39 Lantemisia capillaris 34 Rubus ellipticus 35 Indigofera tinctoria 36 Sarcococca saligna 40 Rosa brunonii 32 W50 Berberis aristata 33 Debregeasia salicifolia 36 Inula cuspidata 37 Eupatorium adenophorum 38 Debregeasia salicifolia 40 Eupatorium adenophorum 32 Debregeasia salicifolia 40 Cannabis sativa 41 Colebrookea oppositifolia 46 V53 Justicia adhatoda 47 Debregeasia salicifolia 49 Eupatorium adenophorum 41 Rhamnus virgatus 43 Myrsine africana 47 Caryopteris odorata 50 Myrsine africana 43 Caryopteris odorata 50 Myrsine africana 43 V56 Artemisia capillaris 51 Urtica dioica 52 Desmodium elegans 52 Artemisia capillaris 61 Lantana camara 62 Myrsine africana 44 Artemisia capillaris 51 Urtica dioica 52 Desmodium elegans 52 Artemisia capillaris 61 Lantana camara 62 Myrsine africana 44 Artemisia capillaris 51 Urtica dioica 52 Desmodium elegans 52 Artemisia capillaris 61 Lantana camara 62 Myrsine africana 44 Artemisia capillaris 61 Lantana camara 58 Ziziphus jujuba 31 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44	V44		
V45Murraya koenigii43Carissa spinarum47Boehmeria macrophylla53V46Boehmeria macrophylla61Murraya koenigii53Lantana camara58Indigofera tinctoria39Debregeasia salcifolia40Rosa brunonii42Artemisia capillaris34Rubus ellipticus35Indigofera tinctoria36Sarcococca saligna40Rosa brunonii32Berberis aristata33Debregeasia salcifolia36Inula cuspidata37Eupatorium adenophorum38Debregeasia salicifolia40Eupatorium adenophorum32V52Debregeasia salicifolia41Cannabis sativa41Colerookea oppositifolia46V53Justicia adhatoda47Debregeasia salicifolia49Eupatorium adenophorum41Rhamnus virgatus43Myrsine africana47Caryopteris odorata50Myrsine africana43V56Artemisia capillaris51Urtica dioica52Desmodium elegans52V57Artemisia capillaris61Lantana camara62Myrsine africana44V58Artemisia capillaris61Lantana camara62Myrsine africana44V58Artemisia capillaris61Lantana camara62Myr	' ' '		
V45Carissa spinarum Boehmeria macrophylla47V46Boehmeria macrophylla Murraya koenigii61V47Murraya koenigii53Lantana camara58Indigofera tinctoria39V48Debregeasia salicifolia40Rosa brunonii42Artemisia capillaris34Rubus ellipticus35Indigofera tinctoria36Sarcococca saligna40Rosa brunonii32V50Berberis aristata33Debregeasia salicifolia36Inula cuspidata37V51Eupatorium adenophorum38Debregeasia salicifolia40Eupatorium adenophorum32V52Debregeasia salicifolia41Cannabis sativa41Colebrookea oppositifolia46V53Justicia adhatoda47Debregeasia salicifolia49Eupatorium adenophorum41Rhamnus virgatus43Myrsine africana47Caryopteris odorata43V54Artemisia capillaris51Urtica dioica52Desmodium elegans52V57Artemisia capillaris61Lantana camara43V58Artemisia capillaris61Lantana camara58Ziziphus jujuba31V59Mimosa himalayana37Ziziphus jujuba34V60Berberis asiatica44			
Boehmeria macrophylla S3	V45		_
V46Boehmeria macrophylla61Murraya koenigii69V47Murraya koenigii53Lantana camara58Indigofera tinctoria39V48Debregeasia salicifolia40Rosa brunonii42Artemisia capillaris34Rubus ellipticus35Indigofera tinctoria36Sarcococca saligna40Rosa brunonii32V50Berberis aristata33Debregeasia salicifolia36Inula cuspidata37V51Eupatorium adenophorum38Debregeasia salicifolia40Eupatorium adenophorum32V52Debregeasia salicifolia41Cannabis sativa41Colebrookea oppositifolia46V53Justicia adhatoda47Debregeasia salicifolia49Eupatorium adenophorum41Rhamnus virgatus43Myrsine africana43V54Artemisia capillaris50Myrsine africana43V55Lantana camara43Caryopteris odorata62V56Artemisia capillaris51Urtica dioica52Desmodium elegans52V57Artemisia capillaris61Lantana camara62V58Artemisia capillaris61Lantana camara62V59Mimosa himalayana37Ziziphus jujuba31V60Berberis asiatica<	13		
V46Murraya koenigii69V47Murraya koenigii53Lantana camara58Indigofera tinctoria39V48Debregeasia salicifolia40Rosa brunonii42Artemisia capillaris34Rubus ellipticus35Indigofera tinctoria36Sarcococca saligna40Rosa brunonii32V50Berberis aristata33Debregeasia salicifolia36Inula cuspidata37V51Eupatorium adenophorum38Debregeasia salicifolia40Eupatorium adenophorum32V52Debregeasia salicifolia41Cannabis sativa41Colebrookea oppositifolia46V53Justicia adhatoda47Debregeasia salicifolia49Eupatorium adenophorum41Rhamnus virgatus43Myrsine africana47Caryopteris odorata50Myrsine africana43V55Lantana camara43V56Artemisia capillaris51Urtica dioica52Desmodium elegans52V57Artemisia capillaris61Lantana camara62V58Artemisia capillaris61Lantana camara58Ziziphus jujuba31V59Mimosa himalayana37Ziziphus jujuba31V60Berberis asiatica44		Roehmeria macrophylla	
V47Murraya koenigii53Lantana camara58Indigofera tinctoria39V48Debregeasia salicifolia40Rosa brunonii42Artemisia capillaris34Rubus ellipticus35Indigofera tinctoria36Sarcococca saligna40Rosa brunonii32V50Berberis aristata33Debregeasia salicifolia36Inula cuspidata37V51Eupatorium adenophorum38Debregeasia salicifolia40Eupatorium adenophorum32V52Debregeasia salicifolia41Cannabis sativa41Colebrookea oppositifolia46V53Justicia adhatoda47Debregeasia salicifolia49Eupatorium adenophorum41Rhamnus virgatus43Myrsine africana47Caryopteris odorata50Myrsine africana43V55Lantana camara62V56Artemisia capillaris51Urtica dioica52Desmodium elegans52V57Artemisia capillaris61Lantana camara62Myrsine africana44V58Artemisia capillaris61Lantana camara58Ziziphus jujuba31Urtica dioica32Mimosa himalayana37Ziziphus jujuba44Trevesia palmata43V60Berberis asiatica4	V46		
V48			
V48Indigofera tinctoria39V48Debregeasia salicifolia40Rosa brunonii42Artemisia capillaris34Rubus ellipticus35Indigofera tinctoria36Sarcococca saligna40Rosa brunonii32V50Berberis aristata33Debregeasia salicifolia36Inula cuspidata37Eupatorium adenophorum38Debregeasia salicifolia40Eupatorium adenophorum32V52Debregeasia salicifolia41Cannabis sativa41Colebrookea oppositifolia46V53Justicia adhatoda47Debregeasia salicifolia49Eupatorium adenophorum41Rhamnus virgatus43Myrsine africana47Caryopteris odorata50Myrsine africana43Caryopteris odorata50V56Artemisia capillaris51Urtica dioica52Desmodium elegans52V57Artemisia capillaris61Lantana camara62Myrsine africana44V58Artemisia capillaris61Lantana camara58Ziziphus jujuba31Urtica dioica32Mimosa himalayana37Ziziphus jujuba31V60Berberis asiatica44	V47		
V48Debregeasia salicifolia40Rosa brunonii42Artemisia capillaris34Rubus ellipticus35Indigofera tinctoria36Sarcococca saligna40Rosa brunonii32V50Berberis aristata33Debregeasia salicifolia36Inula cuspidata37Eupatorium adenophorum38Debregeasia salicifolia40Eupatorium adenophorum32V52Debregeasia salicifolia41Cannabis sativa41Colebrookea oppositifolia46V53Justicia adhatoda47Debregeasia salicifolia49Eupatorium adenophorum41Rhamnus virgatus43Myrsine africana47Caryopteris odorata50Myrsine africana43Caryopteris odorata50V56Artemisia capillaris51Urtica dioica52Desmodium elegans52V57Artemisia capillaris61Lantana camara62V58Artemisia capillaris61Lantana camara58V59Artemisia capillaris46Lantana camara58Ziziphus jujuba31Urtica dioica32Mimosa himalayana37Ziziphus jujuba44Trevesia palmata43V60Berberis asiatica44			
Rosa brunonii 42 Artemisia capillaris 34 Rubus ellipticus 35 Indigofera tinctoria 36 Sarcococca saligna 40 Rosa brunonii 32 V50 Berberis aristata 33 Debregeasia salicifolia 36 Inula cuspidata 37 Eupatorium adenophorum 38 Debregeasia salicifolia 40 Eupatorium adenophorum 32 V52 Debregeasia salicifolia 41 Cannabis sativa 41 Colebrookea oppositifolia 46 V53 Justicia adhatoda 47 Debregeasia salicifolia 49 Eupatorium adenophorum 41 Rhamnus virgatus 43 Myrsine africana 47 Caryopteris odorata 50 Myrsine africana 43 Caryopteris odorata 50 Artemisia capillaris 51 Urtica dioica 52 Desmodium elegans 52 V57 Artemisia capillaris 61 Lantana camara 62 Myrsine africana 44 V58 Artemisia capillaris 61 Lantana camara 58 Artemisia capillaris 46 Lantana camara 58 Ziziphus jujuba 31 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44	1/40		
V49Artemisia capillaris Rubus ellipticus Indigofera tinctoria Sarcococca saligna Rosa brunonii35 36 37 38 39 39 39 39 30 30 30 31 32 33 34 35 36 36 37 37 38 39 39 30 30 30 31 32 33 34 35 36 36 37 39 30 30 30 31 32 33 34 33 34 33 34 34 35 36 37 37 38 38 39 39 30 30 30 30 31 32 33 34 34 34 34 35 36 37 37 37 38 39 39 30 31 31 32 33 34 34 34 34 35 36 37 <br< td=""><td>V48</td><td></td><td></td></br<>	V48		
V49Rubus ellipticus Indigofera tinctoria Sarcococca saligna Rosa brunonii35 36 37 38 39 39 39 39 30 30 30 30 31 32 33 34 35 36 36 37 37 38 39 39 30 30 30 30 31 32 33 34 35 36 37 37 38 39 39 39 30 31 31 32 33 34 34 34 35 36 37		1	
Indigofera tinctoria 36 Sarcococca saligna 40 Rosa brunonii 32 V50 Berberis aristata 33 Debregeasia salicifolia 36 Inula cuspidata 37 V51 Eupatorium adenophorum 38 Debregeasia salicifolia 40 Eupatorium adenophorum 32 V52 Debregeasia salicifolia 41 Cannabis sativa 41 Cannabis sativa 41 Colebrookea oppositifolia 46 V53 Justicia adhatoda 47 Debregeasia salicifolia 49 Eupatorium adenophorum 41 Rhamnus virgatus 43 Myrsine africana 47 Caryopteris odorata 50 Myrsine africana 43 V54 Artemisia capillaris 51 Urtica dioica 52 V56 Artemisia capillaris 51 Urtica dioica 52 V57 Artemisia capillaris 61 Lantana camara 62 Myrsine africana 44 V58 Artemisia capillaris 46 Lantana camara 58 Ziziphus jujuba 31 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44			
Sarcococca saligna A0	V49	Rubus ellipticus	35
V50Rosa brunonii32V50Berberis aristata33Debregeasia salicifolia36Inula cuspidata37V51Eupatorium adenophorum38Debregeasia salicifolia40Eupatorium adenophorum32V52Debregeasia salicifolia41Cannabis sativa41Colebrookea oppositifolia46V53Justicia adhatoda47Debregeasia salicifolia49Eupatorium adenophorum41Rhamnus virgatus43Myrsine africana47Caryopteris odorata50Myrsine africana43V55Lantana camara43Caryopteris odorata62V56Artemisia capillaris51Urtica dioica52Desmodium elegans52V57Artemisia capillaris61Lantana camara62Myrsine africana44V58Artemisia capillaris46Lantana camara58Ziziphus jujuba31Urtica dioica32Mimosa himalayana37Ziziphus jujuba44Trevesia palmata43V60Berberis asiatica44			
V50 Berberis aristata Debregeasia salicifolia Inula cuspidata V51 Eupatorium adenophorum Debregeasia salicifolia V52 Debregeasia salicifolia Cannabis sativa Colebrookea oppositifolia V53 Justicia adhatoda Debregeasia salicifolia V54 Rhamnus virgatus Myrsine africana V55 Lantana camara V56 Artemisia capillaris Urtica dioica Desmodium elegans V57 Artemisia capillaris Lantana camara V58 Artemisia capillaris Lantana camara V59 Artemisia capillaris Lantana camara V50 Artemisia capillaris V51 Lantana camara V52 Artemisia capillaris V53 Artemisia capillaris V54 Artemisia capillaris V55 Artemisia capillaris V56 Artemisia capillaris V57 Artemisia capillaris V58 Artemisia capillaris V59 Artemisia capillaris V50 Berberis asiatica V50 Berberis asiatica			
Debregeasia salicifolia 36 Inula cuspidata 37 Eupatorium adenophorum 38 Debregeasia salicifolia 40 Eupatorium adenophorum 32 V52 Debregeasia salicifolia 41 Cannabis sativa 41 Colebrookea oppositifolia 46 V53 Justicia adhatoda 47 Debregeasia salicifolia 49 Eupatorium adenophorum 41 Rhamnus virgatus 43 Myrsine africana 47 Caryopteris odorata 50 Myrsine africana 43 Caryopteris odorata 50 Myrsine africana 43 Caryopteris odorata 62 V56 Artemisia capillaris 51 Urtica dioica 52 Desmodium elegans 52 V57 Artemisia capillaris 61 Lantana camara 62 Myrsine africana 44 V58 Artemisia capillaris 46 Lantana camara 58 Ziziphus jujuba 31 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44	\/50		
V51 Eupatorium adenophorum 38 Debregeasia salicifolia 40 Eupatorium adenophorum 32 V52 Debregeasia salicifolia 41 Cannabis sativa 41 Colebrookea oppositifolia 46 V53 Justicia adhatoda 47 Debregeasia salicifolia 49 Eupatorium adenophorum 41 Rhamnus virgatus 43 Myrsine africana 47 Caryopteris odorata 50 Myrsine africana 43 V55 Lantana camara 43 Caryopteris odorata 62 V56 Artemisia capillaris 51 Urtica dioica 52 Desmodium elegans 52 V57 Artemisia capillaris 61 Lantana camara 44 V58 Artemisia capillaris 46 Lantana camara 58 Ziziphus jujuba 31 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44	V50		
V51 Eupatorium adenophorum Debregeasia salicifolia Eupatorium adenophorum V52 Debregeasia salicifolia Cannabis sativa Colebrookea oppositifolia V53 Justicia adhatoda Debregeasia salicifolia V54 Eupatorium adenophorum V54 Rhamnus virgatus Myrsine africana Caryopteris odorata V55 Lantana camara Caryopteris odorata V56 Artemisia capillaris Urtica dioica Desmodium elegans V57 Artemisia capillaris Lantana camara V58 Artemisia capillaris Lantana camara V59 Myrsine africana V50 Artemisia capillaris Lantana camara V51 Lantana camara V52 Desmodium elegans V53 Artemisia capillaris Lantana camara V54 Artemisia capillaris Lantana camara V55 Lantana camara V56 Artemisia capillaris Lantana camara V57 Artemisia capillaris Lantana camara V58 Artemisia capillaris Lantana camara V59 Artemisia capillaris Lantana camara V59 Artemisia capillaris Lantana camara V59 Artemisia capillaris Lantana camara V50 Berberis asiatica			
Debregeasia salicifolia Eupatorium adenophorum 32 V52 Debregeasia salicifolia Cannabis sativa Colebrookea oppositifolia V53 Justicia adhatoda Debregeasia salicifolia 49 Eupatorium adenophorum 41 Rhamnus virgatus Ayrsine africana Caryopteris odorata V55 Lantana camara Caryopteris odorata Caryopteris odorata V56 V76 Artemisia capillaris Urtica dioica Desmodium elegans V57 Artemisia capillaris Lantana camara V58 Artemisia capillaris Lantana camara V58 Artemisia capillaris Lantana camara V59 Artemisia capillaris Lantana camara V58 Artemisia capillaris Lantana camara V59 Artemisia capillaris Afolia Lantana camara S8 Ziziphus jujuba V59 Mimosa himalayana Ziziphus jujuba Trevesia palmata V60 Berberis asiatica			
V52 Debregeasia salicifolia 41 Cannabis sativa 41 Colebrookea oppositifolia 46 V53 Justicia adhatoda 47 Debregeasia salicifolia 49 Eupatorium adenophorum 41 Rhamnus virgatus 43 Myrsine africana 47 Caryopteris odorata 50 Myrsine africana 43 Caryopteris odorata 62 Artemisia capillaris 51 Urtica dioica 52 Desmodium elegans 52 V57 Artemisia capillaris 61 Lantana camara 62 Myrsine africana 44 V58 Artemisia capillaris 61 Lantana camara 58 Ziziphus jujuba 31 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44	V51		
V52 Debregeasia salicifolia Cannabis sativa Colebrookea oppositifolia V53 Justicia adhatoda Debregeasia salicifolia 49 Eupatorium adenophorum Rhamnus virgatus Myrsine africana Caryopteris odorata V55 Lantana camara Caryopteris odorata 43 Caryopteris odorata 43 Caryopteris odorata 50 Myrsine africana 43 Caryopteris odorata 51 Urtica dioica 52 Desmodium elegans 52 V57 Artemisia capillaris Lantana camara 62 Myrsine africana 44 V58 Artemisia capillaris Lantana camara 58 Ziziphus jujuba Urtica dioica 32 Mimosa himalayana Ziziphus jujuba 44 Trevesia palmata V60 Berberis asiatica			
Cannabis sativa Colebrookea oppositifolia V53 Justicia adhatoda Debregeasia salicifolia 49 Eupatorium adenophorum Rhamnus virgatus Myrsine africana Caryopteris odorata V54 V55 Lantana camara Caryopteris odorata Caryopteris odorata Caryopteris odorata Caryopteris odorata V56 V76 Artemisia capillaris Urtica dioica Desmodium elegans V57 Artemisia capillaris Lantana camara Myrsine africana V58 Artemisia capillaris Lantana camara Myrsine africana V58 Artemisia capillaris Lantana camara S2 Myrsine africana V58 Artemisia capillaris Lantana camara S8 Ziziphus jujuba Urtica dioica Mimosa himalayana Ziziphus jujuba V60 Berberis asiatica 44 44 45 46 47 47 47 47 43 43 43 44 44 46 46 46 47 47 47 48 49 49 40 41 41 42 43 44 44 44 46 46 46 46 47 47 47		Eupatorium adenophorum	
V53 Justicia adhatoda 47 Debregeasia salicifolia 49 Eupatorium adenophorum 41 Rhamnus virgatus 43 Myrsine africana 47 Caryopteris odorata 50 Myrsine africana 43 Caryopteris odorata 62 V56 Artemisia capillaris 51 Urtica dioica 52 Desmodium elegans 52 V57 Artemisia capillaris 61 Lantana camara 62 Myrsine africana 44 V58 Artemisia capillaris 61 Lantana camara 58 Artemisia capillaris 46 Lantana camara 58 Ziziphus jujuba 31 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44	V52	Debregeasia salicifolia	
V53 Justicia adhatoda Debregeasia salicifolia 49 Eupatorium adenophorum 41 Rhamnus virgatus 43 Myrsine africana Caryopteris odorata 50 Myrsine africana 43 Lantana camara Caryopteris odorata 62 V56 Artemisia capillaris Urtica dioica Desmodium elegans 52 V57 Artemisia capillaris Lantana camara 43 V58 Artemisia capillaris 44 V58 Artemisia capillaris 45 Lantana camara 58 Ziziphus jujuba Urtica dioica Mimosa himalayana Ziziphus jujuba 44 Trevesia palmata V60 Berberis asiatica		=	
Debregeasia salicifolia Eupatorium adenophorum Rhamnus virgatus Myrsine africana Caryopteris odorata V55 Lantana camara Caryopteris odorata 50 Artemisia capillaris Urtica dioica Desmodium elegans 52 V57 Artemisia capillaris Lantana camara 62 Myrsine africana 44 V58 Artemisia capillaris Lantana camara 58 Ziziphus jujuba Urtica dioica Mimosa himalayana Ziziphus jujuba 44 Trevesia palmata V60 Berberis asiatica			
Eupatorium adenophorum 41 Rhamnus virgatus 43 Myrsine africana 47 Caryopteris odorata 50 Myrsine africana 43 Lantana camara 43 Caryopteris odorata 62 Artemisia capillaris 51 Urtica dioica 52 Desmodium elegans 52 V57 Artemisia capillaris 61 Lantana camara 62 Myrsine africana 44 V58 Artemisia capillaris 46 Lantana camara 58 Ziziphus jujuba 31 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44	V53		
V54 Rhamnus virgatus 43 Myrsine africana 47 Caryopteris odorata 50 Myrsine africana 43 V55 Lantana camara 62 V56 Artemisia capillaris 51 Urtica dioica 52 Desmodium elegans 52 V57 Artemisia capillaris 61 Lantana camara 62 Myrsine africana 44 V58 Artemisia capillaris 46 Lantana camara 58 Ziziphus jujuba 31 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44			
V54 Myrsine africana 47 Caryopteris odorata 50 Myrsine africana 43 V55 Lantana camara 43 Caryopteris odorata 62 V56 Artemisia capillaris 51 Urtica dioica 52 Desmodium elegans 52 V57 Artemisia capillaris 61 Lantana camara 62 Myrsine africana 44 V58 Artemisia capillaris 46 Lantana camara 58 Ziziphus jujuba 31 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44			
Myrsine ajricana Caryopteris odorata Myrsine africana 43 V55 Lantana camara Caryopteris odorata 62 V56 Artemisia capillaris Urtica dioica Desmodium elegans 52 V57 Artemisia capillaris Lantana camara 62 Myrsine africana V58 Artemisia capillaris Lantana camara 58 Lantana camara 58 Liziphus jujuba Urtica dioica Mimosa himalayana Ziziphus jujuba 44 Trevesia palmata V60 Berberis asiatica	V54		
Myrsine africana 43 V55 Lantana camara 43 Caryopteris odorata 62 V56 Artemisia capillaris 51 Urtica dioica 52 Desmodium elegans 52 V57 Artemisia capillaris 61 Lantana camara 62 Myrsine africana 44 V58 Artemisia capillaris 46 Lantana camara 58 Ziziphus jujuba 31 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44			
V55 Lantana camara 43 Caryopteris odorata 62 V56 Artemisia capillaris 51 Urtica dioica 52 Desmodium elegans 52 V57 Artemisia capillaris 61 Lantana camara 62 Myrsine africana 44 V58 Artemisia capillaris 46 Lantana camara 58 Ziziphus jujuba 31 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44			
Caryopteris odorata 62 V56 Artemisia capillaris 51 Urtica dioica 52 Desmodium elegans 52 V57 Artemisia capillaris 61 Lantana camara 62 Myrsine africana 44 V58 Artemisia capillaris 46 Lantana camara 58 Ziziphus jujuba 31 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44			
V56 Artemisia capillaris 51 Urtica dioica 52 Desmodium elegans 52 V57 Artemisia capillaris 61 Lantana camara 62 Myrsine africana 44 V58 Artemisia capillaris 46 Lantana camara 58 Ziziphus jujuba 31 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44	V55		
V50 Urtica dioica 52 Desmodium elegans 52 V57 Artemisia capillaris 61 Lantana camara 62 Myrsine africana 44 V58 Artemisia capillaris 46 Lantana camara 58 Ziziphus jujuba 31 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44			
Desmodium elegans 52 V57 Artemisia capillaris 61 Lantana camara 62 Myrsine africana 44 V58 Artemisia capillaris 46 Lantana camara 58 Ziziphus jujuba 31 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44	V56		51
V57 Artemisia capillaris 61 Lantana camara 62 Myrsine africana 44 V58 Artemisia capillaris 46 Lantana camara 58 Ziziphus jujuba 31 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44	130		52
Lantana camara 62 Myrsine africana 44 V58 Artemisia capillaris 46 Lantana camara 58 Ziziphus jujuba 31 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44	l		
Myrsine africana44V58Artemisia capillaris46Lantana camara58Ziziphus jujuba31Urtica dioica32Mimosa himalayana37Ziziphus jujuba44Trevesia palmata43V60Berberis asiatica44	V57	Artemisia capillaris	
V58 Artemisia capillaris 46 Lantana camara 58 Ziziphus jujuba 31 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44			
V59 Lantana camara 58 Ziziphus jujuba 31 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44			
V59 Ziziphus jujuba 31 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44	V58		
V59 Urtica dioica 32 Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44			
Mimosa himalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44			
Ximosa nimalayana 37 Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44	V59		
Ziziphus jujuba 44 Trevesia palmata 43 V60 Berberis asiatica 44	1 4 3 7		
V60 Berberis asiatica 44		Ziziphus jujuba	
	V60		
Sinarundinaria falcata 48		Sinarundinaria falcata	48

Table 6.21: IVI of dominant shrub species at different sampling sites

Table 6.21. IVI of dominant's					
Sampling Sites	Name of Species	IVI			
V1	Eremurus himalaicus	40			
V 1	Gentiana kurroo	33			
V2	Gentiana kurroo	41			
V Z	Iris kemaonesis	54			
	Polygonum bistorta	38			
V3	Deutzia corymbosa	38			
	Poa alpina	40			
	Poa alpina	41			
V4	Gentiana kurroo	40			
	Dactylis glomerata	42			
V5	Artemisia nilagirica	45			
۷.5	Gentiana kurroo	39			
V6	Arenaria serpyllifolia	41			
V7	Carum copticum	15			
V /	Thymus serpyllum	17			
	Pilea scripta	17			
V8	Poa alpina	16			
	Bistorta macrophylla	16			
1/0	Trifolium pratense	18			
V9	Senecio chrysanthemoides	19			
	Allium stracheyi	15			
V10	Anemone rivularis	17			
¥ 10	Origanum vulgare	20			
	Oenothera rosea	15			
V11	Trifolium pratense	15			
	Artemisia vulgaris	14			
V12	Dioscorea deltoidea	17			
	Potentilla argyrophylla	14			
	Arthraxon lancifolius	19			
V13	Fagopyrum esculentum	17			
	Cirsium wallichii	17			
V14	Inula cappa	19			
	Cyperus cuspidatus	15			
V15	Dioscorea deltoidea	20			
	Sida rhombifolia	18			
V16	Urena lobata	16			
	Athyrium angustum	18			
V17	Equisetum ramossimum	22			
, ,	Nepeta ciliaris	22			
	Setaria palmifolia	22			
V18	Solanum nigrum	16			
	Athyrium angustum	19			
V19	Hedychium spicatum	18			
* 1 /	Artemisia nilagirica	17			
	Hydrocotyle nepalensis	18			
V20	Molineria capitulata	17			
	Artemisia vulgaris	23			
V21	Rumex hastatus	20			
721	Chrysopogon fulvus	20			
	Rumex hastatus	32			
V22	Lindenbergia grandiflora	26			
	Emdember gid grandij tord	20			

Sampling Sites	Name of Species	
V23	Rumex hastatus	31
V23	Anaphalis contorta	22
1/2.4	Tagetes minuta	38
V24	Anaphalis contorta	27
\/2F	Eriophorum comosum	22
V25	Anaphalis contorta	29
	Stellaria media	23
V26	Trifolium pratense	20
	Fagopyrum esculentum	33
V27	Impatiens bicolor	33
, <u>-</u> ,	Achyranthes aspera	35
	Anaphalis contorta	39
V28	Achyranthes aspera	44
	Oxalis corniculata	44
V29	Achyranthes aspera	68
	·	36
V30	Delphinium denudatum	
	Achyranthes aspera	37
V31	Impatiens bicolor	32
	Achyranthes aspera	51
V32	Tagetes erecta	46
732	Achyranthes aspera	55
	Ranunculus arvensis	62
V33	Argemone mexicana	55
	Axyris hybrida	63
	Bromus gracillimus	47
V34	Carex obscura	53
	Caltha palustris	48
V2E	Desmodium tiliaefolium	59
V35	Saxifraga diversifolia	62
1/2/	Carex infuscata	48
V36	Potentilla nepalensis	48
	Epilobium hirsutum	52
V37	Bidens pilosa	56
	Aster peduncularis	40
V38	Ageratum conyzoides	48
V39	Rumex hastatus	83
¥3/	Delphinium vestitum	40
V40	Mentha longifolia	43
V40		42
	Ajuga parviflora	
V41	Plantago major	26
	Fragaria vesca	28
1440	Arundo donax	21
V42	Solanum nigrum	21
	Artemisia nilagirica	22
V43	Parthenium hysterophorus	30
, 13	Cyperus rotundus	34
	Parthenium hysterophorus	27
V44	Ageratum conyzoides	29
	Poa annua	30
\//E	Ageratum conyzoides	23
V45	Oxalis corniculata	25

Sampling Sites	Name of Species	IVI
	Cuscuta reflexa	31
	Ageratum conyzoides	23
V46	Poa annua	24
	Curcuma aromatica	26
V47	Cyperus rotundus	32
V47	Poa annua	34
	Cannabis sativa	22
V48	Rhus parviflora	23
	Buddleja asiatica	28
	Datura stramonium	19
V49	Cannabis sativa	20
	Eragrostis pilosa	22
	Fragaria vesca	21
V50	Ajuga parviflora	22
	Colocasia esculenta	25
	Colocasia esculenta	19
V51	Geranium ocellatum	19
V D I	Aster peduncularis	20
	Micromeria biflora	20
V52	Fragaria indica	23
V 3Z	Polygonum plebeium	25

Sampling Sites	Name of Species	IVI
	Datura stramonium	25
V53	Epilobium hirsutum	25
۷55	Xanthium indicum	30
V54	Solanum nigrum	28
V34	Artemisia nilagirica	30
V55	Cynodon dactylon	28
V33	Cannabis sativa	33
	Ageratum conyzoides	26
V56	Artemisia capillaries	29
	Colocasia esculenta	36
	Ageratum conyzoides	21
V57	Xanthium indicum	24
	Ajuga parviflora	36
V58	Cynodon dactylon	31
V 20	Ageratum conyzoides	86
V59	Bidens bipinnata	22
V 39	Euphorbia hirta	65
	Fagopyrum esculentum	26
V60	Anaphalis contorta	26
	Andropogon ischaemum	36

6.3.6.3 Species Diversity

To understand the species richness Shannon Weiner Diversity was calculated for trees, shrubs and herbs. Amongst trees the diversity Index ranged from low of 1.17 at sampling site V22 located near power house site of Sarbari II HEP to highest at sampling site V54 at sampling site located at left bank of Pong dam reservoir (2.82) (**Table 6.22**).

Among shrubs, highest diversity Index was recorded at sampling site V31 in the downstream of Dam site of Parbati III HEP (3.14) followed by sampling site V28 (3.13) in the Upstream of Sainj HEP Dam site and lowest at sampling site V4 located near proposed project area of Jobrei HEP (left bank of Alain Nala) (1.37) (**Table 6.22**).

Diversity of herb species shows seasonal variation in the study area. Maximum Diversity for herbs was recorded during monsoon season varied from lowest 2.27 at sampling site V-14 located near to the proposed Dam site of Nakthan HEP and highest value of diversity was recorded from sampling site V59 (3.17) located near to the proposed Dam site of Dhaulasidh HEP. During pre-monsoon season sampling, species diversity of herbs varied from lowest 1.75 at sampling site V14 (Near proposed power site of Nakthan HEP) and highest 2.98 at sampling site (Site V35) located near to the diversion site of proposed Uhl HEP. During winter season sampling the Diversity Index ranged from lowest of 1.91 (at Site V1) to highest of 2.83 (at Site V59) (Table 6.22).

Table 6.22: Shannon Weiner Diversity Index computed at different sampling sites

	Table 6.22. Shannon Weller Diversity					
	_			Herbs		
Site	Trees	Shrubs	Pre	Monsoon	Winter	
			Monsoon			
V1	1.89	1.91	2.45	2.85	2.18	
V2	1.78	1.96	2.37	2.92	2.05	
٧3	1.86	2.21	2.47	2.88	2.17	
٧4	1.52	1.37	2.23	2.72	1.91	
V 5	1.88	2.01	2.59	2.91	2.12	
V6	1.58	2.42	2.50	2.83	2.25	
٧7	2.16	2.42	2.77	2.94	2.44	
V8	1.74	2.41	2.84	2.89	2.43	
۷9	1.75	2.53	2.72	3.06	2.51	
V10	1.54	2.64	2.75	2.99	2.62	
V11	2.01	2.41	2.72	2.96	2.541	
V12	2.40	2.68	2.98	3.17	2.83	
V13	2.34	2.16	2.91	2.96	2.79	
V14	2.29	2.25	2.76	3.02	2.66	
V15	2.19	2.34	2.86	3.04	2.61	
V16	2.03	1.61	2.91	3.01	2.67	
V17	1.92	2.12	2.74	2.95	2.66	
V18	1.93	1.81	2.89	3.05	2.81	
V19	1.81	1.78	2.86	2.97	2.74	
V20	1.81	2.11	2.90	3.00	2.80	
V21	1.54	2.10	2.65	2.95	2.74	
V22	1.17	1.80	2.42	2.97	2.52	
V23	1.92	1.74	2.46	2.85	2.38	
V24	1.71	1.69	2.59	2.8	2.45	
V25	1.6	2.05	2.31	2.87	2.59	
V26	1.95	2.17	2.54	2.85	2.36	
V27	2.26	2.38	2.44	2.66	2.38	
V28	2.5	3.13	2.24	2.50	2.27	
V29	2.74	2.41	2.18	2.44	2.15	
V30	2.11	2.41	2.70	2.84	2.45	
V31	2.15	2.14	2.53	2.69	2.54	

				Herbs		
Site	Trees	Shrubs	Pre	Monsoon	Winter	
			Monsoon	MOIISOOII	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
V32	1.9	2.43	2.31	2.54	2.39	
V33	1.57	1.54	1.79	2.38	2.18	
V34	1.43	1.69	1.93	2.28	2.05	
V35	1.92	1.50	1.75	2.27	2.18	
V36	1.91	1.75	1.92	2.37	2.17	
V37	1.66	2.29	1.91	2.28	2.05	
V38	1.92	2.55	2.17	2.38	2.16	
V39	1.89	2.36	2.37	2.53	2.21	
V40	2.01	2.17	2.27	2.45	2.14	
V41	2.12	2.05	2.60	2.80	2.53	
V42	1.95	2.06	2.57	2.70	2.45	
V43	1.68	2.03	2.52	2.68	2.45	
V44	2.16	2.11	2.66	2.74	2.47	
V45	1.9	1.92	2.78	2.68	2.44	
V46	1.71	2.25	2.54	2.82	2.47	
V47	1.92	1.74	2.37	2.69	2.46	
V48	2.24	1.98	2.05	2.55	2.29	
V49	2.622	2.43	2.31	2.55	2.29	
V50	2.337	2.37	2.51	2.59	2.43	
V51	1.86	2.51	2.33	2.54	2.33	
V52	1.943	2.27	2.55	2.64	2.44	
V53	2.324	2.30	2.28	2.35	2.28	
V54	2.82	2.04	2.04	2.29	2.13	
V55	1.45	2.86	2.27	2.39	1.94	
V56	1.77	2.00	2.42	2.61	2.37	
V57	1.78	2.31	2.65	2.76	2.35	
V58	2.57	1.89	2.27	2.47	2.16	
V59	2.14	1.80	2.42	2.62	2.54	
V60	2.25	2.05	2.77	2.29	2.16	

6.4 FAUNAL RESOURCES

In this section description of faunal elements comprised of mammals, avifauna, reptiles, amphibia and butterfly found in the study area is given. An inventory of different species belonging to different groups mentioned above was prepared by using secondary data. Literature consulted for the preparation of inventory are Dutta (1999), Chakraborty *et al.* (2005), Mahabal (2005), Mehta (2005), Saikia *et al.* (2007), Uniyal (2007), Bhardwaj and Uniyal (2009), ZSI (2009), Kumar and Mattu (2014), Chandel and Kumar (2014), Singh *et al.* (2015). In addition, data available in various EIA studies of hydroelectric projects planned in the basin was also used. Thereafter sub-basin wise checklist of species was prepared based on the distribution range of each species. The elevation range for each species was determined from the literature mentioned above and other sources. Using the criteria of IUCN redlist (2017-2) and Wildlife (Protection) Act, 1972, each species was assessed for its conservation status.

Final Report: Chapter 6 6.4.1 Mammals

According to data compiled from from secondary sources like published literature and Forest Working Plans and Wildlife management plan of Protected Areas and the forest and wildlife divisions, 40 mammalian species are reportedly found in the Beas basin and same is given at Table 6.23. Family Bovidae is the largest family represented by 6 species while Viverridae is represented by 4 species, Felidae, Muridae, Mustelidae, Cervidae and Cercoitecidae having 3 species. The conservation status of the mammals reported from the basin was assessed based upon their listing in different lists published by agencies like International Union for Conservation of Nature (IUCN) Red List of Threatened Species (2017-2) and different Schedules notified under Wildlife (Protection) Act, 1972.

6.4.1.1 **Conservation Status**

Conservation status of mammal species found in the study area according to IUCN Red List of Threatened Species (2017-2) and different Schedules notified under Wildlife (Protection) Act, 1972 is given at **Table 6.23**.

Nine species of mammals are included in Schedule-I according to WPA 1972, 14 species in Schedule-II and rest of the species are either under Schedule- III, IV or V species. Six species have restricted distribution inhabiting higher elevations of the basin.

According to IUCN Red List (2017-2), 11 species are listed under different threat categories of which 2 species are under Endangered category viz. Panthera uncia and Moschus chrysogaster (Moschus moschiferus), 4 are under Vulnerable category viz. Panthera pardus, Capricornis sumatraensis, Rusa unicolor and Ursus thibetanus while 5 species are listed as Near Threatened category. Rest of the 29 species of mammals reported from the basin are under Least Concern (LC) category (refer Table 6.23).

Among these threatened species Snow Leopard, Musk Deer, Serow, and Himalayan tahr are confined to upper reaches of the basin.

Table 6.23: List of mammals reportedly found in Beas basin and their conservation status

S. No.	Family	Common Name	Scientific Name	Distribution Range (m)	IUCN Redlist (2017- 2)	IWPA Schedules
1	Cercopithetidae	Rhesus Macaque	Macaca mulatta	Up to 3100	LC	II
2		Hanuman Langur	Semnopithecus entellus	1800-3200	LC	II
3	Felidae	Common Leopard	Panthera pardus	up to 3000	VU	I
4		Leopard Cat	Prionailurus bengalensis	up to 1400	LC	1
5		Snow Leopard	Panthera uncia	above 3000	EN	I
6		Jungle Cat	Felis chaus	up to 3000	LC	II
7	Viverridae	Small Civet	Viverricula indica	Foothills	LC	II
8		Common Palm Civet	Paradoxurus hermaphroditus	Lower Reaches	LC	II
9	Herpestidae	Common Mongoose	Herpestes edwardsii	Foothills	LC	IV

					eport. Chap	
S. No.	Family	Common Name	Scientific Name	Distribution Range (m)	IUCN Redlist (2017- 2)	IWPA Schedules
10	Hyaenidae	Striped Hyaena	Hyaena hyaena	Foothills	NT	III
11	Canidae	Jackal	Canis aureus	up to 3500	LC	II
12		Indian Fox	Vulpes bengalensis	Foothills	LC	II
13	Ursidae	Asiatic Black Bear	Ursus thibetanus	1500-3500	VU	II
14		Brown Bear	Ursus arctos	above 3000	LC	I
15	Mustelidae	Common Otter	Lutra lutra	up to 3600	NT	II
16		Stone Marten	Martes foina	above 1500	LC	II
17		Yellow-throated Marten	Martes flavigula	1200-2700	LC	II
18		Himalayan Weasel	Mustela sibirica	1500-4800	LC	II
19	Bovidae	Blue Sheep	Pseudois nayaur	above 3500	LC	I
20		Siberian Ibex	Capra sibirica	3800-4400	LC	l
21		Himalayan Tahr	Hemitragus jemlahicus	2000-3800	NT	I
22		Serow	Capricornis sumatraensis	1800-3400	VU	I
23		Goral	Naemorhedus goral		NT	III
24	Cervidae	Sambar	Cervus unicolor	Foothills	VU	III
25		Barking Deer	Muntiacus muntjak	500-2500	LC	III
26		Musk Deer	Moschus chrysogaster	above 2400	EN	I
27		Indian Wild Boar	Sus scrofa	up to 1500	LC	III
28	Hystricidae	Indian Porcupine	Hystrix indica	1300-2700	LC	IV
29	Leporidae	Black-naped Hare	Lepus nigricollis	up to 1200	LC	IV
30	Pteropodidae	Flying Fox	Pteropus giganteus	up to 2100	LC	-
31		Fulvous Fruit Bat	Rousettus leschenaulti	Up to 2100	LC	٧
32	Rhinopomoatidae	Common Yellow Bat	Scotophilus hardwickii	up to 2100	LC	٧
33	Sciuridae	Kashmir Flying Squirrel	Eoglaucomys fimbriatus	1800-3000	LC	II
34		Red Flying Squirrel	Petaurista Petaurista	up to 3500	LC	II
35	Muridae	House Rat	Rattus rattus	all human settlement	LC	٧
36		House Mouse	Mus musculus	all human settlement	LC	٧
37		Lesser Bandicoot rat	Bandicota bengalensis	all human settlement	LC	-
38	Cricetidae	Royle's Vole	Alticola roylei	1700-2800	NT	-
39	Soricidae	Himalayan Water Shrew	Chimarrogale himalayica	above 3000	LC	٧
40		House Shrew	Suncus murinus	up to 3000	LC	٧

EN = Endangered; VU = Vulnerable; LC = Least Concern, NT = Near Threatened

6.4.1.2 Sub-basin wise Mammals Distribution

Species richness in different sub-basins ranges from 30 to 36 species with maximum in sub-basin Beas IV and minimum in sub-basin Beas I (Table 6.24 & Annexure-IV of Volume II of the report). There is not much variation in the species richness along the elevational gradient, however it is slightly higher at middle elevations i.e. between 1800 and 2100 m (see Figure 6.11). The sub-basins in lower reaches like like Beas IV, Beas V, Uhl, etc. harbour more species as compared to the sub-basins located in upper reaches like Beas I, Beas II, Malana and Parbati. The species like Rhesus Macaque (Macaca mulatta), Common Leopard (Pathera pardus), Jungle Cat (Felis chaus), Jackal (Canis aureus) and Common Otter (Lutra lutra) are widely distributed throughout the basin. Upper reaches of the basin harbour species with relatively restricted distribution and threatened species. The species confined to the upper reaches are Snow Leopard (Panthera uncia), Brown Bear (Ursus arctos), Blue Sheep (Pseudois nayur), Siberian Ibex (Capra sibirica), Himalayan Tahr (Hemitragus jemlahicus) and Musk Deer (Moschus chrysogaster). All species are categorised either under IUCN redlist (2017-2) or Schedule I category or under both categories.

Mammalian species confined to the foothills and lower reaches include Indian Fox (*Vulpes bengalensis*), Hyaena (*Hyaena hyaena*), Common Mongoose (*Herpestes edwardsii*), Common Palm Civet (*Paradoxurus hermaphrodites*), and Sambar (*Cervus unicolor*).

Total species No. of RET No. of Schedule I **Sub-basins** species richness species Beas I 30 8 6 33 7 Beas II 6 31 8 7 Malana 9 Parbati Upper 31 8 8 Parbati Lower 32 8 8 8 Sainj 33 Tirthan 33 8 8 Beas III 31 8 5 Uhl 35 8 8 Beas IV 8 7 36 5 Beas V 33 4

Table 6.24: Sub-basin wise mammalian species richness

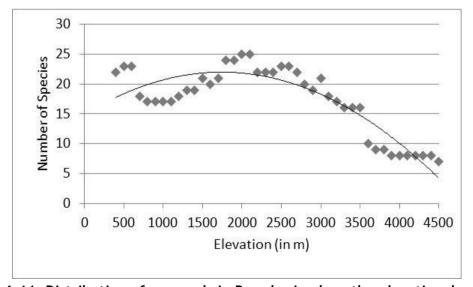


Figure 6.11: Distribution of mammals in Beas basin along the elevational gradient

6.4.2 Avi-fauna

Himachal Pradesh lies in the Western Himalaya Endemic Bird Area (EBA 128) as out of 11 endemic birds, 10 have been reported from Himachal Pradesh. Most of the protected areas in Himachal Pradesh are designated as Important Birding Areas (IBAs).

Final Report: Chapter 6

6.4.2.1 Birds in Beas Basin

For the compilation of checklist of birds found in the Beas basin the published literature and documents were consulted like Chandel *et al.* (2014), Kumar and Kumar (2012). IBA's checklist was also consulted for preparation of inventory of the birds reportedly found in entire Beas basin. According to it **625 species** of birds belonging to 23 Orders and **96 families** are reported from the area (**refer Annexure V** of **Volume II** of the report).

According to this list, Muscicapidae with 53 species is the largest family in the basin followed by Accipitridae with 44 species and Anatidae with 24 species of birds. Nomenclature of scientific names of bird species and their classification is based upon the portal http://avibase.bsc-eoc.org/avibase.jsp.

Out of 625 species of birds 64 species have not been evaluated by IUCN Redlist (2017-2) while 511 have been listed in Least Concern category. Fifty species have been listed under different threat categories of IUCN (2017-2) and WPA Schedules (see Table 6.25). Five species have been listed as Critically Endangered category (White-rumped Vulture, Slender-billed Vulture, Red-headed Vulture, Sociable Lapwing and Great Indian Bustard) while 6 species (Steppe Eagle, Egyptian Vulture, Greater Adjutant, Saker Falcon, Red-necked Falcon and Lesser Florican) are listed as Endangered in IUCN Redlist.

According to WPA (1972) 22 species have been listed as Schedule-I species and 8 species are endemic to Himalaya are reported from the basin.

Pong Dam lake is the richest area in terms of bird species diversity where 415 species of burds have been reported and is home to number of wintering species.

Table 6.25: Conservation status of birds reported from Beas basin

S. No.	Family	Scientific Name	Common Name	IUCN Red List (2017-2)	WPA Schedule	Endemic
1	Accipitridae	Accipiter badius	Shikra		I	
2	Accipitridae	Accipiter gentilis	Northern Goshawk		I	
3	Accipitridae	Accipiter nisus	Eurasian Sparrowhawk		I	
4	Accipitridae	Accipiter virgatus	Besra		I	
5	Accipitridae	Aegypius monachus	Cinereous Vulture	NT		
6	Accipitridae	Aquila chrysaetos	Golden Eagle		ļ	
7	Accipitridae	Aquila heliaca	Eastern Imperial Eagle	VU		
8	Accipitridae	Aquila nipalensis	Steppe Eagle	EN	I	
9	Accipitridae	Buteo buteo	Eurasian Buzzard		ļ	
10	Accipitridae	Circaetus gallicus	Short-toed Eagle		ļ	
11	Accipitridae	Circus cyaneus	Hen Harrier		1	
12	Accipitridae	Circus macrourus	Pallid Harrier	NT	Ī	
13	Accipitridae	Circus	Pied Harrier		I	-

S. No.	Family	Scientific Name	Common Name	IUCN Red List (2017-2)	WPA Schedule	Endemic
		melanoleucos				
14	Accipitridae	Clanga clanga	Greater Spotted Eagle	VU		
15	Accipitridae	Clanga hastata	Indian Spotted Eagle	VU		
16	Accipitridae	Elanus caeruleus	Black-winged Kite		l	
17	Accipitridae	Gypaetus barbatus	Bearded Vulture/ Lammergeier	NT		
18	Accipitridae	Gyps bengalensis	White-rumped Vulture	CR		
19	Accipitridae	Gyps himalayensis	Himalayan Griffon	NT		
20	Accipitridae	Gyps tenuirostris	Slender-billed Vulture	CR		
21	Accipitridae	Haliaeetus albicilla	White-tailed Sea Eagle		1	
22	Accipitridae	Haliaeetus leucoryphus	Pallas fishing eagle	VU	I	
23	Accipitridae	Haliastur indus	Brahminy Kite		I	
24	Accipitridae	Icthyophaga humilis	Lesser Fish Eagle	NT		
25	Accipitridae	Icthyophaga ichthyaetus	Grey-headed Fish Eagle	NT		
26	Accipitridae	Ictinaetus malayensis	Black Eagle		I	
27	Accipitridae	Neophron percnopterus	Egyptian Vulture	EN		
28	Accipitridae	Sarcogyps calvus	Red-headed Vulture	CR		
29	Aegithalidae	Aegithalos niveogularis	White Throated Tit			Endemic
30	Anatidae	Aythya nyroca	Ferruginous Duck	NT		
31	Anatidae	Mareca falcata	Falcated Duck	NT		
32	Anhingidae	Anhinga melanogaster	Oriental Darter	NT		
33	Burhinidae	Esacus recurvirostris	Great Thick-knee	NT		
34	Charadriidae	Vanellus duvaucelii	River Lapwing	NT		
35	Charadriidae	Vanellus gregarius	Sociable Lapwing	CR		
36	Charadriidae	Vanellus vanellus	Northern Lapwing	NT		
37	Ciconiidae	Ciconia episcopus	White necked strock	VU		
38	Ciconiidae	Ephippiorhynchus asiaticus	Black-necked Stork	NT		
39	Ciconiidae	Leptoptilos dubius	Greater Adjutant	EN		
40	Ciconiidae	Leptoptilos javanicus	Lesser Adjutant	VU		
41	Ciconiidae	Mycteria leucocephala	Painted Stork	NT		
42	Cisticolidae	Prinia burnesii	Long-tailed Grass Babbler	NT		
43	Cisticolidae	Prinia burnesii	Rufous-vented prinia	NT		
44	Columbidae	Columba eversmanni	Pale-backed Pigeon	VU		
45	Falconidae	Falco cherrug	Saker Falcon	EN		
46	Falconidae	Falco chicquera	Red-necked Falcon	EN	I	
47	Falconidae	Falco jugger	Laggar Falcon	NT		
48	Falconidae	Falco peregrinus	Peregrine Falcon		I	
49	Fringillidae	Callacanthis burtoni	Spectacled Finch			Endemic
50	Fringillidae	Pyrrhula aurantiaca	Orange Bullfinch			Endemic
51	Gruidae	Antigone antigone	Sarus Crane	VU		

CIACCS-beas basin in the					Tapter 0	
S. No.	Family	Scientific Name	Common Name	IUCN Red List (2017-2)	WPA Schedule	Endemic
52	Haematopodidae	Haematopus ostralegus	Eurasian Oystercatcher	NT		
53	Muscicapidae	Ficedula subrubra	Kashmir Flycatcher	VU		Endemic
54	Otididae	Ardeotis nigriceps	Great Indian Bustard	CR		
55	Otididae	Sypheotides indicus	Lesser Florican	EN		
56	Pandionidae	Pandion haliaetus	Osprey		I	
57	Pelecanidae	Pelecanus crispus	Dalmatian Pelican	VU		
58	Pelecanidae	Pelecanus philippensis	Spot-billed Pelican	NT		
59	Phasianidae	Catreus wallichii	Cheer Pheasant	VU	I	Endemic
60	Phasianidae	Lophophorus impejanus	Monal		ı	
61	Phasianidae	Tragopan melanocephalus	Western Tragopan	VU	ı	Endemic
62	Podicipedidae	Podiceps auritus	Slavonian Grebe	VU		
63	Psittacidae	Psittacula eupatria	Alexandrine Parakeet	NT		
64	Scolopacidae	Calidris ferruginea	Curlew Sandpiper	NT		
65	Scolopacidae	Gallinago nemoricola	Wood Snipe	VU		
66	Scolopacidae	Limosa limosa	Black-tailed Godwit	NT		
67	Scolopacidae	Numenius arquata	Eurasian Curlew	NT		
68	Sittidae	Sitta cashmirensis	Kashmir Nuthatch			Endemic
69	Sylviidae	Phylloscopus tytleri	Tytler's Leaf Warbler	NT		Endemic
70	Threskiornithidae	Threskiornis melanocephalus	Oriental white ibis	NT		

CR=Critically Endangered; EN=Endangered; VU=Vulnerable; NT=Near Threatened

Species richness in different sub-basins ranges from 117 to 418 with minimum in Beas sub-basin I and maximum in Beas sub-basin IV (Table 6.26). Maximum number of bird species reported from Beas IV sub-basin is owing to the presence of Pong Dam Lake which is a suitable wintering habitat for migratory birds. Bar-headed geese is one of the most dominant waterfowl species that is found in Pong Dam lake. Majority of the species are generalists while a few of them are confined to upper reaches (Himalayan Snowcock - Tetraogallus himalayensis, Monal Pheasant - Lophophorus impejanus, Horned Lark - Eremophila alpestris, Himalayan Yellow-billed Chough- Pyrrhocorax graculus, Himalayan Red-billed Chough - Pyrrhocorax pyrrhocorax, Western Greenish Leaf-Warbler - Phylloscopus trochiloides, etc. and lower reaches (Grebs, Herons, Storks, Egrets, Ducks, etc). In general, species richness decreases along the elevational gradients, the sub-basin extend from lower reaches harbour relatively high species richness. Considerably high species richness in Beas sub-basin IV is attributed to the presence of a large wetland - Pong dam reservoir which is home of a large number of aquatic bird species.

Table 6.26: Sub-basin wise bird species richness

Sub-basins	Total species richness	No. of threatened species	No. of Schedule I species
Beas I	117	4	7
Beas II	123	4	7
Malana	121	4	7
Parbati Upper	120	4	7

Sub-basins	Total species richness	No. of threatened species	No. of Schedule I species
Parbati Lower	123	4	7
Sainj Khad	123	4	7
Tirthan	123	4	6
Beas III	136	7	7
Uhl	137	7	7
Beas IV	418	21	5
Beas V	145	3	1

Endemic Species

The species that are endemic to Western Himalaya and found in Beas basin are White-throated Tit (*Aegithalos niveogularis*), Western Tragopan (*Tragopan melanocephalus*), Cheer Pheasant (*Catreus wallichi*), Spectacled finch (*Callacanthis burtoni*), Orange Bullfinch (*Pyrrhula aurantiaca*), Kashmir flycatcher (*Ficedula subrubra*), Kashmir nuthatch (*Sitta cashmirensis*), Tytlers' leaf warbler (*Phylloscopus tytleri*) and Brooks's Leaf-Warbler (*Phylloscopus subviridis*).

Distribution and Migratory Habit

Nearly 66% of the total bird species in Beas basin are residents. Of the total resident bird 14.5% species perform local movement and 13.5% are seasonal migrants (**Figure 6.12**). About 25% of the total bird species are summer and winter visitors, which perform their movement for breeding purpose. The passage migrant species include Pale Grasshopper-Warbler, Lesser Whitethroat, Yellow Wagtail, Brambling, Black-headed Bunting and Red-headed Bunting.

The wetland of Pong dam reservoir (Pong Dam Lake Wildlife Sanctuary) in the basin (Beas subbasin IV) provides a good niche for the migratory birds. As many as 418 bird species have been recorded from the Pong dam reservoir area only according to Status Paper on Pong Wetland published by Randhawa (2014) under HP State Centre on Climate Change. Many migratory birds like Bar Headed Geese (*Anser indicus*), Northern Pintail (*Anas acuta*), Common Pochard (*Aythya farina*), Red Necked Grebe (*Podiceps grseigena*), Mallard (*Anas platyrhynchos*), etc. visit this site in winter from trans-Himalayan region.

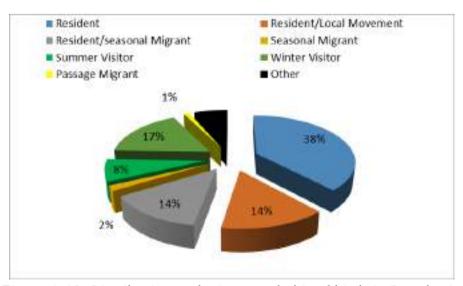


Figure 6.12: Distribution and migratory habit of birds in Beas basin

6.4.3 Butterflies

The mountainous landscape and forest cover of Himachal Pradesh provides good climatic conditions for the butterflies. Based upon the data compiled from secondary sources, Forest Working Plans, Management Plans of Protected areas, published literature viz. Uniyal and Mathur, (1998), Uniyal (2007), Bhardwaj and Uniyal (2009), Chandel *et al.* (2014) a list of butterflies was prepared. A total of 150 species of butterflies along with their sub-basin wise distribution and conservation status have been located in Beas river basin (Annexure-VI of Volume II of the report). All species of butterflies reported from the basin are grouped under 7 families.

Species richness in different sub-basins ranges from 76 to 137 with minimum in Beas sub-basin I and maximum in Beas sub-basin IV. Majority of the species are common in distribution in all sub-basin while a few of them are restricted to upper reaches (Red Apollo - Parnassius charltonius, Common Blue Apollo - Parnassius hardwickei, Painted Lady- Vanessa cardui, Mountain Argus - Erebia shallada) and lower reaches (Spangle-Papilio protenor, Tawny Mime-Chilasa agestor, Psyche - Leptosia nina nina, Common Jezebel - Delias eucharis, Pale Hedge Blue - Udara dilecta, Purple Hedge Blue - Heliophorus epicles, Common Baron - Euthalia aconthea, Common Jester - Symbrenthia hippoclus, Common Bush Brown - Mycalesis perseus, Dark Blue Tiger - Tirumala septentrionis etc).

Likewise other taxa in Beas river basin, the richness of butterflies decreases along the elevational gradients (**Figure 6.13**). Thus, the sub-basins extend from the lower reaches harbour relatively high butterfly richness.

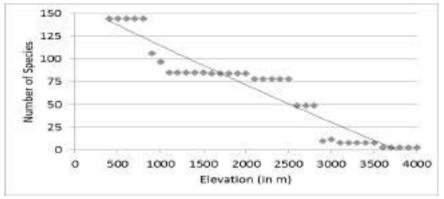


Figure 6.13: Distribution of butterfly species in Beas basin along the elevational gradient

Sub-basin wise number of butterfly species is given at Table 6.27.

Table 6.27: Sub-basin wise number of butterfly species richness

Sub-basins	Total species	No. of Threatened	No. of Schedule I
	richness	species	species
Beas I	76	0	0
Beas II	79	0	0
Malana	84	0	0
Parbati Upper	84	0	0
Parbati II	82	0	0
Sainj Khad	84	0	0
Tirthan	84	0	0
Beas III	135	0	1

Sub-basins	Total species richness	No. of Threatened species	No. of Schedule I species
Uhl	137	0	1
Beas IV	136	0	1
Beas V	120	0	1

Conservation Status: Out of 150 species invetorized for Beas river basin, only 5 species, viz. Bath White (Pontia daplidice), Small Grass Yellow (Eurema brigitta), Peacock Pansy (Junonia almanac), Yellow Pansy (Junonia hierta) and Common Crow (Euploea core) are assessed under the IUCN Redlist (2017-2) and listed under 'Least Concern' category. Similarly, only a few species are included in the list of scheduled species as per IWPA (1972). Only one species - Common Pierrot (Castalius rosimon) in Beas river basin is included in Schedule I. A total of 8 species like Common Yellow Swallowtail (Papilio machaon), Regal Apollo (Parnassius charltonius), Common Onyx (Horaga onyx), Pea Blue (Lampides boeticus), Common Beak (Libythea lepita), Danaid Eggfly (Hypolimnas misippus), Veined Labyrinth (Lethe pulaha), Common Fiorester (Lethe insana insane) are listed in Schedule II.

6.4.4 Herpetofauna

Herpetofauna comprise of amphibians that include frogs, toads, newts, salamanders, etc. and reptiles which include snakes, lizards, turtles, terrapins, tortoises, etc. An inventory of herpetofauna comprising reptiles and amphibians was prepared from the Forest Working Plans, management plans of Protected Area and published literature by Jaswant Singh, Murari Lal Thakur and H S Banyal (2015), and the same is given at **Table 6.28**. Total 59 species are reported from the Beas basin of which 51 species are of reptiles and 8 species are of amphibians.

6.4.5 Reptiles

Reptilian fauna is comprised of 51 species belonging to 12 families (**Table 6.28**). Colubridae is the largest family represented by sixteen species followed by Agamidae, Scincidae and Geoemydidae with 5 species each. IUCN Red List (2017-2) has kept Indian Rock Python (*Python molurus*), Spotted Pond Turtle (*Geoclemys hamiltonii*) and Gangetic Soft-shell Turtle (*Nilssonia gangetica*) under Vulnerable category. Eleven species are under Least Concern category and rest of the species are yet not evaluated under IUCN Red List (2017-2).

6.4.6 Amphibia

From the Beas basin 8 species of Amphibians are reported which belong to 4 families, which comprises of toads and frogs. Bufonidae is the largest family with 3 species (see **Table 6.28**).

Table 6.28: List of herpetofauna reported from Beas basin

S.No.	Family	Scientific Name	Common Name
		Reptiles	
1	Agamidae	Calotes versicolor	Garden lizard
2	Agamidae	Laudakia tuberculata	Kashmir rock agama
3	Agamidae	Oriotaris major	Large Mountain Lizard
4	Agamidae	Sitana ponticeriana	Fan throated Lizard
5	Agamidae	Zootoca vivipara	Common lizard
6	Boidae	Eryx johnii	Eastern Red Sand Boa
7	Boidae	Gongylophis conicus	Common Sand Boa

	is Dusili III IIF	T	T mat Keport. Chapter
S.No.	Family	Scientific Name	Common Name
8	Colubridae	Ahaetulla nasuta	Green Vine Snake
9	Colubridae	Amphiesma platyceps	Eastern Keelback
10	Colubridae	Amphiesma stolatum	Buff-striped Keelback
11	Colubridae	Boiga multifasciata	Many Banded Cat Snake
12	Colubridae	Coelognathus helena	Indian Trinket Snake
13	Colubridae	Liopeltis rappi	Himalayan Stripe-necked Snake
14	Colubridae	Lycodon aulicus	Common Wolf Snake
15	Colubridae	Lycodon flavomaculatus	Yellow Spotted Wolf Snake
16	Colubridae	Lycodon striatus	Barred Wolf Snake
17	Colubridae	Oligodon arnensis	Banded Kukri Snake
18	Colubridae	Orthriophis hodgsonii	Himalayan Trinket Snake
19	Colubridae	Platyceps rhodorachis	Braid Snake
20	Colubridae	Ptyas mucosus	Indian Rat Snake
21	Colubridae	Spalerosophis atriceps	Black headed Royal Snake
22	Colubridae	Xenochrophis piscator	Checkered Keelback Water Snake
23	Colubridae	Xenochrophis sanctijohannis	Keelback Water Snake
24	Elapidae	Bungarus caeruleus	Common Indian crait
25	Elapidae	Naja naja	Indian Cobra
26	Elapidae	Naja oxiana	Central Asian Cobra
27	Gekkonidae	Cyrtodactylus lawderanus	Lawder's Bent-toed Gecko
28	Gekkonidae	Cyrtodactylus stoliczkai	Kashmir rock gecko
29	Gekkonidae	Hemidactylus brookii	Brook's House Gecko
30	Gekkonidae	Hemidactylus flaviviridis	Yellow Green House Gecko
31	Pythonidae	Python molurus	Indian Rock Paython
32	Scincidae	Ablepharus pannonicus	Mediterranean Dwarf Skink
33	Scincidae	Eurylepis taeniolatus	Yellow bellied Mole Skink
34	Scincidae	Lygosoma punctata	Spotted Supple Skink
	Schiciaac	Scincella himalayanus	Spocced supple skink
35	Scincidae	(Asymblepharus himalayanum)	Himalayan Ground Skink
36	Scincidae	Scincella ladacense	Ladakh Ground Skink
37	Typhlopidae	Myriopholis algeriensis	Largebeaked Thread Snake
38	Typhlopidae	Ramphotyphlops braminus	Brahminy Blind Snake
39	Typhlopidae	Typhlops porrectus	Slender Blind Snake
40	Varanidae	Varanus bengalensis	Bengal Monitor
41	Viperidae	Cryptelytrops albolabris	White-lipped pit Viper
42	Viperidae	Daboia russelii	Russell's Viper
43	Viperidae	Echis carinatus	Saw Scaled Viper
44	Viperidae	Gloydius himalayanus	Himalayan pit viper
77	Viperidae	Turtles	Tililatayan pit vipei
45	Geoemydidae	Geoclemys hamiltonii	Spotted Pond Turtle
46	Geoemydidae	Melanochelys trijuga	Indian Black Turtle
47	Geoemydidae	Nilssonia gangetica	Gangetic Soft-shell Turtle
48		Pangshura smithii	Brown Roofed Turtle
49	Geoemydidae Geoemydidae		Indian tent turtle
50		Pangshura tentoria	
	Trionychidae	Lissemys punctata	Indian Flap- shelled turtle
51	Trionychidae	Lissemys punctata andersoni	North Indian Flapshell
E2	Dufonidos	Amphibia	Common Asian tond
52	Bufonidae	Duttaphrynus melanostictus	Common Asian toad
53	Bufonidae	Duttaphrynus himalayanus	Himalayan toad
54	Bufonidae	Bufotes viridis	Green Toad
55	Dicroglossidae	Nanorana minica	Himalaya tiny frog
56 57	Dicroglossidae	Nanorana vicina	Himalaya paa frog
١ 5/	AA 1 1 1	C	
	Megophryidae	Scutiger nyingchiensis	-
58 59	Megophryidae Ranidae Ranidae	Scutiger nyingchiensis Rana cascadae Amolops formosus	Cascade frog Stream frog

Sub-basin wise herpetofaunal species richness is given at Table 6.29.

Table 6.29: Sub-basin wise herpetofaunal species richness in Beas river basin

Sub-basins	Total species richness	No. of Threatened species	No. of Schedule I species
Beas I	26	1	0
Beas II	28	1	0
Malana	27	1	0
Parbati Upper	27	1	0
Parbati Lower	28	1	0
Sainj Khad	29	1	0
Tirthan	29	1	0
Beas III	32	2	1
Uhl	32	2	1
Beas IV	38	4	2
Beas V	30	4	2

Conservation Status: Most of the assessed species are listed in 'Least Concern' category. Only Tiny Frog is categorised under 'Vulnerable' category. Tiny Frog is widely distributed in the basin. Under the Schedule list of IWPA (1972) only Indian Flapshell Turtle are included under Schedule I. It is confined to the Shivalik hills (Beas IV and V) of of the basin.

6.5 PROTECTED AREAS

There are 10 Wildlife Sanctuaries and 3 National Parks in the basin covering an area of 3236 sq km (see Table 6.30 and Figure 6.14).

Table 6.30: List of Protected Areas located within Beas Basin and status of ESZ Notifications*

S. No.	PROTECTED AREAS	Area (Sq km)	Status of ESZ Notification				
Wildlife Sanctuaries							
			Draft				
1	Dhauladhar Wildlife		Notification				
	Sanctuary	982.86	(13/01/2016)				
			Draft				
2	Kanawar Wildlife Sanctuary	107.29	Notification				
			(28/04/2016)				
			Draft				
3	Khokhan Wildlife Sanctuary	14.94	Notification				
			(04/03/2016)				
			Draft				
4	Manali Wildlife Sanctuary	29.00	Notification				
			(04/03/2016)				
5	Sainj Wildlife Sanctuary**	90.00	-				
	Pong Dam Lake Wildlife		Draft				
6	Sanctuary	207.59	Notification				
	Sanctuary		(17/11/2016)				
7	Tirthan Wildlife Sanctuary**	61.00	-				
	Shikari Devi Wildlife		Draft				
8		29.94	Notification				
	Sanctuary		(04/03/2016)				
			Draft				
9	Nargu Wildlife Sanctuary	132.37	Notification				
	-		(08/03/2016)				
10	Kais Wildlife Sanctuary	12.61	Draft				

	-		
			Notification (24/04/2016)
Natio	nal Parks		
11	Great Himalayan National Park**	754.40	-
12	Khirganga National Park**	710.00	Draft Notification (25/07/2016)
13 Indrakilla National Park		104.00	Final Notification Issued (17.01.2018)
	t Himalayan National Park ervation Area (GHNPCA)**	1615.40	Draft Notification (22/08/2016)

^{*}http://envfor.nic.in/content/esz-notifications

All the above-mentioned Protected Areas (PAs) are located entirely within Beas basin except for Dhauladhar WLS as large part of it is located within Ravi river basin. The boundaries of all the PAs were generated using extents and maps given in their Gazette notifications in addition to the notifications issued by MoEF&CC, GoI regarding Eco Sensitive Zone around these PAs. In addition ESZ were also delineated for each PA using the coordinates given in notifications downloaded from http://envfor.nic.in/content/esz-notifications. Except for Inderkilla National Park only Draft notifications have been issued till date all other PAs in the basin. Draft notification of Great Himalyan National Park Conservation Area (GHNPCA) covers ESZ around Khirganga National Pak, Great Himalyan National Park, Sainj Wilflife Sanctuary and Tirthan Wildlife Sanctuary. In a 24th Expert Committee meeting for declaration of Eco Sensitive Zones aroung Wildlife Sanctuaries/National Parks on 27-28 February 2017 at MoEF&CC recmmended the finalisation of of the notification subject to resolving of issue of geo-coordinates of boundaries of PAs and ESZ.

A description of key features of PAs in the basin are given in following paragraphs.

6.5.1 Great Himalayan National Park Conservation Area (GHNPCA)

As discussed above draft notification on 25.07.2016 bu MoEF&CC, GoI regarding delineation of Eco Sensitive Zone with an area of 417 sq km with an extent from 500 m up to 6 km around the boundary of Great Himalayan National Park Conservation Area (GHNPCA) covering GHNP, Khirganga National Park, Sainj Wildlife Sanctuary and Tirthan Wildlife Sanctuary which is spread over an area of 1615.40 sq km.

Great Himalayan National Park (GHNP) is the most important Protected Area in the basin. The park was established in 1984 and is spread over an area of 1,171 km². The park was declared as a National Park in 1999. Total area of the park is about 754.4 sq km. It is comprised of the catchments of Jiwa, Sainj and Tirthan rivers. It is bounded Rupi Bhaba, Sainj and Kanawar WLS and Pin Valley National Park. GHNP constitutes North-West Himalaya (Biogeographic Zone 2A). Biogeographically, it is at the junction of world's two major faunal realms, i.e. the oriental to the south and palaearctic to the north makes it an important site.

^{**} Great Himalayan National park Conservation Area includes Sainj WLS, Tirthan WLS Great Himalayan National Park and Khirganga National park

CIA&CCS-Beas Basin in HP

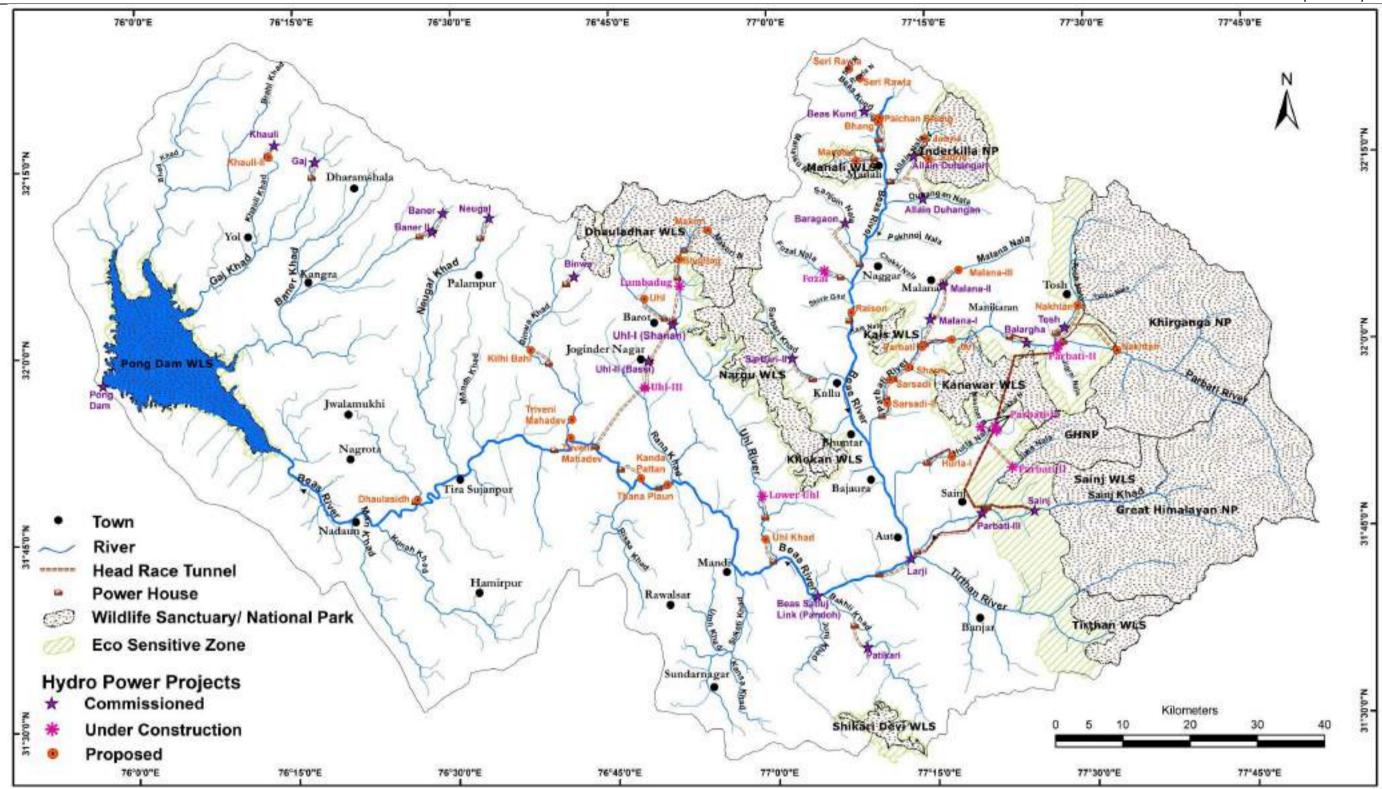


Figure 6.14: Map showing Protected areas and National Parks in Beas basin

While Khirganga NP was established in July 28, 2010 covering an area of 710 sq km. Sainj WLS was notified in October 23, 1999 while Tirthan WLS was established in November 1, 1999.

GHNP is most important component of GHNPCA. Great Himalayn NP harbours forest of Oak (Quercus semecarpifolia), Blue Pine (Pinus wallichiana), West Himalayan Silver Fir (Abies pindrow), West Himalayan Spruce (Picea smithiana) and Himalayan Cedar (Cedrus deodara). The broad-leaf forests contain Horse Chestnut (Aesculus indica), Rhododendron arboreum, Quercus leucotrichophora, Q. floribunda at the lower altitudes and pure patches of Birch (Betula utilis) at higher altitudes. Yew (Taxus baccata) is an important medicinal tree of the understorey. A rich variety of shrubs and patches of ringal bamboo (Arundinaria spathiflora) are found as a dense understorey. The shrubs of (Rhododendron campanulatum) form the Krummholz patch in the sub-alpine zone. Other shrubs that are found about 3700 m are Juniperus communis, J. pseudosabina, Lonicera, Berberis, Cotoneaster, Vibernum, Rosa occur extensively about 3700 m. There are a number of man-made (by graziers) clearings/grasslands within the forest areas locally known as thach used as grazing and camping ground for the migratory livestock (cattle, sheep and goats). The alpine flora occurring above 4,000 m is characterised by species rich meadows with medicinal and economical values. They include Aconitum violaceum, Salvia moorcroftiana, Viola serpens, Jurinea macrocephala, Rheum emodi, Berginia ciliata, Picrorhiza kurroo, Saussurea graminifolia, etc.

A total of 832 plant species belonging to 427 genera and 128 families of higher plants are reported from GHNP.

Thirty-one mammalian species were recorded in the area by Gaston et al., 1981. Main mammal species found are:

- Serow (Capricornis sumatraensis)
- Himalayan Tahr (Hemitragus jemlahicus)
- Goral (Nemorhaedus goral)
- Blue Sheep (*Pseudois nayaur*)
- Himalayan Black Bear (Selenarctos thibetanus)
- Himalayan Brown Bear (*Ursus arctos*)
- Himalayan Red Fox (Vulpes vulpes)
- Musk Deer (Moschus chrysogaster)

The Great Himalayan National Park is home to 209 bird species, which include the endangered Western tragopan and four other pheasant species.

GHNP was awarded UNESCO World Heritage Site status in 2014, in recognition of its outstanding significance for biodiversity conservation.

6.5.2 Other Protected Areas

Inderkilla NP

Inderkila NP is comprised of ctachments of Hamtah Nala, Jobrie Nala and Allain Nala. It comprises that habitat of Snow leopard (*Uncia uncia*), Himalayan Brown Bear (*Ursus arctos*), Himalayan Tahr (*Hemitragus jemlahicus*), Black bear (*Ursus thibetanus*), Himalayan Ibex (*Capra ibex*), Musk Deer (*Moschus chrysogaster*), Himalayan Griffon (*Gyps himalayensis*),

Rakhal (*Taxus baccata*), Bhojpatara (*Betula utilis*), Maple (*Acer pictum*), Shingli mingli (*Dioscorea deltoidea*), Patish (*Aconitum* spp.), Dhoop (*Jurinea macrocephala*), Artemisias (*Artemisia* spp.), Salam panja (*Dactylorhiza hatageria*), Banaksha (*Viola* spp.) etc. are the important rare, endangered, threatened flora and fauna of the National Park.

Final notification of ESZ of Inderkilla NP was issued on 17 January 2018. The project components of proposed Jobrie HEP are located within the National Park boundary. One intake of operational Allain Duhangan HE project (Allain Nala intake) is located within ESZ of the NP.

Manali WLS

Manali WLS is comprised of catchment of Manalsu Nal upstream of Kaland village which is a right bank tributary of Beas river joining at Manali town. The sanctuary harbours rich floral and faunal diversity. Biological significance of the area is charcterised by forests of Deodar, Fir, Spruce and Kail among conifers and a variety of broad leaved species like *Prunus*, *Acer*, *Juglans*, *Buxus*, *Rhododendron*, *Celtis*, *Betula*, *Ulmus*, *Aesculus*, *Alnus*, *Myrica*, etc.

The proposed Manalsu HE project is located within the sanctuary.

Kanawar Wildlife Sanctuary

Kanawar WLS comprises of upper catchments of Dolang Nala and Hurla Nala. Dolang Nala drains into Parbati river on its left bank while Hurla Nala drains into Beas river. The Head Race Tunnel of Parbati-II HE project passes through Kanawar WLS. No project falls within the WLS or its ESZ.

Khokhan WLS & Nargu WLS

Nargu and Khokan WLS comprise of part catchments of Uhl river and Sarbari Khad. Biodiversity significance of this area is charcaterised by avi-fauna like Western Tragopan (*Tragopan melanocephalus*) Himalayan Monal (*Lophophorus impejanus*), Chukor (*Alectoris chukar*), Koklas (*Pucrasia macrolopha*) and Kalij (*Lophophorus leucomelanus*) and among mammals Musk Deer (*Moschus chrysogaster*), Barking Deer, Leopard, Leopard Cat, Jungle Cat, Himalayan yellow throated marten, Black bear, Brown bear, Porcupine are the important faunal elements inhabiting the WLS. It has Dense forests of Deodar, Fir, Spruce, Kail and rhododendrons.

No project falls within WLS or ESZ.

Kais WLS

It is small sanctuary comprising of catchment of Kais nala located on left bank of Beas river. Important faunal elements of the sanctuary are Himalyan monal (*Lophophorus impejanus*), Kalij (*Lophophorus leucomelanus*), Chukor and Grey partridge among birds and Black bear, Goral, Leopard cat and Himalayan yeloow throated marten. The forests are comprised of Ban oak forest, Moist deodar forest, Wesren mixed coniferous forest, Moist temperate and Kharsu forests.

No project falls within WLS or ESZ.

Dhauladhar WLS

Large part of Dhauladhar WLS falls in Ravi river catchment and only southern part of the sanctuary falls in upper catchment of Uhl river a tributary of Beas river. Biological significance of the sanctuary is comprised of mammals like Himalyan tahr, Himalyan ibex, Musk deer, Serow and Brown bear. The area is rich in avi-faunal diversity comprised of species like Rock bunting, Wren, Western tragopan, Himalyan Monal, Kalij and Koklas pheasant. The area is rich in butterflies also.

Two proposed projects viz. Bhujling and Makori HEPs fall within Dhauladhar WLS.

Shikari Devi WLS

Northen part of the sanctuary is comprised of upper catchment of Deola Nala draining into Beas river while its southern part of drains into Sutlej river. The area is rich in avi-faunal diversity.

No project falls with WLS and ESZ.

Pong Dam Lake WLS

It is comprised of reservoir formed by Pong dam. Pong Dam Lake WLS is very rich in bird diversity. The details of the same is given in next section.

6.6 IMPORTANT BIRDING AREAS

BirdLife International is the world's largest nature conservation partnership. It identifies Important Birding Areas worldwide for conservation action. The Bombay Natural History Society (BNHS) is the BirdLife Partner for India and is responsible for coordinating the IBA programme in the country. Of the 467 IBAs identified so far in India, 191 are Wildlife Sanctuaries, 52 are National Parks, 23 are Tiger Reserves and one is a Conservation Reserve (Birdlife International, 2017). India's IBAs are host to 75 species of globally threatened birds of which eight are Critically Endangered, 10 are Endangered and 57 are Vulnerable. A total of 199 IBAs (almost 43%) are located outside the Protected Area Network (PAN) and have no official protection. In Himachal Pradesh 27 IBAs have been and of these 24 are sanctuaries and 2 are national parks and only one is non-protected area (Islam and Rahmani, 2004). In Beas basin 9 IBAs have been identified based upon the criteria defined by Birdlife International (see Table 6.31). Most of the IBAs harbor critically endangered Western targopan and Vulnerable Cheer pheasant.

6.6.1 Criteria for Identification of Important Birding Areas

A1. Globally threatened species

The site is known or thought regularly to hold significant numbers of a globally threatened species.

Notes: The site qualifies if it is known, estimated or thought to hold a population of a species categorized by the IUCN Red List (2017-2) as Critically Endangered, Endangered or Vulnerable. In general, the regular presence of a Critical or Endangered species, irrespective of population size, at a site may be sufficient for a site to qualify as an IBA. For Vulnerable

species, the presence of more than threshold numbers at a site is necessary to trigger selection.

A2. Restricted-range species

The site is known or thought to hold a significant component of a group of species whose breeding distributions define an Endemic Bird Area (EBA) or Secondary Area (SA).

A3. Biome-restricted species

The site is known or thought to hold a significant component of the group of species whose distributions are largely or wholly confined to one biome.

A4. Congregations

The site is known or thought to hold congregations of $\ge 1\%$ of the global population of one or more species on a regular or predictable basis.

Table 6.31: List of IBAs identified in Beas basin

IBA Site Code	IBAs	Criteria	Important Species*
IN-HP-04	Dhauladhar Wildlife Sanctuary	A1, A2	Western tragopan
IN-HP-08	Great Himalayan National Park	A1, A2	Western tragopan, Cheer pheasant
IN-HP-09	Kais Wildlife Sanctuary	A1, A2	Western tragopan, Cheer pheasant
IN-HP-11	Kanawar Wildlife Sanctuary	A1, A2	Western tragopan, Cheer pheasant
IN-HP-16	Manali Wildlife Sanctuary	A1, A2, A3	Western tragopan, Cheer pheasant
IN-HP-17	Nargu Wildlife Sanctuary	A3	-
IN-HP-19	Pong Dam Lake Wildlife Sanctuary	A1, A4iii	White-rumped vulture, Slender-billed vulture
IN-HP-24	Shikari Devi Wildlife Sanctuary	A1, A2, A3	Cheer pheasant
IN-HP-27	Tirthan Wildlife Sanctuary	A1, A2, A3	Western tragopan

^{*}Western tragopan, White-rumped vulture and Slender-billed vulture are Critically Endangered; Cheer pheasant is Vulnerable

Owing to rich avi-faunal diversity Pong dam reservoir has been declared as Ramsar site in 2002 spread over an area of 156.62 sq km. Pong dam lake is an important wintering ground for waterfowl. IBA report on Himachal Pradesh states that concentration of wintering waterfowl population has sharply increased over the years especially the populations of Northern Pintail, Bar-headed Geese, Common Teal, Eurasian Wigeon, Common Pochard and Great Cormorant. The report also says that almost 20% of Bar-headed Geese population occurs in Pong Dam only. No other IBA site in India holds such a large population of this species. The status paper on Pong dam has reported 415 species of birds from the Pong Dam lake. Pong Dam Lake also known as Maharana Pratap Sagar was declared Ramsar site on 19.8.2002 by Ramsar Convention.

CHAPTER-7 ECOLOGICAL ASPECTS- AQUATIC

7.1 WATER QUALITY

The chemical and physical sampling and analyses provide a broad picture of the parameters that define the aquatic environment. Biological parameters detect water quality changes that other methods might miss or underestimate. Resident biotic components in their environments are indicators of environmental quality for assessing the impacts that chemical sampling is unlikely to detect due to any modification of river course or flow pattern. Plankton (phytoplankton and zooplankton), benthic macro-invertebrates, and fish are the most commonly used in assessing biological integrity of any river ecosystem. The benthic macro-invertebrates are most often studied for wadeable riffles in streams and rivers while algae are often used in lakes to examine eutrophication. Therefore, the river water quality assessments are best analysed when these are based upon the biological together with physical and chemical assessments that provide a complete picture of the river water quality. In the description of physico-chemical and biological parameters the results have been discussed.

7.2 PHYSICO-CHEMICAL WATER QUALITY

Water quality of the Beas river and its tributary streams at different locations in the basin was assessed vis-à-vis Tolerance Limits for Inland Surface Waters (as per IS:2296:1982) (refer Table 7.1) and water quality standards prescribed by Central Pollution Control Board (CPCB) standards for drinking water (refer Table 7.2).

For water quality assessment water samples were collected from locations in Beas basin covering different project areas across the entire basin and details of each sampling site is given at **Table 7.3**. Some of the sites are located in the pristine area while some of the sites were located in the vicinity of towns located on the bank of Beas river or its tributaries.

Although data collection was done monthly, however in order to assess the water quality thoughout the basin the monthly data collected was averaged season-wise at each sampling site in different sub-basins. Therefore, seasonal variation across the sampling sites in sub-basins has been discussed in this chapter.

The detailed results of all the water quality parameters analyzed for water samples collected during various seasons (Winter, Pre-monsoon and Monsoon) and monthly (from May 2016 to December 2016) from Beas rivers and as well as their tributaries at different sampling locations are given at **Annexure-VII** of **Volume II** of the report.

Table 7.1: Tolerance Limits for Inland Surface Waters (as per IS:2296:1982)

S. No.	Parameter and Unit	Class-A	Class-B	Class-C	Class-D	Class-E
1	Colour (Hazen Units)	10	300	300	-	-
2	Odour	Unobjectionable	-	-	-	-

Taste Tasteless Tasteles	S. No.	Parameter and Unit	Class-A	Class-B	Class-C	Class-D	Class-E
4				Class B	- Class C	- Ciass D	Class L
S				9.5	9.5	9.5	9.5
6 DO (mg/L) (min) 6 5 4 4 - BOD (3 days at 27°C) (mg/L) 2 3 3 - - Total Coliforms (MPN/100 mL) 50 500 5000 - - 8 (MPN/100 mL) 500 - 1500 - 2100 10 Oil and Grease (mg/L) - - 0.1 0.1 - 11 Mineral Oil (mg/L) 0.01 -		• ` ' ` ' '	0.3	0.5	0.5		
BOD (3 days at 27°C)			-	-	-		
7 (mg/L) 2 3 3 - - Total Coliforms 8 (MPN/100 mL) 50 500 5000 - - 9 TDS (mg/L) 500 - 1500 - 2100 10 Oil and Grease (mg/L) - - 0.1 0.1 - <td>0</td> <td></td> <td>0</td> <td>)</td> <td>4</td> <td>4</td> <td>-</td>	0		0)	4	4	-
8 (MPN/100 mL) 50 500 5000 -	_	,	2		_		
8 (MPN/100 mL) 50 500 -	/		Z	3	3	-	-
9 TDS (mg/L) 500 - 1500 - 2100 10 Oil and Grease (mg/L) - 0.0.1 0.1 - 1.1 11 Mineral Oil (mg/L) 0.01			Ε0	F00	F000		
10		,				-	-
11		` ` ` '					
Free Carbon Dioxide							
12 (mg/L CO ₂) - - - 6 -	11		0.01	-	-	-	-
Free Ammonia (mg/L as N) 14	40						
13 N) - - - 1.2 - 14 Cyanide (mg/L as CN) 0.05 0.05 0.05 - - 15 Phenol (mg/L C₀H₅OH) 0.002 0.005 0.005 - - Total Hardness (mg/L as Cl) 300 - - - - 16 CaCO₃) 300 - - - - 17 Chloride (mg/L as Cl) 250 - 600 - 600 18 Sulphate (mg/L as SO₄) 400 - 400 - 1000 19 Nitrate (mg/L as NO₃) 20 - 50 - - 20 Fluoride (mg/L as F) 1.5 1.5 1.5 1.5 - - 21 Calcium (mg/L as Ca) 80 - - - - - 21 Calcium (mg/L as Ca) 80 - - - - - 22 Magnesium (mg/L as Cu) 1.5 - 1.5 - - - 23 Copper (mg/L as Cu) 1.5 - 1.5 - - - 24 Iron (mg/L as Ba) 0.5 - - -	12		•	-	-	6	-
14 Cyanide (mg/L as CN) 0.05 0.05 0.05 - - 15 Phenol (mg/L C ₆ H ₅ OH) 0.002 0.005 0.005 - - - 16 CaCO ₃) 300 - - - - - 17 Chloride (mg/L as Cl) 250 - 600 - - - - - - - - - - - - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
15		,	-	-	-	1.2	-
Total Hardness (mg/L as CaCO ₃) 300						-	-
16 CaCO ₃) 300 - - - - 17 Chloride (mg/L as CI) 250 - 600 - 600 18 Sulphate (mg/L as SO ₄) 400 - 400 - 1000 19 Nitrate (mg/L as NO ₃) 20 - 50 - - 20 Fluoride (mg/L as F) 1.5 1.5 1.5 - - 21 Calcium (mg/L as Ca) 80 - - - - - 21 Calcium (mg/L Mg) 24.4 -	15		0.002	0.005	0.005	-	-
17 Chloride (mg/L as CI) 250 - 600 - 600 18 Sulphate (mg/L as SO ₄) 400 - 400 - 1000 19 Nitrate (mg/L as NO ₃) 20 - 50 - - 20 Fluoride (mg/L as F) 1.5 1.5 1.5 - - 21 Calcium (mg/L as Ca) 80 - - - - 21 Calcium (mg/L as Ca) 80 - - - - 22 Magnesium (mg/L Mg) 24.4 - - - - 23 Copper (mg/L as Cu) 1.5 - 1.5 - - - 24 Iron (mg/L as Fe) 0.3 - 50 - - - 24 Iron (mg/L as Fe) 0.3 - 50 - - - 25 Mn) 0.5 - - - - - 26 Zinc (mg/L as Zn) 15 - 15 - - - 27 Boron (mg/L as Ba) 1 - - - - 29 Silver (mg/L as Ag) 0.05 - - - - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
18 Sulphate (mg/L as SO ₄) 400 - 400 - 1000 19 Nitrate (mg/L as NO ₃) 20 - 50 - - 20 Fluoride (mg/L as F) 1.5 1.5 1.5 - - 21 Calcium (mg/L as Ca) 80 - - - - 21 Calcium (mg/L as Ca) 80 - - - - 22 Magnesium (mg/L Mg) 24.4 - - - - 23 Copper (mg/L as Cu) 1.5 - 1.5 - - 24 Iron (mg/L as Fe) 0.3 - 50 - - 24 Iron (mg/L as Fe) 0.3 - 50 - - 25 Mn) 0.5 - - - - - 26 Zinc (mg/L as Zn) 15 - 15 - - - - - - - - - <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>				-	-	-	-
19 Nitrate (mg/L as NO ₃) 20 - 50 - - 20 Fluoride (mg/L as F) 1.5 1.5 1.5 - - 21 Calcium (mg/L as Ca) 80 - - - - 22 Magnesium (mg/L Mg) 24.4 - - - - 23 Copper (mg/L as Cu) 1.5 - 1.5 - - 24 Iron (mg/L as Fe) 0.3 - 50 - - 24 Iron (mg/L as Fe) 0.3 - 50 - - 24 Iron (mg/L as Fe) 0.3 - 50 - - 24 Iron (mg/L as Fe) 0.3 - 50 - - 25 Mn) 0.5 - - - - - 26 Zinc (mg/L as Zn) 15 - 15 - - - - 27 Boron (mg/L as Ba) 1 - - - 2 28 Barium (mg/L as Ag) 0.05 - - - - 29 Silver (mg/L as Ag) 0.05 0.2 0.2 - - 30 A				-		-	
20 Fluoride (mg/L as F) 1.5 1.5 1.5 - - 21 Calcium (mg/L as Ca) 80 - - - - 22 Magnesium (mg/L Mg) 24.4 - - - - 23 Copper (mg/L as Cu) 1.5 - 1.5 - - 24 Iron (mg/L as Fe) 0.3 - 50 - - 24 Iron (mg/L as Fe) 0.3 - 50 - - 24 Iron (mg/L as Fe) 0.3 - 50 - - 24 Iron (mg/L as Fe) 0.3 - 50 - - 24 Iron (mg/L as Fe) 0.3 - 50 - - 25 Mn) 0.5 - - - - - 26 Zinc (mg/L as B) - - - - - - - - - - - - - <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>1000</td>				-		-	1000
21 Calcium (mg/L as Ca) 80 - - - - 22 Magnesium (mg/L Mg) 24.4 - - - - 23 Copper (mg/L as Cu) 1.5 - 1.5 - - 24 Iron (mg/L as Fe) 0.3 - 50 - - 24 Iron (mg/L as Fe) 0.3 - 50 - - 24 Iron (mg/L as Fe) 0.3 - 50 - - 24 Iron (mg/L as Zn) 15 - - - - - 25 Mn) 0.5 - <td< td=""><td>19</td><td>Nitrate (mg/L as NO₃)</td><td>20</td><td>-</td><td>50</td><td>-</td><td>-</td></td<>	19	Nitrate (mg/L as NO ₃)	20	-	50	-	-
22 Magnesium (mg/L Mg) 24.4 - - - - 23 Copper (mg/L as Cu) 1.5 - 1.5 - - 24 Iron (mg/L as Fe) 0.3 - 50 - - 24 Iron (mg/L as Fe) 0.3 - 50 - - 24 Iron (mg/L as Fe) 0.3 - 50 - - 25 Mn) 0.5 - - - - 26 Zinc (mg/L as Zn) 15 - - - - - 27 Boron (mg/L as Ba) 1 - - - - 2 28 Barium (mg/L as Aa) 1 - - - - - 2 29 Silver (mg/L as As) 0.05 -		Fluoride (mg/L as F)		1.5	1.5	-	-
23 Copper (mg/L as Cu) 1.5 - 1.5 - <td>21</td> <td>Calcium (mg/L as Ca)</td> <td>80</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	21	Calcium (mg/L as Ca)	80	-	-	-	-
24 Iron (mg/L as Fe) 0.3 - 50 - - Manganese (mg/L as Sh) 0.5 - - - - 26 Zinc (mg/L as Zn) 15 - - - - 27 Boron (mg/L as B) -	22	Magnesium (mg/L Mg)	24.4	-	-	-	-
Manganese (mg/L as Mn) 25 Mn) 0.5 - - - - 26 Zinc (mg/L as Zn) 15 - 15 - - 27 Boron (mg/L as B) - - - - 2 28 Barium (mg/L as Ba) 1 - - - - 29 Silver (mg/L as Ag) 0.05 - - - - 30 Arsenic (mg/L as As) 0.05 0.2 0.2 - - 31 Mercury (mg/L as Hg) 0.001 - - - - 32 Lead (mg/L as Pb) 0.1 - 0.1 - - 33 Cadmium (mg/L as Cd) 0.01 - 0.01 - - Chromium (VI) (mg/L as 0.05 0.05 0.05 - - - 34 Cr) 0.05 0.05 - - - - 35 Selenium (mg/L as Se) 0.01 - 0.05 - - - Anionic De	23	Copper (mg/L as Cu)	1.5	-	1.5	-	ı
25 Mn) 0.5 - - - 26 Zinc (mg/L as Zn) 15 - 15 - 27 Boron (mg/L as B) - - - - - 28 Barium (mg/L as Ba) 1 - - - - 29 Silver (mg/L as Ag) 0.05 - - - - 30 Arsenic (mg/L as As) 0.05 0.2 0.2 - - 31 Mercury (mg/L as Hg) 0.001 - - - - 32 Lead (mg/L as Pb) 0.1 - 0.1 - - 33 Cadmium (mg/L as Cd) 0.01 - 0.01 - - 34 Cr) 0.05 0.05 0.05 - - 35 Selenium (mg/L as Se) 0.01 - 0.05 - - Anionic Detergents	24	Iron (mg/L as Fe)	0.3	-	50	-	-
26 Zinc (mg/L as Zn) 15 - 15 - - 27 Boron (mg/L as B) - - - - 2 28 Barium (mg/L as Ba) 1 - - - - 29 Silver (mg/L as Ag) 0.05 - - - - 30 Arsenic (mg/L as As) 0.05 0.2 0.2 - - 31 Mercury (mg/L as Hg) 0.001 - - - - - 32 Lead (mg/L as Pb) 0.1 - 0.1 - - - 33 Cadmium (mg/L as Cd) 0.01 - 0.01 - - 34 Cr) 0.05 0.05 0.05 - - - 35 Selenium (mg/L as Se) 0.01 - 0.05 - - - Anionic Detergents - - 0.05 - - - -		Manganese (mg/L as					
27 Boron (mg/L as B) - - - 2 28 Barium (mg/L as Ba) 1 - - - 29 Silver (mg/L as Ag) 0.05 - - - 30 Arsenic (mg/L as As) 0.05 0.2 0.2 - - 31 Mercury (mg/L as Hg) 0.001 - - - - 32 Lead (mg/L as Pb) 0.1 - 0.1 - - 33 Cadmium (mg/L as Cd) 0.01 - 0.01 - - Chromium (VI) (mg/L as 0.05 0.05 0.05 - - - 34 Cr) 0.05 0.05 - - - - 35 Selenium (mg/L as Se) 0.01 - 0.05 - - - Anionic Detergents - - 0.05 - - - -	25	Mn)	0.5	-	-	-	-
28 Barium (mg/L as Ba) 1 - - - 29 Silver (mg/L as Ag) 0.05 - - - 30 Arsenic (mg/L as As) 0.05 0.2 0.2 - 31 Mercury (mg/L as Hg) 0.001 - - - 32 Lead (mg/L as Pb) 0.1 - 0.1 - 33 Cadmium (mg/L as Cd) 0.01 - 0.01 - Chromium (VI) (mg/L as - 0.05 0.05 0.05 - 34 Cr) 0.05 0.05 0.05 - - 35 Selenium (mg/L as Se) 0.01 - 0.05 - - Anionic Detergents	26	Zinc (mg/L as Zn)	15	-	15	-	-
29 Silver (mg/L as Ag) 0.05 - - - - 30 Arsenic (mg/L as As) 0.05 0.2 0.2 - - 31 Mercury (mg/L as Hg) 0.001 - - - - 32 Lead (mg/L as Pb) 0.1 - 0.1 - - 33 Cadmium (mg/L as Cd) 0.01 - 0.01 - - Chromium (VI) (mg/L as 0.05 0.05 0.05 - - 34 Cr) 0.05 0.05 - - 35 Selenium (mg/L as Se) 0.01 - 0.05 - Anionic Detergents	27	Boron (mg/L as B)	-	-	-	-	2
29 Silver (mg/L as Ag) 0.05 - <td>28</td> <td>Barium (mg/L as Ba)</td> <td>1</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	28	Barium (mg/L as Ba)	1	-	-	-	-
30 Arsenic (mg/L as As) 0.05 0.2 0.2 - - 31 Mercury (mg/L as Hg) 0.001 - - - - 32 Lead (mg/L as Pb) 0.1 - 0.1 - - 33 Cadmium (mg/L as Cd) 0.01 - 0.01 - - Chromium (VI) (mg/L as 0.05 0.05 0.05 - - 34 Cr) 0.05 0.05 - - 35 Selenium (mg/L as Se) 0.01 - 0.05 - - Anionic Detergents	29		0.05	-	-	-	-
31 Mercury (mg/L as Hg) 0.001 -<	30		0.05	0.2	0.2	-	
32 Lead (mg/L as Pb) 0.1 - 0.1 - - 33 Cadmium (mg/L as Cd) 0.01 - 0.01 - - Chromium (VI) (mg/L as Se) 34 Cr) 0.05 0.05 - - 35 Selenium (mg/L as Se) 0.01 - 0.05 - - Anionic Detergents - - 0.05 - - -		` `		-	-	-	-
33 Cadmium (mg/L as Cd) 0.01 - 0.01 - -	32		0.1	-	0.1	-	-
Chromium (VI) (mg/L as 0.05 0.05 0.05 -				-		-	-
34 Cr) 0.05 0.05 - - 35 Selenium (mg/L as Se) 0.01 - 0.05 - - Anionic Detergents - - - - -							
35 Selenium (mg/L as Se) 0.01 - 0.05 Anionic Detergents	34	` ' ` `	0.05	0.05	0.05	-	-
Anionic Detergents		,				-	-
	36		0.2	1	1	-	-

Class-A: Drinking water source without conventional treatment but after disinfection

Class-B: Outdoor bathing

Class-C: Drinking water source with conventional treatment followed by disinfection

Class-D: Fish culture and wild life propagation

Class-E: Irrigation, industrial cooling and controlled waste disposal

Table 7.2: Drinking Water Quality Standards (as per IS:10500:2012)

Parameters	Desirable Limit*	Permissible Limit**
Color (Hz)	5.0	25
Odour	Unobjectionable	-
Taste	Agreeable	-
Turbidity (ntu)	5	10
pH	5-8.5	No relaxation
Total Coliforms (MPN/100 ml)	0	-
TDS (mg/l)	500	2000

Parameters	Desirable	Permissible
r di diffecers	Limit*	Limit**
Total hardness (mg/l) as CaCO ₃	300	600
Total alkalinity (mg/l)	200	600
Chlorides (mg/l)	250	1000
Sulphates (mg/l)	200	400
Flourides (mg/l)	1.0	1.5
Nitrate (mg/l)	45	100
Calcium (mg/l)	75	200
Magnesium (mg/l)	30	100
Manganese (mg/l)	0.05	0.5
Copper (mg/l)	0.05	1.5
Zn (mg/l)	5.0	15.0
Iron (mg/l)	0.30	1.0
Lead (mg/l)	0.05	No relaxation
Cadmium (mg/l)	0.01	No relaxation
Chromium (mg/l)	0.05	0.05
Phenolic compounds as phenol (mg/l)	0.001	0.001
Anionic detergents as MBAS (mg/l)	0.001	0.002
Arsenic as As (mg/l)	0.05	0.05
Selenium as Se (mg/l)	0.01	0.01
Mercury total as Hg (mg/l)	0.001	0.001
Cyanides (mg/l)	0.05	0.05
Mineral oil (mg/l)	0.01	0.3
Polynuclear aromatic hydrocarbons (PAH)	0.02µg/l	0.02µg/l

^{*1} The figures indicated under the column 'Acceptable' are the limits up to which water is generally acceptable to the consumers

The results of all the water quality parameters analyzed for water samples collected from Beas river and their tributaries at different sampling locations are discussed below.

From the overview of the results of all the parameters analyzed it was observed that the concentration of parameters like Iron is <0.01 whereas all the heavy metals i.e. As, Pb, Cd, Hg, Cu, Cr, Zn, and Mn are either Not Detectable (ND) or Below Detectable Limits (BDL) except at few sampling sites. Therefore, keeping above results in mind the water quality objectives for Beas basin main emphasis was laid on a core indicator set of parameters that reflect their importance along a river stretch in a valley/basin. The key indicators like temperature, pH, electrical conductivity, total dissolved solids, total suspended solids, dissolved oxygen, total hardness, calcium, magnesium, chlorides, nitrites, sulphates, and phosphates, potassium and sodium have been discussed in the present report in addition to other parameters like Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Total Coliforms have also been discussed. Firstly, sub-basin-wise water quality has been discussed followed then by overall overview of the water quality across the basin.

^{**2} Figures in excess of those mentioned under 'Acceptable render the water not acceptable, but still may be tolerated in the absence of alternative and better source but up to the limits indicated under column "Cause for Rejection" above which are supply will have to be rejected.

Table 7.3: Details of water sampling sites and their location the different projects in Beas basin

S.No.	Sampling Site	Project	Remarks
1	W1	Beas Kund	Samples were collected from Solang Nala near Beas Kund SHEP Power House upstream of Palchan Village. Palchan village is located along the Highway connecting Manali to Lahaul valley via Rohtang Pass
2	W2	Palchan Bhang	Samples were collected Solang Nala near Palchan village
3	W3	Bhang	Samples collected from Beas river downstream of Solang Nala confluence near Bhang village
4	W4	Jobrie	Samples collected from Allain Nala downstream of Hamta Nala and Allain Nala confluence near Hamta village
5	W5	Allain Duhangan	Samples collected from Allain Nala left bank tributary of Beas River near Aleo village located along NH-21 (Kullu Manali Highway).
6	W6	Allain Duhangan	Samples collected from Duhangan Nala, a left bank tributary of Beas River near Jagatsukh village
7	W7	Baragaon	Samples collected from Sanjoin Nala, a right bank tributary of Beas River near PH of Baragoan HEP. Patlikuhl trout fish hatchery maintained by water supply from Sanjoin Nala.
8	W8	Fozal	Samples collected rom Fozal Nala, a right bank tributary of Beas River near Dobhi village located along NH21 (Kullu-Manali Highway)
9	W9	Sarbari-II	Samples collected from Sarbari Khad near Power House of Sarbari-II HEP. Sarbari Khad is right bank tributary of Beas River and meet Beas river upstream of Kullu town
10	·		Samples collected from Tosh Nala upstream of diversion site of Tosh SHEP
11	W11	Nakthan	Samples collected from Tosh Nala upstream of Tosh nala confluence with Parbati river
12	W12	Nakthan	Samples collected from Parbati river near Nakthan village near Nakthan HEP dam site
13	W13	Tosh	Samples collected from Tosh Nala near Tosh SHEP Power House site
14	W14	Parbati-II	Samples collected from Parbati river upstream of diversion site of Parbati II HEP
15	W15	Parbati-II	Samples collected from Parbati river downstream of Parbati river-Tosh Nala confluence near diversion site of Parbati II HEP (Pulga Dam site)
16	W16	Parbati-II	Samples collected from Parbati river downstream of Pulga Dam Site
17	W17	Balargha	Samples collected from Parbati river near diversion site of under construction Balargha HEP
18	W18	Malana-III	Samples collected from Malana Nala upstream of Malana II HEP reservoir
19	W19	Malana-II	Samples collected from Malana Nala downstream of Malana II HEP Dam site near Malana village
20	W20	Malana-II	Samples collected from Malana Nala downstream of Malana-II HEP Power House site
21	W21	Malana-I	Samples collected from Malana Nala downstream of Malana-I HEP diversion site
22	W22	Malana-I	Samples collected from Malana nala near upstream of Malana-I Power house site
23	W23	Parbati	Samples collected from Parbati river near Jari village located near Malana and Parbati river

CIA&CCS- Beas Basin in HP Draft Final Report: Chapter 7

S.No.	Sampling Site	Project	Remarks
			confluence
24	W24	Sharni	Samples collected from Parbati river downstream of Malana nala confluence with Parbati river downstream of Jari village
25	W25	Sarsadi	Samples collected from Parbati river upstream of Sarsadi village located near the Highway connecting Kullu-Bhuntar to Parbati Valley
26	W26	Sarsadi-II	Samples collected from Parbati river downstream of Sarsadi village
27	W27	Hurla-I	Samples collected from Hurla nala near the confluence of Hurla nala with Beas river
28	W28	Sainj	Samples collected from Sainj Khad upstream of diversion site of Sainj HEP
29	W29	Sainj	Samples collected from Sainj Khad upstream of Power house site of Sainj HEP
30	W30	Parbati-III	Samples collected from Sainj Khad downstream of Jiwa nala confluence with Sainj Khad
31	W31	Parbati-III	Samples collected from Sainj Khad downstream of Parbati III HEP diversion site
32	W32	Parbati-III	Samples collected from Sainj Khad near Tail race outlet of Parbati III HEP
33	W33	Patikari	Samples collected from Bakhli Khad near Power house site of Patikari HEP
34	W34	Larji	Samples collected from Beas river near diversion site of Larji HEP near Aut village
35	W35	Larji	Samples collected from Beas river downstream of Larji HEP Power House site
36	W36	BSL	Samples collected from Beas river about 5000m upstream of Pandoh Dam reservoir tail
37	W37	BSL	Samples collected from Pandoh dam reservoir on Beas river
38	W38	BSL	Samples collected from Beas river about 500m downstream of Pandoh dam
39	W39	Lambadug	Samples collected from Lambadug Nala at Lambadug HEP diversion site near Lohardi village
40	W40	Uhl	Samples collected from Uhl river near Barot village a hilly tourist place.
70	W 70	Ont	Barot Trout fish hatchery is dependent upon water from Uhl Khad and Lambagug Nala for water supply
41	W41	Uhl-I	Samples collected from Uhl river downstream of Uhl Khad and Lambadug Nala confluence near Uhl-I diversion site located near Barot village
42	W42	Uhl-II	Samples collected from Neri Khad a tributary of Rana Khad and is located near Bassi Power House (Uhl-II HEP) near Joginder Nagar town. Bassi Power House (Uhl-II HEP) is tailrace development of Shanon Power House (Uhl-I HEP)
43	W43	Uhl-III	Samples collected from Rana Khad a right bank tributary of Beas river near Joginder Nagar town in project area of Uhl-III HEP which is tailrace development of Bassi Power House (Uhl-II HEP).
44	W44	Uhl-III	Samples collected from Beas river downstream of confluence of Rana Khad with Beas river near the Power House of Uhl-III HEP is located in the right bank of Beas river
45	W45	Lower Uhl	Samples collected from Uhl river downstream of proposed Powerhouse site of Lower Uhl HEP near Kamand village
46	W46	Uhl Khad	Samples collected from Uhl river upstream of confluence of Uhl khad with Beas river at PH location of UHL Khad HEP which is lower most proposed project on Uhl river

CIA&CCS- Beas Basin in HP Draft Final Report: Chapter 7

S.No.	Sampling Site	Project	Remarks
47	W47	Binwa	Samples collected from Binwa Khad downstream of Power house site of Binwa HEP. Binwa Khad is right bank tributary of Beas river and near this site a Baijnath temple and Paprola Railway station is located on the bank of Binwa Khad.
48	W48	Kilhi Bahl	Samples collected from Binwa Khad near proposed diversion site of Kilhi Bahl HEP
49	W49	Neogal	Samples collected from Neugal Khad near Neugal HEP Power house site located nearby Palampur town. Neugal Khad is right bank tributary of Beas river. Water from Neugal khad is also utilized by villagers for irrigation purpose.
50	W50	Baner	Samples collected from Baner Khad near Baner HEP Power House site. Kangra town is adjacent to the Baner Khad. Villagers depend on Baner Khad for irrigation.
51	W51	Baner-II	Samples collected from Baner Khad downstream of Baner II HEP diversion site
52	W52	Gaj	Samples collected from Gaj Khad near diversion site of Gaj HEP
53	W53	Khauli	Samples collected from Khauli Khad near Power House site of Khauli HEP
54	W54	Thana Plaun	Samples collected from Beas river downstream of Mandi town
55	W55	Thana Plaun	Samples collected from Beas river upstream of confluence of Rana Khad with Beas river near proposed diversion site of Thana Palun HEP
56	W56	Triveni Mahadev	Samples collected from Beas river upstream of confluence of Binwa Khad with Beas river near proposed diversion site of Triveni Mahadev HEP
57	W57	Dhaulasidh	Samples collected from Beas river upstream of confluence of Kunah Khad with Beas river and downstream of proposed diversion site of Dhaulasidh HEP
58	W58	Pong Dam	Samples collected from Beas river 500m upstream of Pong dam reservoir tail near Dehra village
59	W59	Pong Dam	Samples collected from Beas river upstream of Pong dam reservoir

7.2.1 Beas I Sub-basin

The Beas I sub-basin is comprised of the catchment of Beas river up to its confluence with Duhangan near Jagatsukh village. Six water sampling sites were located in Beas river and its tributaries (Allain Nalah and Duhangan Nallah).

Temperature, Dissolved Oxygen and pH

Water temperature during surveys in Beas river and its tributary streams varied from season to season and ranged from -1.80°C to 8.3°C. Minimum water temperature was recorded from site W1 located near diversion site of Beas Kund HEP diversion site ranged from 1.8 to 2.0°C (Figure 7.1).

Dissolved Oxygen during the water sampling during monsoon season was recorded lowest (8.2 mg/l to 9.5 mg/l). Minimum DO value was observed from sampling site W3 (Beas River near proposed Bhang HEP) and highest (9.5 mg/l) at W5 (Allain nala), while during pre-monsoon it ranged from 8.4 mg/l to 9.7 mg/l (Figure 7.1). During the winter season sampling i.e. DO was recorded in range of 8.6- 9.4 mg/l at all the sampling sites (Figure 7.1).

The pH of water at most of the sampling sites during pre-monsoon was observed to be slightly alkaline in nature as it ranged between 6.3 to 7.46 and was highest at site W2 (Beas river near Palchan Bhang HEP) and lowest at W1 (Beas Kund HEP diversion site). The pH of water didn't vary much during Monsoon and Winter it varied from 6.62 to 7.87 and 6.0 to 7.65 respectively (Figure 7.1).

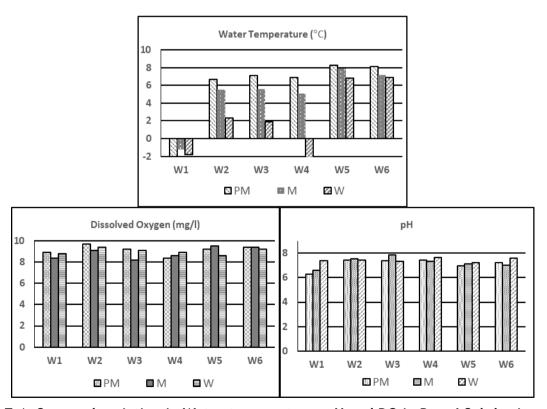


Figure 7.1: Seasonal variation in Water temperature, pH and DO in Beas I Sub-basin (PM=Pre-monsoon; M=Monsoon; W=Winter; W1-W6 : Sampling sites)

Total Suspended Solids, Turbidity, Total Dissolved Solids and Electrical Conductivity

It can be seen from the (**Figure 7.2**) total suspended solids were higher during the monsoon season sampling period while Total suspended solids (TSS) ranged between 1.6 and 56 mg/l and Turbidity in the river water at all the sampling locations was quite low. The water of Beas river and its tributaries remains very clear and transparent throughout the year except during the occasional rains which brings silt into the river making it slightly turbid for few days only and there after which becomes clear again.

Total Dissolved Solids (TDS) and Electrical conductivity (EC) were higher during monsoon season sampling period when TDS was in the range of 50 to 81.7 mg/l (**Figure 7.2**) and EC was in the range of 82 to 134 μ S.

Total Hardness, Calcium, Magnesium and Chlorides

Variation in Total Hardness, Calcium and Magnesium concentrations at different sampling sites during different sampling periods is given at (**Figure 7.3**). Total hardness of water ranged from 9.8 mg/l (at W3 - Allain Nalah) during summer to 37.3 mg/l (at sampling site W1-Beas River) during winter season sampling. Calcium and Magnesium values followed the similar pattern as total hardness is sum total of calcium hardness and magnesium hardness.

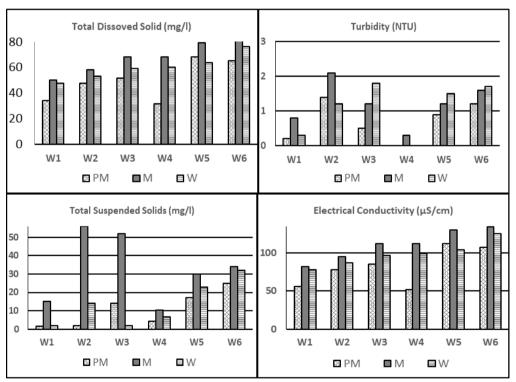


Figure 7.2: Seasonal variation in Total suspended solids, Turbidity, Total dissolved solids and Electrical conductivity in Beas I sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W1-W6 : Sampling sites)

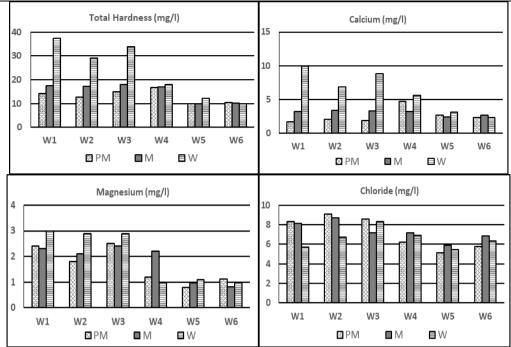
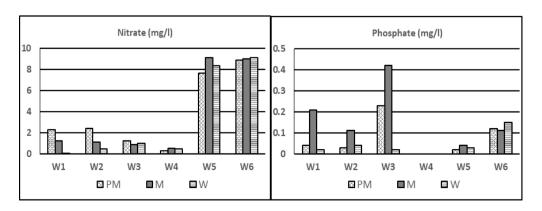


Figure 7.3: Seasonal variation in Total hardness, Calcium, Magnesium and Chlorides in Beas I sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W1-W6: Sampling sites)


Nitrates, Phosphates, Potassium and Sodium

The nitrate concentration was quite low during the study period and it varied between 0.04 mg/l (lowest values recorded at sampling site W1-Beas kund during winter) and 9.15 mg/l (highest at site W5 - Allain Nalah during monsoon). In general nitrate concentrations throughout the study area were low (Figure 7.4).

Phosphates followed the pattern of nitrates and in fact were much lower than nitrate concentrations. While its concentration was negligible during post-monsoon period and maximum concentration was recorded during monsoon season varied from 0.04 to 0.042 mg/l (Figure 7.4).

Potassium was recorded with low concentrations at all the sampling sites during the study period (**Figure 7.4**). Its values varied from low of 0.11 mg/l (at W2- Palchan Bhang during monsoon season) to high of 1.0 mg/l (at W4 - Jobrie during winter season).

The concentrations of sodium were very low during the entire study period at all sampling sites and different seasons (Figure 7.4).

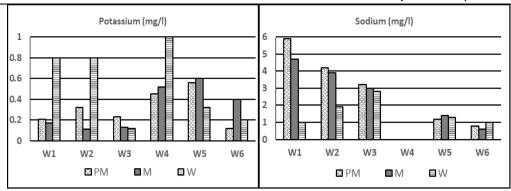


Figure 7.4: Seasonal pattern in values of Nitrates, Phosphates, Potassium and Sodium in Beas I Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W1-W6: Sampling sites)

BOD, COD and Total Coliforms

BOD at all sampling sites were varied from negiligible at W1- during all seasons to maximum of 1.5 mg/l (at W5 - Allain nalah during winter season and at W6-Duhangan nalah during monsoon season). COD also followed the pattern of BOD and it was nil at sites W1 & W3. Coliforms were detected only from W2-Palchan Bhang, W3- Beas river near Bhang Village and W5 Allain nalah near Jagatsukh village sampling sites. The qualtities of Coliforms were maximum during monsoon season i.e. 920 MPN/100 ml from sampling site W5 and minimum 47 MPN/100ml at sampling site W2 (Figure 7.5).

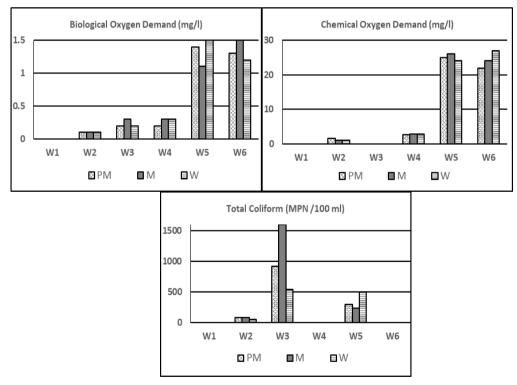


Figure 7.5: Seasonal pattern in BOD, COD and Total Coliforms in Beas I Sub-basin (PM=Pre-monsoon; M=Monsoon; W=Winter; W1-W6: Sampling sites)

7.2.2 Beas II Sub-basin

Beas II Sub-basin is comprised of catchment area of Beas River between the confluence point of Duhangan nala with river Beas near Jagatsukh village and confluence point of Parbati River with river Beas near Bhuntar in Kullu district. Sampling sites in Beas II sub-basin were located in Sanjoin Nalah, Fozal Nalah and Sarbari Khad (W7 to W9).

Temperature, Dissolved Oxygen and pH

Water temperature varied from season to season and ranged from 8.9°C to 14.3°C. Maximum water temperature was recorded at site W9 located in Sarbari Khad and minimum during winter at sampling site W7 located in Sanjoin Nalah (Figure 7.6).

Concentration of Dissolved Oxygen (DO) was recorded lowest (8.1 mg/l) during pre-monsoon season at sampling site W7 located in Sanjoin nalah and minimum DO value was observed from sampling site W9 (10 mg/l) at site W9-Sarbari khad during winter season (Figure 7.6).

The pH of water was slightly alkaline in nature at all sampling sites and didn't vary much during different seasons. pH value at all sites during different season ranged between 7.48 and 7.91 and was highest at site W7 (at Sanjoin Nala) during summer season and lowest at W8 during winter season (at Fozal Nala) (Figure 7.6).

Total Suspended Solids and Turbidity

It can be seen from the (**Figure 7.7**) total suspended solids in the river water recorded maximum (site W7-located in sanjoin nalah) during all the season but remain sampling locations was quite low resulting in negligible turbidity in the river and streams. The water of Beas river and its tributaries remains very clear and transparent throughout the year except during occasional rains which brings silt into the river making it slightly turbid for few days only and thereafter which becomes clear again.

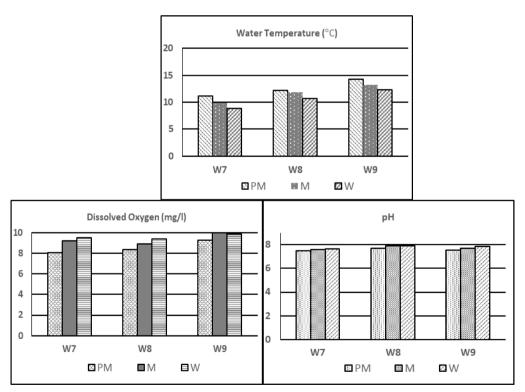


Figure 7.6: Seasonal variation in Water temperature, pH and DO at different sampling sites in Beas II sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W7-W9: Sampling sites)

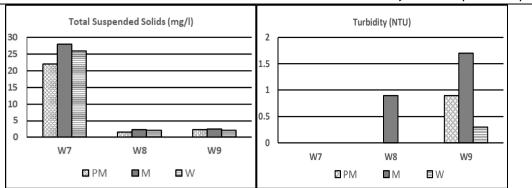


Figure 7.7: Seasonal variation in Total suspended solids and turbidity at different sampling sites in Beas II sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W7-W9: Sampling sites)

Total Dissolved Solids and Electrical Conductivity

Total Dissolved Solids (TDS) and Electrical conductivity (EC) were higher during monsoon season sampling when TDS was in the range of 54.3mg/l in Fozal nala to 60.4 mg/l in Sanjoin nalah and EC was in the range of 89 μ S/cm in Fozal nala to 99 μ S/cm in Sanjoin nalah. Overall values of Total Dissolved Solids and Electrical varied from 45.1 mg/l - 60.4 mg/l and 74 μ S/cm-99 μ S/cm, respectively at different sampling locations during the study period (Figure 7.8).

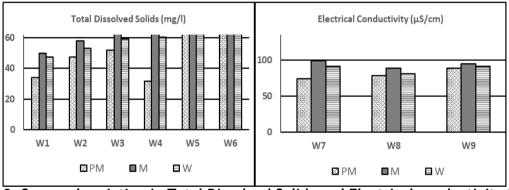


Figure 7.8: Seasonal variation in Total Dissolved Solids and Electrical conductivity in Beas II sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W7-W9 : Sampling sites)

Total Hardness, Calcium, Magnesium and Chlorides

No seasonal variation in Total Hardness, Calcium and Magnesium concentrations was recorded in all three sampling sites (**Figure 7.9**). Total hardness of water ranged from 20.6 mg/l to (at W7 - Sanjoin nalah) to 29.4 mg/l (at sampling site W8-Fozal nalah) during pre-monsoon. Total Hardness varied between 23.4 mg/l (at sampling site W7-sanjoin nalah during monsoon) and 27.6 mg/l (at sampling site W9 - Sarbari khad). During winter total hardness were varied from low of 22.1 mg/l (at sampling site W7-sanjoin nalah) to high of 30.4 mg/l (at sampling site W8-Fozal nalah).

Calcium and Magnesium values followed the similar pattern and recorded highest at sampling site W8 (Fozal nalah) and lowest value was recorded for sampling site W7 (Sanjoin nalah).

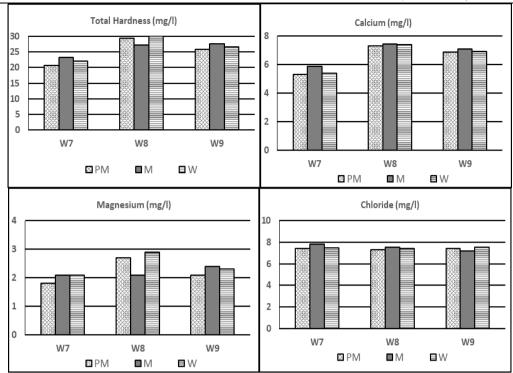


Figure 7.9: Seasonal variation in Total hardness, Calcium, Magnesium and Chlorides in Beas II sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W7-W9: Sampling sites)

Nitrates, Phosphates, Potassium and Sodium

The concentration of nitrate was low in all three sampling locations during the study period and it varied between 0.3 mg/l (lowest values recorded at sampling site W9-Sarbari khad during summer) and 0.8 mg/l (highest at site W7-Sanjoin Nalah during monsoon) (**Figure 7.10**). No seasonal variation in nitrate value was observed at all three sites.

Concentration of Phosphate was negligible at all the sampling sites varied from 0.02 mg/l to 0.07 mg/l (Figure 7.10). Potassium too was recorded with low concentrations at all the sampling sites during the study period (Figure 7.10). Its values varied from low of 0.3 mg/l (at W9-Sarbari khad during pre-monsoon season) to high of 1.3 mg/l (at W8- Fozal nalah during monsoon season). Maximum concentration was recorded from sampling site located in Fozal nalah (Figure 7.10).

The concentration of sodium was very low at sampling site located in Sanjoin Nalah, ranged between 0.6 mg/l (monsoon season) to 0.8 mg/l (pre monsoon season). While during the entire study period the maximum values for sodium was recorded from Fozal nalah and varied from 1.7 mg/l (summer and winter season) to 1.8 mg/l (monsoon season) (Figure 7.10).

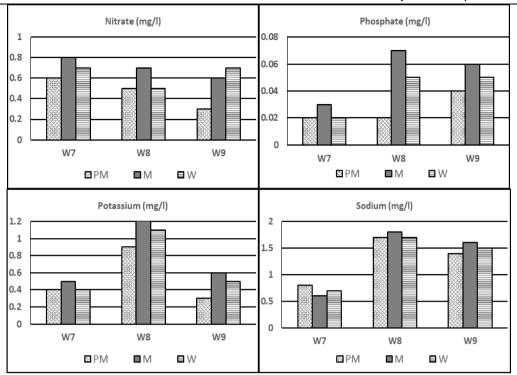


Figure 7.10: Seasonal variation in Nitrates, phosphates, potassium and sodium data in Beas II sub-basin (PM=Pre-monsoon; M=Monsoon; W=Winter; W7-W9: Sampling sites)

BOD, COD and Total Coliforms

BOD at all sampling sites varied from low of 0.1mg/l (at W9-Sarbari khad in winter season) to high of 0.89 mg/l (at W7 -Sanjoin nalah during monsoon season). COD values were higher at W7 and W8 and nil at W9. Coliforms were detected only at sampling sites W7 (Sanjoin nalah) and W8 (Fozal nalah). Coliforms were detected maximum quantities during winter season i.e. 220 MPN/100 ml at sampling site W8 (Fozal nalah) and minimum 110 MPN/100ml at sampling site W7 (Sanjoin Nalah). At sampling site W9 (Sarbari Khad) coliforms were absent during sampling period (Figure 7.11).

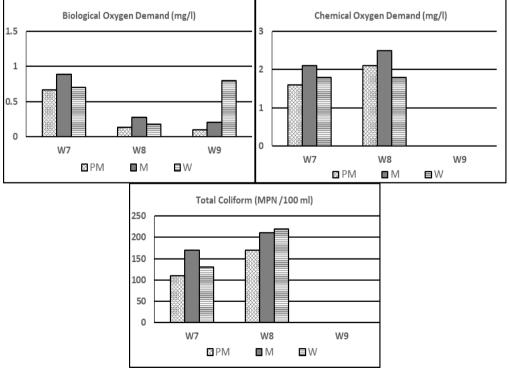


Figure 7.11: Seasonal variation in BOD, COD and Total Coliforms in Beas II sub-basin (PM=Pre-monsoon; M=Monsoon; W=Winter; W7-W9: Sampling sites)

7.2.3 Parbati Upper Sub-basin

This area consists of catchment of Parbati river up to Parbati and Malana Nala confluence. Water samples were collected from 8 sites located in Parbati river and Tosh Nala.

Temperature, Dissolved Oxygen and pH

The water temperature at all sampling sites varied from minimum 10.3°C at sampling site W12 (Tosh Nalah) during winter and maximum 17.6°C at sampling site W14 (Parbati River) during pre-monsoon season (Figure 7.12).

Dissolved oxygen values varied from minimum 7.5 mg/l to maximum 9.5 mg/l, as highest value of DO was found at sampling site W17 at Parbati river near diversion site of Balargah HEP in monsoon season (**Figure 7.12**). During sampling at different season the DO value varied from 7.6 mg/l to 8.5 mg/l during summer season, in monsoon season value of DO ranged between 7.5 to 9.5 mg/l at various sampling locations and during winter season sampling the value of DO varied from 7.8 to 8.9 mg/l.

The pH value of Tosh and Parbati river at all sampling sites shows slightly alkaline nature of water. It varied from 7.06-7.98 during sampling period (Figure 7.12).

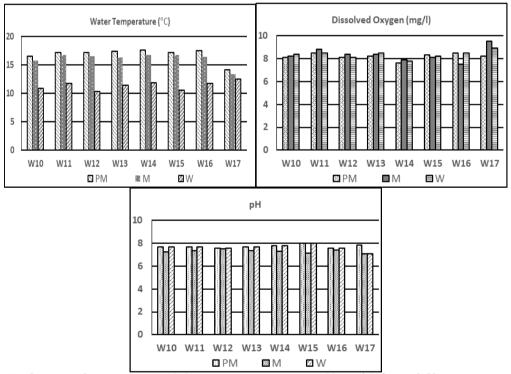


Figure 7.12: Seasonal variation in Water temperature, pH and DO at different sampling sites in Parbati Upper Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W10-W17: Sampling sites)

Total Suspended Solids, Turbidity, Total Dissolved Solids and Electrical Conductivity

During winter season sampling Total suspended solids (TSS) in the Parbati river and Tosh Nalah water at all the sampling locations was quite low resulting in negligible turbidity in the river. During pre-monsoon and monsoon season water become slightly turbid and concentration of TSS was also increase. Maximum concentration of TSS was observed during

monsoon season at sampling site W16 (34 mg/l) at Parbati river, while minimum (9mg/l) during winter season sampling from sample collected from Tosh Nalah (Figure 7.13).

Overall values of Total Dissolved Solids and Electrical Conductivity varied from 80.5 - 114.1 mg/l and 112μ S/cm- 187μ S/cm, respectively at different sampling locations during the study period (**Figure 7.13**).

Total Dissolved Solids (TDS) and Electrical conductivity (EC) was higher during monsoon season sampling period when TDS was in the range of 34.10 to 183.43 mg/l and EC was in the range of 132 μ S/cm to 187 μ S/cm (Figure 7.13).

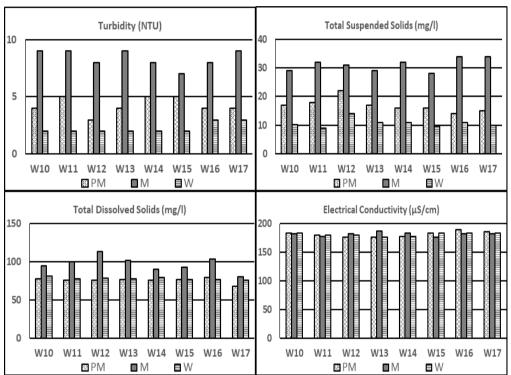


Figure 7.13: Seasonal variation in Total suspended solids, turbidity, total dissolved solids and Electrical conductivity at different sampling sites in Parbati Upper Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W10-W17: Sampling sites)

Total Hardness, Calcium, Magnesium and Chlorides

Variation in Total Hardness, Calcium and Magnesium concentrations at different sampling sites during different sampling periods is given at (**Figure 7.14**). Total hardness of water ranged from 176.3 mg/l (at W13- Tosh nalah) to 190.3 mg/l (at W16- Parbati river, down stream of Parbati II HEP Dam site). Calcium and Magnesium values followed the similar pattern as total hardness is sum total of calcium and magnesium.

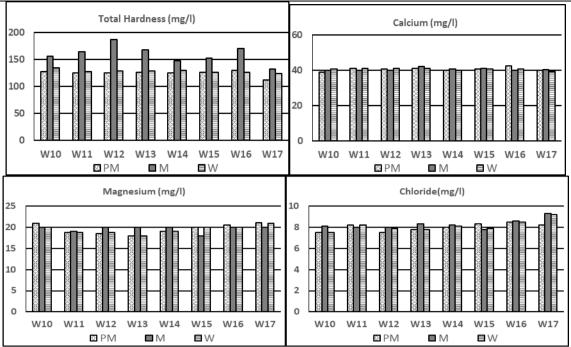


Figure 7.14: Seasonal variation in Total hardness, Calcium, Magnesium and Chlorides in Parbati Upper Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W10-W17: Sampling sites)

Nitrates, Phosphates, Potassium and Sodium

Phosphate and nitrate concentrations were observed very low in the water samples collected during the study (**Figure 7.15**). Potassium and sodium was recorded with low concentrations at all the sampling sites during the study period (**Figure 7.15**). Potassium values varied from low of 1.1 mg/l (at W14- Parbati river, upstream of parbati II HEP during pre-monsoon season) to high of 1.5 mg/l (at W15 upstream of parbati river during winter season). Concentration of Sodium in river water ranged from minimum 2.32 mg/l at sampling site W10-Nalthan and W13- Tosh nalah during pre-season to maximum 3.35 mg/l at sampling site W16-downstream of Parbati II HEP during monsoon season).

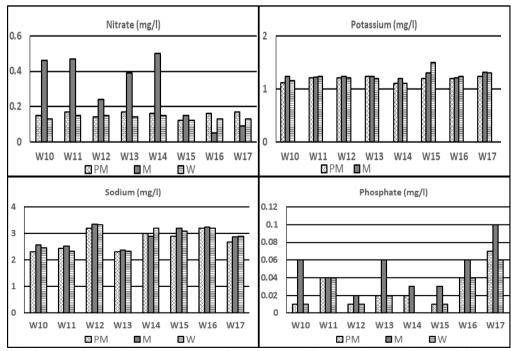


Figure 7.15: Seasonal variation in Nitrate, phosphate, sodium and potassium at different sampling sites in Parbati Upper Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W10-W17: Sampling sites)

BOD, COD and Total Coliforms

BOD concentration was very low in varied from 0.1 mg/l to 1.8 mg/l. Similarly, Coliforms could only detected from sampling site W17 at Parbati river (near diversion site of Balargah HEP). The pattern of COD similar to BOD at all the sites. The count of Coliforms varied from 21 MPN/100ml during monsoon to 110 MPN/100ml during pre-monsoon season sampling (Figure 7.16).

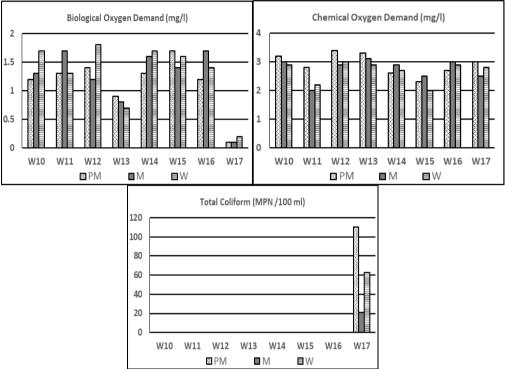
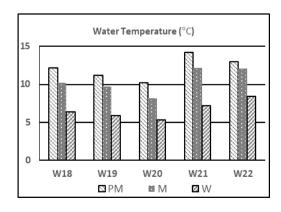


Figure 7.16: Seasonal variation in BOD, COD and Total Coliforms at different sampling sites in Parbati Upper Sub-basin


(PM=Pre-monsoon; M=Monsoon; W=Winter; W10-W17 : Sampling sites)

7.2.4 Malana Sub-basin

Malana Sub-basin comprises of the catchment area of Malana Nala, a right bank tributary of river Parbati.

Temperature, Dissolved Oxygen and pH

The temperature of the river water ranged from 5.3°C to 14.2°C during sampling. The pH of at most of the sampling sites was almost slightly alkaline. It varied from 6.7-7.32. Dissolved Oxygen value ranged between 8.2 mg/l to 9.7 mg/l in various season (Figure 7.17).

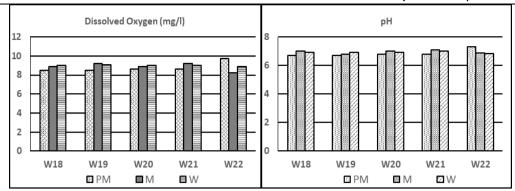


Figure 7.17: Seasonal variation in Water temperature, pH and DO at different sampling sites in Malana Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W18-W22: Sampling sites)

Total Suspended Solids, Turbidity, Total Dissolved Solids and Electrical Conductivity

It can be seen from the Figure 7.17 total suspended solids in the river water at all the sampling locations was quite low resulting in negligible turbidity in the river. The water of Malana river and its tributaries remains very clear and transparent throughout the year except during occasional rains which brings silt into the river making it slightly turbid for few days only and thereafter which becomes clear again.

The Electrical conductivity (EC) and Total Dissolved Solids (TDS) values were observed between 10μ S/cm to 29 μ S/cm and 6.1 to 17.7 mg/l respectively. Total Suspended Solid (TSS) values were observed in lower side and varied between 1.01 mg/l and 6.2 mg/l (**Figure 7.18**).

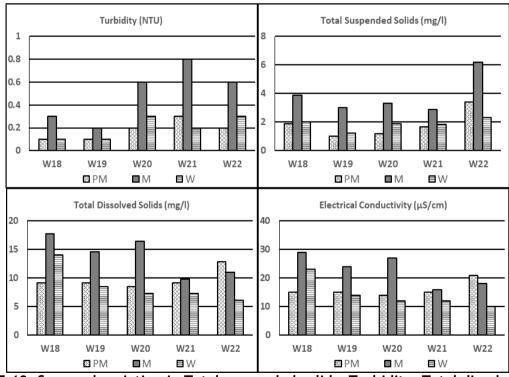


Figure 7.18: Seasonal variation in Total suspended solids, Turbidity, Total dissolved solids and Electrical conductivity at different sampling sites in Malana Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W18-W22: Sampling sites)

Total Hardness, Calcium, Magnesium and Chlorides

Water hardness depends on concentration of Calcium and Magnesium ions in water. Concentration of Calcium and Magnesium varied from 2.9 mg/l to 3.9 mg/l and 0.1 mg/l to 0.8 mg/l respectively. Hardness in the river water ranged from 8.8 mg/l to 11.8 mg/l at various sampling locations (Figure 7.19).

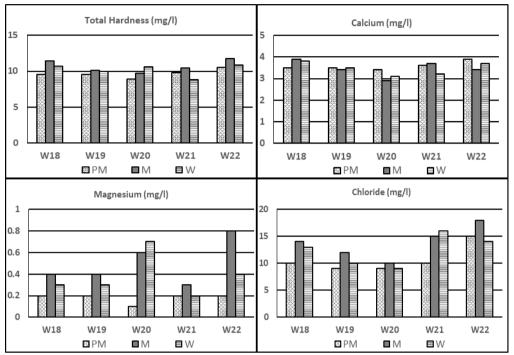
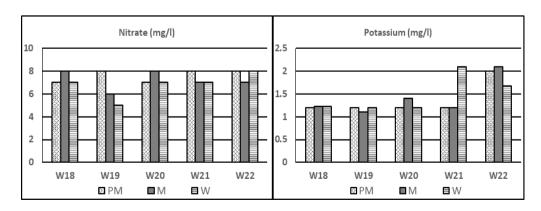



Figure 7.19: Seasonal variation in Total hardness, Calcium, Magnesium and Chlorides at different sampling sites in Malana Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W18-W22: Sampling sites)

Nitrates, Phosphates, Potassium and Sodium

A concentration of Phosphate in Malana was observed very low in the water samples collected during the study (Figure 7.20). Potassium was recorded with low concentration at all the sampling sites during the study period ranged from 1.1 to 2.1 mg/l and respectively (Figure 7.20). While values for nitrate varied low of 5.0 mg/l to high of 8 mg/l. Concentration of Sodium in river water ranged from minimum 2.6 to 4.1 mg/l.

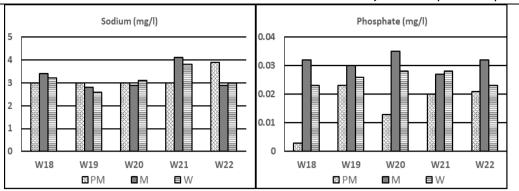


Figure 7.20: Seasonal variation in Nitrates, phosphates, potassium and sodium at different sampling sites in Malana Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W18-W22: Sampling sites)

BOD, COD and Total Coliforms

Biological Oxygen Demand (BOD) values in the water samples collected during various seasons were found low during the study period, ranged between 0.1 mg/l to 1.40 mg/l (Figure 7.21). COD values were more or less similar to BOD. Coliforms were detected from all sampling sites their value varied from 2 MPN/100ml to 210 MPN/100ml. Highest quantities of coliforms were recorded from sampling site W22 (near confluence of Malana Nala with Parbati river) where it ranged between 120 MPN/100ml and 210 MPN/100ml.

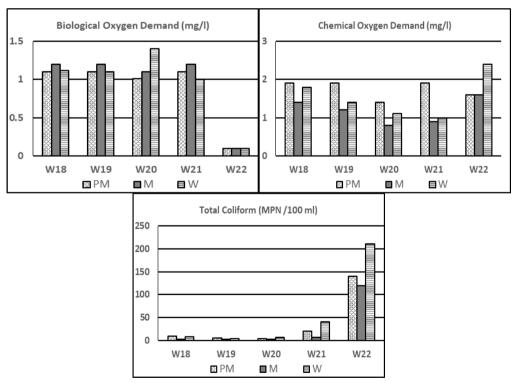


Figure 7.21: Seasonal variation in BOD, COD and Total Coliforms at different sampling sites in Malana Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W18-W22: Sampling sites)

7.2.5 Parbati Lower Sub-basin

Parbati Lower sub-basin comprises of the catchment area of Parbati river from its confluence with Malana nala till it meets river Beas at Bhuntar.

Temperature, Dissolved Oxygen and pH

The temperature of the river water ranged from 9.7°C to 14.8°C during sampling. The pH of water didn't vary much and during various sampling season. The pH at all sampling sites was almost slightly alkaline in nature. It varied from 6.4 to 7.86. Dissolved Oxygen (DO) value ranged between 8.2 mg/l to 9.5 mg/l in various months. Concentration of DO have similar pattern at sampling sites and no seasonal variation in DO was observed during sampling period (Figure 7.22).

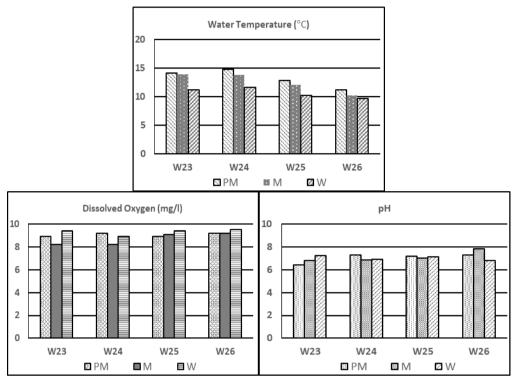
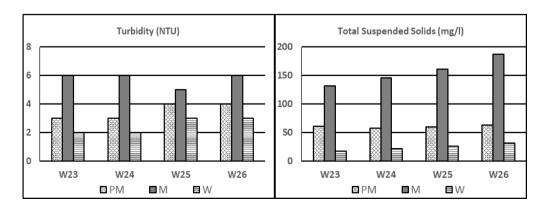



Figure 7.22: Seasonal variation in Water temperature, pH and DO at different sampling sites in Parbati Lower sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W23-W26 : Sampling sites)

Total Suspended Solids, Turbidity, Total Dissolved Solids and Electrical Conductivity

The Electrical conductivity (EC) and Total Dissolved Solids (TDS) values were observed between $23\mu\text{S/cm}$ to 90 $\mu\text{S/cm}$ and 14 mg/l to 54.9 mg/l respectively. Total Suspended Solid (TSS) values were observed in between 18 mg/l and 187 mg/l (Figure 7.23). Higher values of TSS were observed during monsoon season which varied from 132mg/l (W23-downstream conference of Malana and Parbati river) to 184 mg/l (W26- Parbati river, downstream of Sarsardi village).

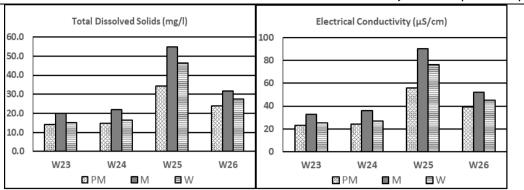


Figure 7.23: Seasonal variation in Total suspended solids, Turbidity, Total dissolved solids and Electrical conductivity at different sampling sites in Parbati Lower Sub-basin (PM=Pre-monsoon; M=Monsoon; W=Winter; W23-W26: Sampling sites)

Total Hardness, Calcium, Magnesium and Chlorides

Total hardness concentration varied from 26.2 mg/l to 55.0 mg/l in various seasons. Hardness value was observed in higher side in sampling sites in lower stretch of Parbati lower sub-basin comprising with sampling sites W25-Parbati river, near sarsadi village and W26- Parbati river, downstream of Sarsadi village. While no significant seasonal variation in hardness values was observed during sampling period. Calcium and Magnesium ion concentration varied between 5.9 mg/l to 16.9 mg/l and 2.3 mg/l to 4.1 mg/l, respectively (Figure 7.24).

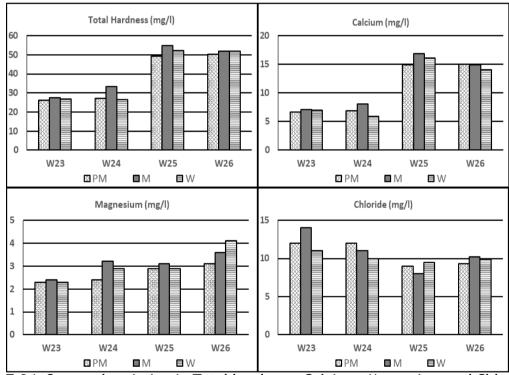
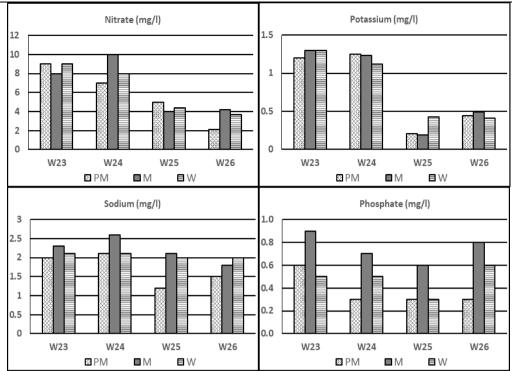


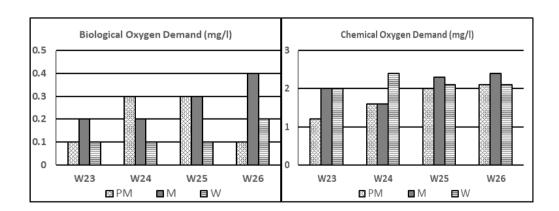
Figure 7.24: Seasonal variation in Total hardness, Calcium, Magnesium and Chlorides in Parbati Lower Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W23-W26: Sampling sites)

Nitrates, Phosphates, Potassium and Sodium

Concentration of Phosphate, Sodium and Potassium were observed very low in the water samples collected during the study. While Nitrate concentration varied from 2.1 mg/l to 10 mg/l in the study area (Figure 7.25).




Figure 7.25: Seasonal variation in Nitrates, Phosphates, Potassium and Sodium at different sampling sites in Parbati Lower Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W23-W26 : Sampling sites)

BOD, COD and Total Coliforms

Biological Oxygen Demand (BOD) values in the samples were found low during the study, ranged between 0.1 mg/l to 04 mg/l (Figure 7.26). Count of Coliforms were detected maximum during winter season i.e. 210 MPN/100 ml from sampling site W26-Parbati river, near Sarsadi village and minimum 142 MPN/100ml from sampling site W23-downstream conference of malana and Parbati river (Figure 7.26).

Count of Coliforms were maximum during winter season i.e. 210 MPN/100 ml and minimum during monsoon 76 MPN/100 ml followed by sampling site W26-Parbati river, downstream of Sarsadi village and W24 (**Figure 7.26**).

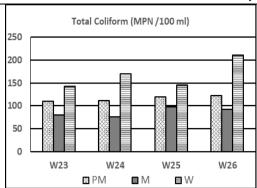


Figure 7.26: Seasonal variation in BOD, COD and Total Coliforms at different sampling sites in Parbati Lower Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W23-W26 : Sampling sites)

7.2.6 Sainj Sub-basin

Sainj sub-basin comprises of the catchment area of Beas river from its confluence with Parbati river and upto its confluence with Sainj khad near dam site of Larji HEP. In Sainj sub-basin Sampling sites were located in two major tributaries of Beas river i.e. Hurla Nala and Sainj khad.

The water temperature of Hurla Nala ranged from 10.3°C to 12.2°C during sampling. While in Sainj khad water temperature varied from minimum 10.1°C during winter to 14.2°C during summer season. The pH values of both Hurla and Sainj khad varied from 6.91 to 7.89. Dissolved Oxygen value ranged between 8.0 mg/l to 10.5 mg/l in various months (**Figure 7.27**).

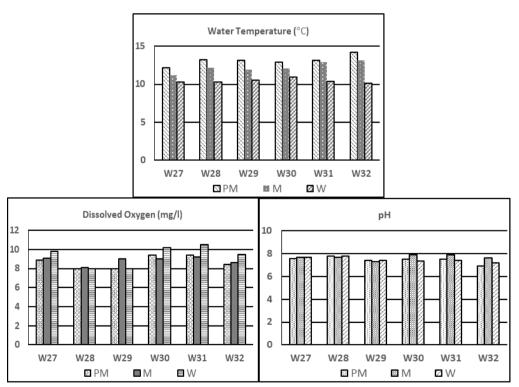


Figure 7.27: Seasonal variation in Water temperature, pH and DO at different sampling sites in Sainj Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W27-W32 : Sampling sites)

Total Suspended Solids, Turbidity, Total Dissolved Solids and Electrical Conductivity

The Electrical conductivity (EC) and Total Dissolved Solids (TDS) values for Hurla nala were observed between 32.0 μ S/cm to 84.0 μ S/cm and 19.5 to 51.2 mg/l respectively. While in Sainjkhad value of EC varied from minimum 130 μ S/cm during winter season sampling to 160 μ S/cm during monsoon season. Similarly the TDS value was observed minimum in winter season (79.3 mg/l) and maximum during monsoon season (97.6 mg/l) (Figure 7.28).

Total Suspended Solids (TSS) values were observed in lower side for Hurla nala varied between 1.8 mg/l to 8.2 mg/l (Figure 7.28). In Sainj khad TSS values varied from 12.2 mg/l to 54.2 mg/l. The maximum value of TSS was observed during monsoon season at sampling site W30 near Jiwa nala confluence with Sainj khad and minimum during winter season near sampling site W28 in Sainj Khad (upstream of Sainj HEP Dam site).

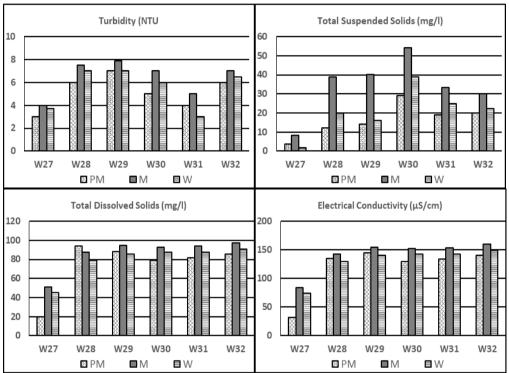


Figure 7.28: Seasonal variation in Total suspended solids, Turbidity, Total dissolved solids and Electrical conductivity at different sampling sites in Sainj sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W27-W32 : Sampling sites)

Total Hardness, Calcium, Magnesium and Chlorides

Total Hardness in Sainj khad and Hurla nala waters varied from 41.9 mg/l to 61.4 mg/l at all sampling sites in all seasons. Maximum hardness value was recorded from water sample collected from Hurla nala during winter season (Figure 7.29). Calcium and Magnesium values ranged between 12 mg/l to 19 mg/l and 2.2 mg/l to 4.1 mg/l, respectively. Maximum concentration of Calcium was recorded from the water sample collected from Hurla nala, while maximum concentration of Magnesium was recorded from sampling site W30-located the downstream of Jiwa nala and Sainj khad confluence.

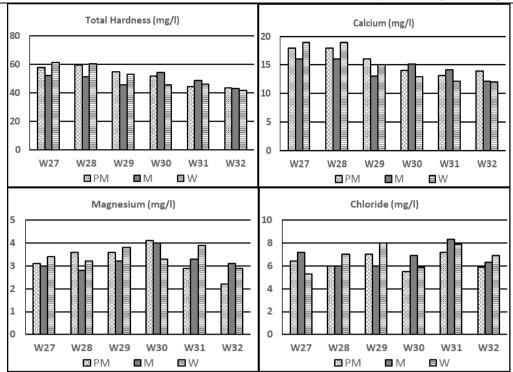


Figure 7.29: Seasonal variation in Total hardness, Calcium, Magnesium and Chlorides in Sainj Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W27-W32 : Sampling sites)

Nitrates, Phosphates, Potassium and Sodium

The concentration of Nitrate was recorded in the range of 1.67 mg/l to 2.89 mg/l (Figure 7.29). Phosphate and Potassium concentrations were quite low in the water samples collected during the study (Figure 7.30). While sodium concentration at all sampling sites varied from 4.2 mg/l to 14 mg/l in all seasons.

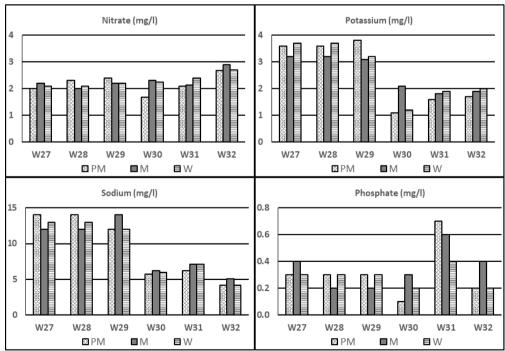


Figure 7.30: Seasonal variation in Phosphate, Nitrate, Potassium and Sodium concentration at different sampling sites in Sainj Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W27-W32: Sampling sites)

BOD, COD and Total Coliforms

Biological Oxygen Demand (BOD) concentration in Hurla nala ranged between 1.2 mg/l and 1.4 mg/l, while BOD values in the samples collected from Sainj khad were low at most of the sites during the study and ranged between 0.1 mg/l and 1.4 mg/l (Figure 7.31). COD was more than 1 at all the sampling sites while it was more than 2 at sites W27-W29. In Sainj Sub-basin Coliforms were absent in Hurla nala while in Sainj river presence of Coliforms was observed only at two sampling sites (W31 and W32 located in the downstream of Parbati III HEP Dam site). Maximum Coliforms were recorded during Monsoon season with 1340 MPN/100ml.

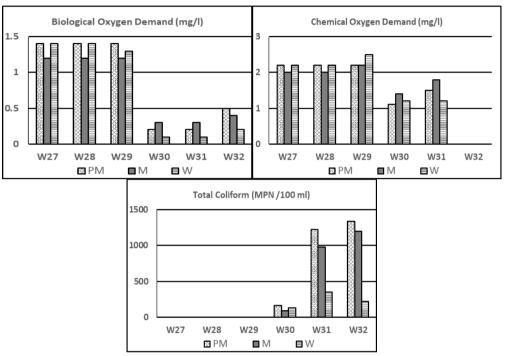


Figure 7.31: Seasonal variation in BOD, COD and Total Coliforms at different sampling sites in Sainj Sub-basin

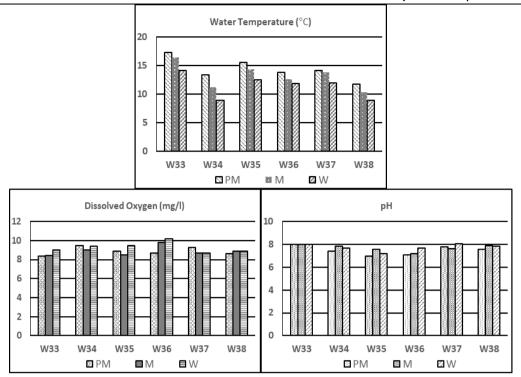
(PM=Pre-monsoon; M=Monsoon; W=Winter; W27-W32 : Sampling sites)

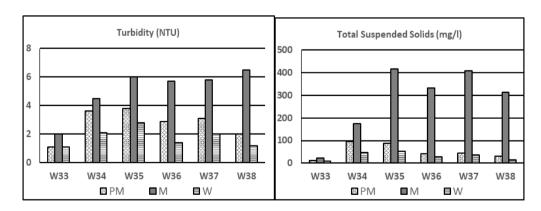
7.2.7 Beas III Sub-basin

Beas III Sub-basin is comprised of catchment area of Beas river between the confluence point of Tirthan River with river Beas and upstream of Uhl River near Ghamun village. Larji HEP, Beas Satluj Link Project (Pandoh Dam) and Patikari SHEP are the three operational projects located in the sub-basin.

Temperature, Dissolved Oxygen and pH

The temperature of the Bakhli khad water ranged from 8.9°C to 15.6°C during sampling. Water temperature in Beas river in Beas III sub-basin varied from 8.9°C to 17.3°C. The pH at most of the sampling sites was slightly alkaline and varied from 6.98- 8.06. Dissolved Oxygen value ranged between 8.34 mg/l to 10.2 mg/l in various months (Figure 7.32).




Figure 7.32: Seasonal variation in Water temperature, pH and DO at different sampling sites in Beas III Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W33-W38 : Sampling sites)

Total Suspended Solids, Turbidity, Total Dissolved Solids and Electrical Conductivity

The Electrical conductivity (EC) and Total Dissolved Solids (TDS) of the water samples from Bakhli khad were observed between 90 μ S/cm to 112 μ S/cm and 54.9 to 68.3 mg/l respectively. In Beas river the EC and TDS values varied from 78 μ S/cm to 132 μ S/cm and 47.6 to 80.5 mg/l, respectively.

Due to low turbidity Total Suspended Solids (TSS) values were low in Bakhli khad and varied from 8 mg/l to 12 mg/l. While in water samples collected from Beas river TSS was more during monsoon season with maximum 416 mg/l from sampling site W35 (located at the tailend of Larji HEP reservoir)(Figure 7.33).

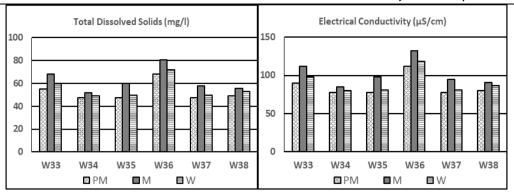


Figure 7.33: Seasonal variation in Total suspended solids, Turbidity, Total dissolved solids and Electrical conductivity at different sampling sites in Beas III sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W27-W32 : Sampling sites)

Total Hardness, Calcium, Magnesium and Chlorides

Total Hardness, Calcium and Magnesium concentrations at different sampling sites during different sampling periods are given at (**Figure 7.34**). Total hardness of water ranged from 23.9 mg/l to 32.6 mg/l in Bakheli khad and 25.6 mg/l to 70.1 mg/l in samples collected from Beas river. Calcium and Magnesium values followed the similar pattern.

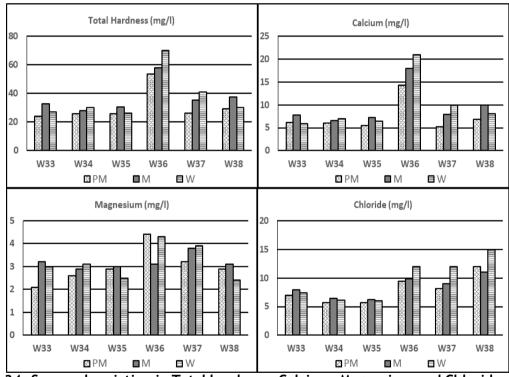


Figure 7.34: Seasonal variation in Total hardness, Calcium, Magnesium and Chlorides in Beas III Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W27-W32: Sampling sites)

Nitrates, Phosphates, Potassium and Sodium

The concentration of Nitrate was recorded from 0.21 mg/l to 1.9 mg/l from all samples collected during various seasons (Figure 7.35). While sodium concentration at all sampling sites varied from 1.11 mg/l to 6.6 mg/l in all seasons. Concentration of Phosphate and Potassium was low in the water samples collected during the study period (Figure 7.35).

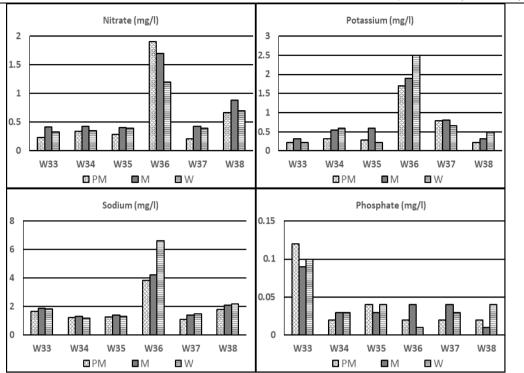
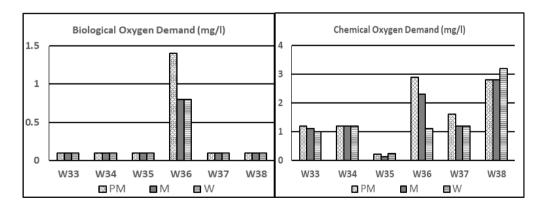



Figure 7.35: Seasonal variation in Phosphate, Nitrate, Potassium and Sodium at different sampling sites in Beas-III Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W27-W32 : Sampling sites)

Biological Oxygen Demand (BOD), COD and Total Coliforms

Biological Oxygen Demand (BOD) values in the water samples collected during various seasons were low during the study period and ranged between 0.1 mg/l and 1.40 mg/l (Figure 7.36). At all the sampling sites COD was more than 1 except for W35 where it was very low while at W36 & W38 sites it was more than 2 mg/l. Coliforms were detected from all sampling site varied from 110 MPN/100ml to 1600 MPN/100ml. Maximum count of Coliforms was recorded from sampling site W35 (near Aut: downstream of Larji Dam site) ranged from 270 MPN/100ml to 1600 MPN/100ml (Figure 7.36).

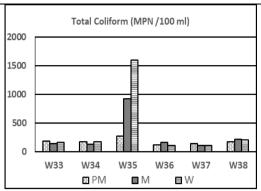


Figure 7.36: Seasonal variation in BOD, COD and Total Coliforms at different sampling sites in Beas III Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W27-W32: Sampling sites)

7.2.8 Uhl Sub-basin

Uhl sub-basin comprises of the catchment area of Beas river from downstream of Pandoh Dam up to the confluence of Rana Khad and Arnodi Khad with river Beas in Mandi district (**Figure 7.37**). The major tributaries joining river Beas at its right bank in the sub-basin are Uhl river, Kushak nala, Dev Ki khad, Luni khad and Rana khad, while the major tributaries joining river Beas on its left bank are Suketi khad, Kasani khad and Arnodi khad.

Temperature, Dissolved Oxygen and pH

The temperature of the river water ranged from 8.6°C to 19.2°C during sampling. The pH of at most of the sampling sites varied from 6.95 - 7.73. Dissolved Oxygen value ranged between 7.4 mg/l to 10.5 mg/l in various months (Figure 7.37).

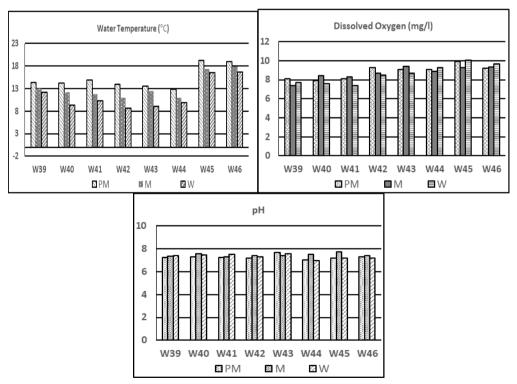


Figure 7.37: Seasonal variation in Water temperature, pH and DO at different sampling sites in Uhl Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W38-W46: Sampling sites)

Total Suspended Solids, Turbidity, Total Dissolved Solids and Electrical Conductivity

Total Suspended Solids (TSS) values for Beas river and Rana khad in Uhl Sub-basin were observed between 12 mg/l and 136 mg/l and turbidity was recorded between 0.2 mg/l and 8 mg/l (**Figure 7.38**). TSS value for Uhl river and its tributaries were low varying from 2 mg/l to 22 mg/l.

The Electrical conductivity (EC) and Total Dissolved Solids (TDS) values in Uhl sub-basin were observed between 136.4 μ S/cm to 212.5 μ S/cm and 83.2 to 129.6 mg/l, respectively.

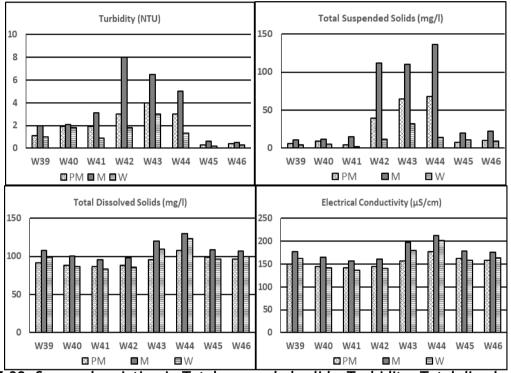
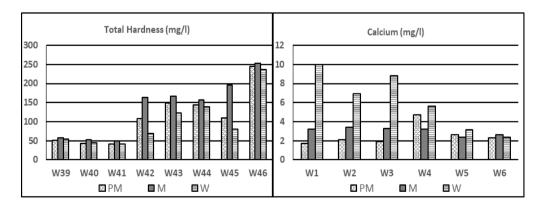



Figure 7.38: Seasonal variation in Total suspended solids, Turbidity, Total dissolved solids and Electrical conductivity at different sampling sites Uhl sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W38-W46: Sampling sites)

Total Hardness, Calcium, Magnesium and Chlorides

In general, the Hardness values from Uhl sub-basin ranged from 40.9 to 252.2 mg/l. Concentration of Calcium and Magnesium ions was maximum in the water samples collected from Beas river and Rana Khad. In the samples collected from different sites from Uhl khad the hardness value varied from 40.9 mg/l to 195.6 mg/l (Figure 7.39).

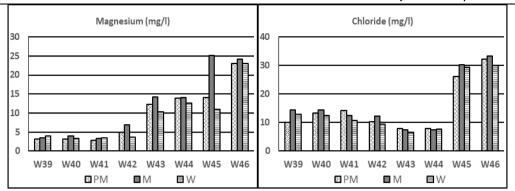


Figure 7.39: Seasonal variation in Total hardness, Calcium, Magnesium and Chlorides in Uhl Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W38-W46: Sampling sites)

Nitrates, Phosphates, Potassium and Sodium

The concentration of Nitrate, Phosphate and Potassium were quite low in all samples collected during various seasons (**Figure 7.40**). The concentration of Sodium at all sampling sites varied from 1.2 mg/l to 9 mg/l in all seasons (**Figure 7.40**).

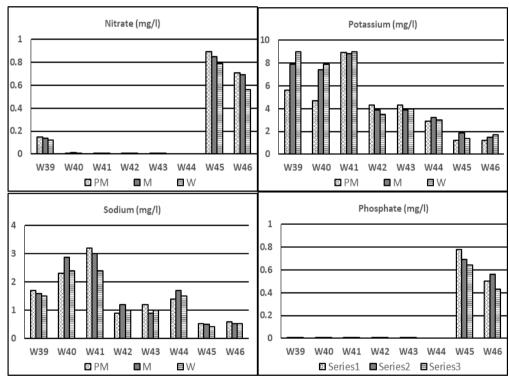


Figure 7.40: Seasonal variation in Phosphate, Nitrate, Potassium and Sodium concentrations at different sampling sites in Uhl Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W38-W46 : Sampling sites)

Biological Oxygen Demand (BOD), COD and Total Coliforms

Biological Oxygen Demand (BOD) in water samples collected from Beas river and Rana khad varied from 2.79 mg/l to 4.9 mg/l at all sampling sites during the study period.

BOD values in the Uhl sub-basin varied in different streams. While BOD was not detectable from the water samples collected from upper catchment of Uhl Khad, at sampling site located in Uhl khad near confluence of Uhl khad with Beas river, BOD was quite low and varied from

0.76mg/l to 0.82 mg/l (Figure 7.41). COD at almost all the sites was more than 10 mg/l at W42 and W43.

Maximum count of Coliforms was recorded from sampling site W42 (near Uhl-II) with maximum of 46 MPN/100ml (Figure 7.41).

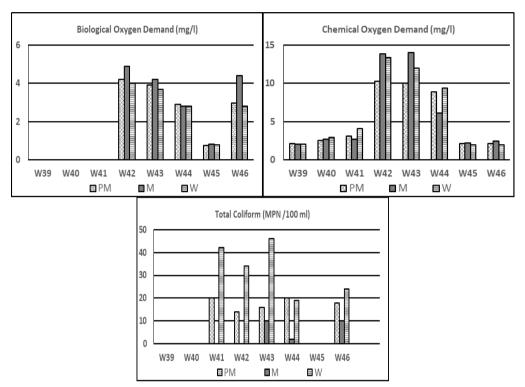


Figure 7.41: Seasonal variation in BOD, COD and Total Coliforms at different sampling sites in Uhl
Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W38-W46: Sampling sites)

7.2.9 Beas IV sub-basin

Beas IV sub-basin comprises of the right bank catchment area of Beas river from the confluence of Rana Khad with river Beas up to Pong Dam. Binwa khad, Neugal khad, Baner khad, Gaj khad and Khauli khad are the major right bank tributaries of river Beas in the sub-basin.

Temperature, Dissolved Oxygen and pH

The water temperature at all sampling sites varied from minimum 11.2°C at sampling site and maximum 16.4°C during study period (Figure 7.42).

Dissolved oxygen values varied from minimum 7.1 mg/l to maximum 8.6 mg/l, as highest value of DO was found at sampling site W49 in NeugalKhad during winter season (Figure 7.42).

The pH value at all sampling sites shows slightly alkaline nature of water. It varied from 7.05-8.41 during sampling period. Maximum value for pH was recorded from sampling site W49 during summer season from NeugalKhad (Figure 7.42).

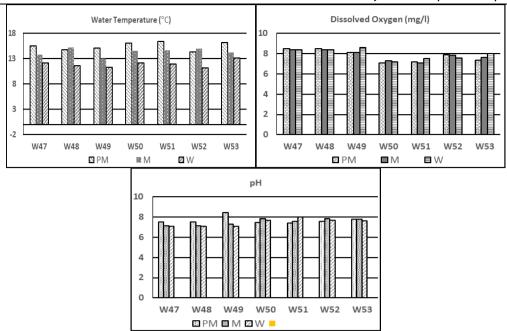


Figure 7.42: Seasonal variation in Water temperature, pH and DO at different sampling sites in Beas IV Sub-basin (PM=Pre-monsoon; M=Monsoon; W=Winter; W47-W53 : Sampling sites)

Total Suspended Solids, Turbidity, Total Dissolved Solids and Electrical Conductivity

During winter season sampling Total suspended solids (TSS) in the at all the sampling locations was quite low resulting in negligible turbidity in the streams. During pre-monsoon and monsoon season water become slightly turbid and concentration of TSS was slightly increased. Maximum concentration of TSS was observed during monsoon season at sampling site W47 (18 mg/l) at Binwa khad, during monsoon season (Figure 7.43).

Electrical Conductivity at various sites varied seasonally with maximum 132μ S/cm during winter season and minimum 52.6μ S/cm during winter season. Similarly Total Dissolved Solids were maximum during monsoon season with 80.5 mg/l and minimum during winter season with 32.1 mg/l at different sampling locations during the study period (**Figure 7.43**).

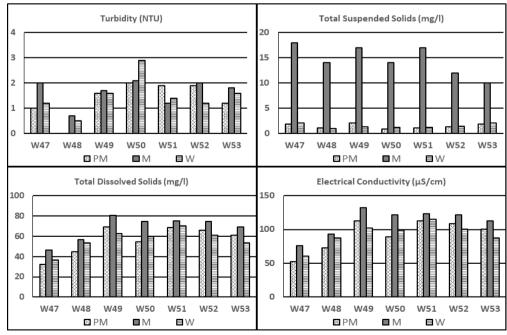


Figure 7.43: Seasonal variation in Total suspended solids, Turbidity, Total dissolved solids and Electrical conductivity at different sampling sites in Beas IV sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W47-W53: Sampling sites)

Total Hardness, Calcium, Magnesium and Chlorides

Variation in Total Hardness, Calcium and Magnesium concentrations at different sampling sites during different sampling periods is given at (**Figure 7.44**). Total hardness varied from 22.3 mg/l to 139.9 mg/l. Maximum value of water hardness was observed from sampling site W49- located in Neugal Khad due to higher concentration of Calcium ion (varied from 30.1mg/l during winter season to 40.7 mg/l in monsoon season) and Magnesium ion (7.3 mg/l to 9.9 mg/l). At rest of the sampling sites concentration of calcium and magnesium varied from 5.34 mg/l to 10.2 mg/l and 1.2mg/l to 3.9 mg/l.

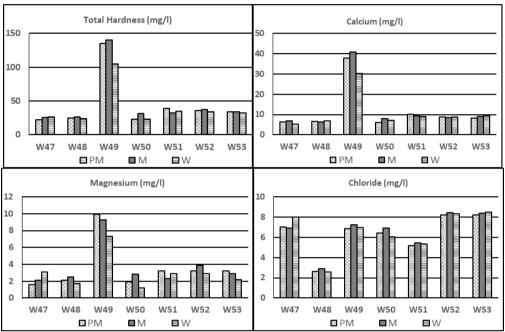
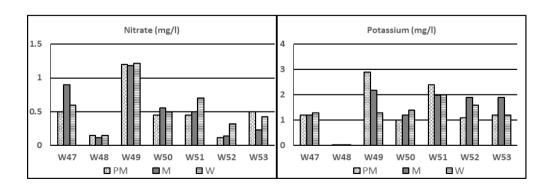



Figure 7.44: Seasonal variation in Total hardness, Calcium, Magnesium and Chlorides in Beas IV Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W47-W53: Sampling sites)

Nitrates, Phosphates, Potassium and Sodium

Nitrate, Phosphate and Potassium concentrations were observed very low in the water samples (**Figure 7.45**). Sodium too was recorded with low concentrations (1.0 mg/l to 3.31 mg/l) at all the sampling sites during the study period (**Figure 7.45**).

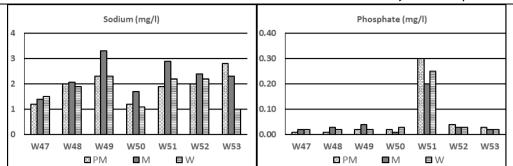


Figure 7.45: Seasonal variation in Phosphate, Nitrate, Potassium and Sodium at different sampling sites in Beas-IV Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W47-W53: Sampling sites)

BOD, COD and Total Coliforms

Biological Oxygen Demand was very low at all sampling sites and varied from 0.1 mg/l to 1.22 mg/l. COD was in the range of 1 mg/l at sites W47 & W48 while it was negligible at rest of the sites. Total Coliforms were absent in sampling site W53 located in Khauli khad. At other sampling sites count of total coliforms varied from 17 MPN/100ml during monsoon from Gaj Khad to 350 MPN/100ml from Baner khad during winter season sampling (Figure 7.46).

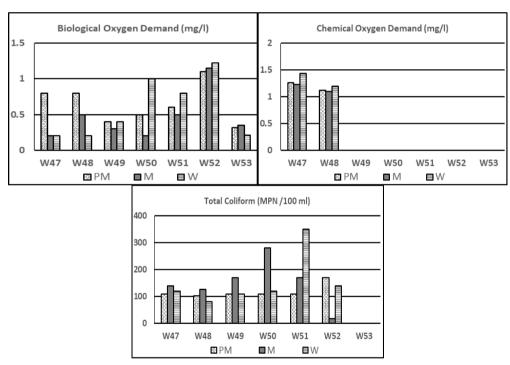


Figure 7.46: Seasonal variation in BOD, COD and Total Coliforms at different sampling sites in Beas IV Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W47-W53: Sampling sites)

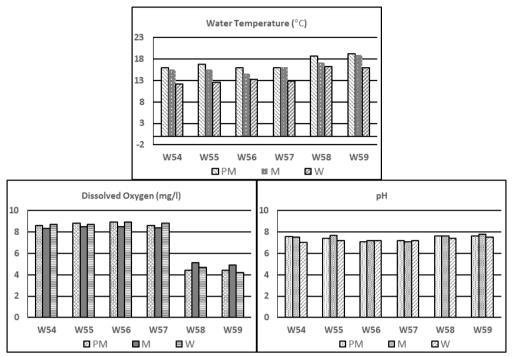
7.2.10 Beas V Sub-basin

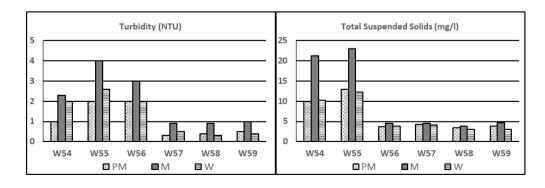
Beas V sub-basin comprises of the left bank catchment area of Beas river from the confluence of Rana and Arnodi Khad with river Beas up to Pong Dam.

Temperature, Dissolved Oxygen and pH

The water temperature of Beas river in Beas-V sub-basin ranged from 12.2°C to 19.2°C during sampling. Maximum water temperature was observed from the sampling sites located in Pong dam reservoir. The pH value of river water in the sub-basin varied from 7.03 to 7.8. Dissolved

Oxygen value ranged between 8.0 mg/l and 8.9 mg/l. At sampling sites located in Pong dam reservoir DO ranged between 4.2 mg/l and 5.1 mg/l (Figure 7.47).




Figure 7.47: Seasonal variation in Water temperature, pH and DO at different sampling sites in Beas-V Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W54-W59: Sampling sites)

Total Suspended Solids/Turbidity, Total Dissolved Solids and Electrical Conductivity

The Electrical conductivity (EC) and Total Dissolved Solids (TDS) values were observed between 90.0 μ S/cm to 330.0 μ S/cm and 54.9 mg/l to 183.0 mg/l, respectively. Maximum value for EC and TDS were observed from sampling site W54 downstream of Mandi town near Beas river confluence with Rana khad.

Total Suspended Solids (TSS) values varied between 3.1 mg/l and 23.0 mg/l (**Figure 7.48**). The maximum value of TSS was observed during monsoon season at sampling site W54 located downstream of Mandi town and minimum concentration of TSS was observed from the sampling sites W58 and W59 located in Pong Dam reservoir.

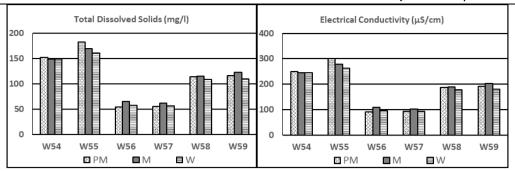


Figure 7.48: Seasonal variation in Total suspended solids, Turbidity, Total dissolved solids and Electrical conductivity at different sampling sites in Beas-V sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W54-W59: Sampling sites)

Total Hardness, Calcium, Magnesium and Chlorides

Total Hardness in water samples varied from 44.5 mg/l to 275.3 mg/l at all sampling sites during all seasons. Maximum hardness value was recorded from water sample collected from sampling site W54-Beas river, downstream of Mandi town during winter season (**Figure 7.49**). Calcium and Magnesium values ranged between 12.7 mg/l to 68 mg/l and 3.1 mg/l to 33 mg/l, respectively.

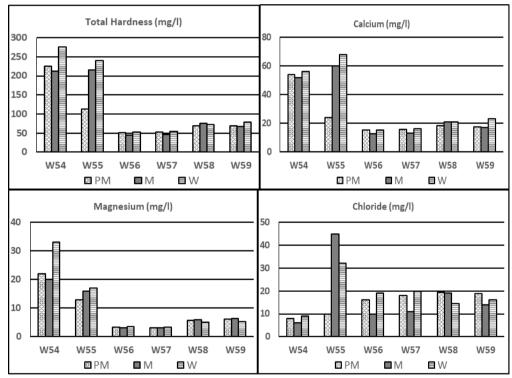


Figure 7.49: Seasonal variation in Total hardness, Calcium, Magnesium and Chlorides in Beas-V
Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W54-W59 : Sampling sites)

Nitrates, Phosphates, Potassium and Sodium

The concentration of Nitrates varied from 0.11 mg/l to 3.5 mg/l (Figure 7.50). Phosphate concentration was low in the water samples collected during the study (Figure 7.50). Sodium and Potassium concentration at all sampling sites varied from 8.5 mg/l to 91.0 mg/l and 1.1mg/l to 6 mg/l in all seasons.

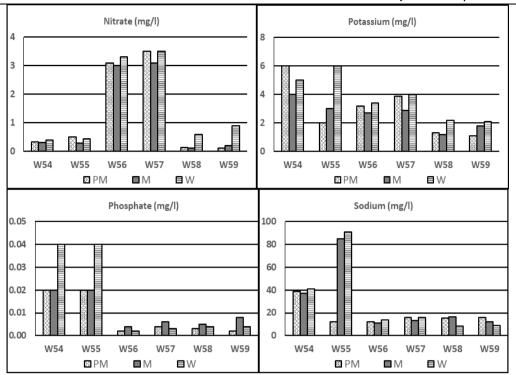
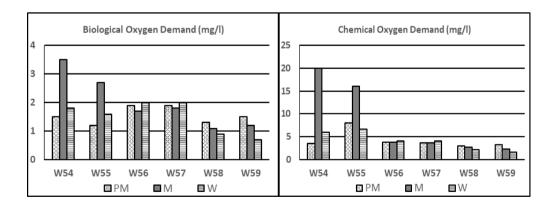



Figure 7.50: Seasonal variation in Phosphate, Nitrate, Potassium and Sodium concentrations at different sampling sites in Beas-V Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W54-W59: Sampling sites)

BOD, COD and Total Coliforms

Biological Oxygen Demand (BOD) in water samples of river Beas ranged between 0.7 mg/l and 3.5 mg/l, minimum BOD values was observed from the samples collected from Pong dam reservoir during the study (Figure 7.50). COD at sites W54 & W55 was very high i.e. between 15 and 20 mg/l during monsoon. Coliforms were detected from all sampling sites in Beas-V subbasin and ranged from 2 MPN/100ml to 65 MPN/100ml. Maximum count of Coliforms was recorded from sampling site W56 (near confluence of Binwa khad with Beas river) and minimum from sampling site W58 and W59 located in Pong dam reservoir (Figure 7.50).

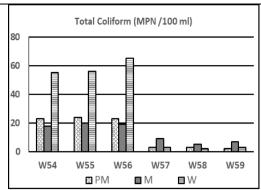


Figure 7.51: Seasonal variation in BOD, COD and Total Coliforms at different sampling sites in Beas-V Sub-basin

(PM=Pre-monsoon; M=Monsoon; W=Winter; W54-W59: Sampling sites)

7.3 BIOLOGICAL CHARACTERISTICS

Rock surfaces, plant surfaces, leaf debris, logs, silt and sandy sediments and all other spaces in the stream provide habitats for different organisms. According to these habitats, organisms are divided into plankton, benthos, nektons and neuston. Benthic diatoms are found attached to the surface of substrates such as rock, boulders and any other bottom substrates of the water body.

7.3.1 Phytoplankton

The word "plankton" is an umbrella term for organisms that live their lives adrift in the water and are unable to move independently. The phytoplankton comprise of diatoms, dinoflagellates, cyanobacteria, and other groups of unicellular algae.

In all total 72 species of phytoplankton were recorded from all the sampling sites during different seasons from Beas river and its tributaries during the entire study period (see Table 7.4). While 70 species were recorded during pre-monsoon, winter season and 60 species were recorded in monsoon season ampling at all sampling sites. Most common genera which are found at almost all the sites are *Synedra*, *Melosira*, *Tabellaria*, *Cymbella*, *Navicula*, *Fragilaria*, *Gomphonema*, *Diatoma*, *Spirogyra* and *Nitzschia* were found at most of the sampling sites during the study period (Table 7.4).

Table 7.4: List of phytoplankton species found at different sampling sites in Study Area

S.No.	Class/ Name of Species	S.No.	Class/ Name of Species
Bacillariophyceae		40	Pediastrum sp.
1	Tabellaria fenestris	41	Microspora sp.
2	Diatoma vulgaris	42	Ulva sp.
3	Fragilaria inflata	43	Oedogonium spp.
4	Nitzschia sp.	44	Cladophora
5	Navicula radiosa	45	Cosmarium
6	Cymbella cistula	46	Scendesmus sp.
7	Coconeis placetula	47	Chloromcoccum sp.
8	Synedra ulna	48	Stigeoclonium sp.
9	Cyclotella sp.	49	Oocystis sp.
10	Stauroneis sp.	50	Chlorogonium sp.
11	Ceratoneis sp.	51	Closterium sp.
12	Denticula sp.	52	Chlamydomonas sp.

a	Class/ Name of		Class/ Name of
S.No.	Species	S.No.	Species
13	Amphora sp.	53	Ankistrodesmus sp.
14	Synedra ulna	54	Clostoriopis sp.
15	Cocconeis placentula	55	Schroederia sp.
16	Gomphonema sp.	56	Selenastrum sp.
17	Gomphoneis sp.	57	Phyllobium sp.
18	Ceratoneis arcus	Мухор	hyceae
19	Astrionella sp.	58	Oscillatoria tenuis
20	Achnanthes sp.	59	Rivularia sp.
21	Caloneis sp.	60	Phormidium sp.
22	Gyrosigma sp.	61	Rivularia sp.
23	Pinnuiaria sp.	Cynop	hyceae
24	Cymbella sp.	62	Chroococcus sp.
25	Meridion sp.	63	Oscillatoria sp.
26	Surirella sp.	64	Nostoc sp.
27	Melosira spp.	65	Anabaena anacystis
28	Diatoma hiemale	66	Merismopedia sp.
29	Reimaria sinuata	67	Microcystic sp.
30	Encyonema minutum	68	Gomphospaeria sp.
31	Epithemia zebra	69	Aphnocapsa sp.
32	Eunotia sp.	70	Spirulina sp.
33	Planothidium	Fugler	ophyceae
	lanceolata	Lugiei	
34	Frustulia sp.	71	Chlamydomonas sp.
Chloro	phyceae	72	Volvox sp.
35	Ulothrix zonata		
36	Closterium leibleinii		
37	Zygnema sp.		
38	Spirogyra sp.		
39	Chlorella sp.		

Table 7.5: Total number of Phytoplankton species recorded during various seasons at different sampling sites

Sampling	Ph	ytoplankton	1
sites	Pre Monsoon	Monsoon	Winter
W1	17	8	9
W2	17	10	13
W3	23	10	13
W4	21	11	21
W5	21	12	17
W6	19	17	20
W7	15	13	18
W8	18	15	17
W9	16	12	18
W10	9	6	9
W11	9	5	9
W12	9	7	9
W13	14	10	14
W14	11	10	12
W15	10	7	11
W16	14	10	14
W17	11	8	11
W18	8	6	8
W19	8	7	8

W20	8	7	8
W21	8	7	8
W22	8	6	8
W23	17	15	17
W24	15	15	17
W25	17	15	17
W26	17	15	17
W27	11	9	12
W28	15	11	15
W29	14	12	15
W30	8	10	11
W31	10	10	11
W32	10	7	11
W33	15	11	15
W34	17	13	17
W35	17	13	17
W36	17	13	17
W37	16	12	16
W38	14	12	16
W39	6	4	7
W40	12	8	10
W41	11	7	12

			•
W51	43	20	41
W52	33	17	35
W53	27	14	33
W54	21	17	14
W55	21	18	14
W56	22	13	19
W57	12	8	10
W58	11	7	12
W59	19	11	19

Draft Final Report: Chapter 7

W42	19	11	19
W43	27	20	29
W44	23	19	26
W45	13	4	13
W46	13	3	13
W47	21	17	14
W48	21	19	14
W49	21	14	20
W50	43	19	41

7.3.2 Phytobenthos

Total 97 species of phytobenthos were identified in the samples collected from proposed study area (**Table 7.6**). In all 97 species, Bacillariophyceae represented by 51 species followed by Cyanophyceae with 18, Chlorophyceae with 24, Euglenophyceae with 2 and Myxophyceae represent by 2 species in the study area.

In all total 97 species of phytobenthos were recorded from the sampling sites during different seasons from Beas river and its tributaries during the entire study period. While 97 species were recorded during in pre-monsoon and winter season and 88 species were found in the monsoon season sampling for all sampling sites. Most common genuswhich are found at almost all the sites are *Synedra*, *Melosira*, *Tabellaria*, *Cymbella*, *Navicula*, *Fragilaria*, *Gomphonema*, *Diatoma*, *Spirogyra*, *Achnanthes*, *Oscillatoria* and *Nitzschia* were found at most of the sampling sites during the study period (**Table 7.7**).

Table 7.6: Total number of Phytobenthos species recorded during vaious seasons in different sampling sites

Sampling	Phyt	obenthos	
sites	Pre Monsoon	Monsoon	Winter
W1	25	14	8
W2	28	11	17
W3	32	14	25
W4	24	16	23
W5	29	17	28
W6	26	23	30
W7	24	16	23
W8	21	21	24
W9	18	15	23
W10	11	12	15
W11	11	8	15
W12	12	8	14
W13	15	8	19
W14	19	15	21
W15	17	13	18
W16	19	17	23
W17	15	11	16
W18	8	7	8
W19	8	8	8
W20	8	8	8
W21	8	8	8
W22	8	8	8
W23	21	20	22
W24	23	18	25
W25	21	15	24

Sampling	Phytobenthos		
sites	Pre Monsoon	Monsoon	Winter
W26	25	12	23
W27	25	20	25
W28	23	19	26
W29	22	16	25
W30	22	11	24
W31	20	15	23
W32	20	14	22
W33	18	13	21
W34	25	19	28
W35	24	20	27
W36	27	19	27
W37	21	17	26
W38	23	20	25
W39	8	4	9
W40	20	11	19
W41	18	12	20
W42	22	16	28
W43	44	30	46
W44	39	22	42
W45	17	8	23
W46	20	10	22
W47	32	20	27
W48	24	26	23
W49	27	16	32
W50	20	11	19

CIA&CCS- Beas Basin in HP

	•:::a••• = = :				
Sampling		Phyt	obenthos		
	sites	Pre Monsoon	Monsoon	Winter	
	W51	18	12	20	
	W52	22	16	28	
	W53	20	11	19	
	W54	18	12	20	
	W55	23	24	26	
	W56	24	20	29	

Sampling	Phyt	obenthos		
sites	Pre Monsoon	Monsoon	Winter	
W57	17	13	18	
W58	19	17	23	
W59	15	11	16	

Draft Final Report: Chapter 7

7.3.3 Zooplankton

The zooplankton population is represented by Protozoon, Rotifers, Cladoceron, *Branchipoda*, *Imbricatea and Lobosea* consisting of total 25 species in the study area. In all species, 9 and 8 species were represented by rotifers and protozoon followed by Cladocera and Copepods (Table 7.8).

In all total 25 species of zooplankton were recorded from the sampling sites. While 24 species were recorded during in pre-monsoon and monsoonseason and 25 species were found in the winter season sampling for all sampling sites. Most common genus which are found at almost all the sites are *Keratella*, *Moina*, *Trichocera*, *Arcella*, *Sexangularia*, and *Daphnia* are found most of the sampling sites during the study period (**Table 7.9**).

Table 7.7: Cumulative list of Zooplankton found at different sampling sites in study area

S.No.	Class/Name of species
Cladocera	
1	Daphnia sp.
2	Moina sp.
Rotifera	
3	Keratella sp.
4	Brachionua sp.
5	Asplanchan sp.
6	Ascomorpha sp.
7	Filinia pp.
8	Trichocera sp.
9	Monostyla sp.
10	Epiphanes sp.
11	Euchlanis sp.
Copepoda	•
12	Cyclops sp.
13	Cypris sp.
14	Nauplib sp.

S.No.	Class/Name of species	
Protozoa		
15	Difflugia sp.	
16	Vorticetta sp.	
17	Arcella sp.	
18	Thecamoeba sp.	
19	Sexangularia sp.	
20	Nebetla spp.	
21	Peridiinium sp.	
22	Ceratium sp.	
Branchipod	a	
23	Alona sp.	
Imbricatea		
24	Euglypha sp.	
Lobosea		
25	Centropyxis sp.	

Table 7.8: Total number of Zooplankton species recorded during various seasons at different sampling sites

Sampling	Zooplankton							
sites	Pre Monsoon	Monsoon	Winter					
W1	11	3	8					
W2	9	2	6					
W3	9	1	5 7					
W4	7	5						
W5	8	4	8					
W6	9	4	10					
W7	8	5	10					
W8	10	3 1	12					
W9	7	1	9					
W10	4	3 2	5 5 5 5 5 5 5					
W11	4 3 3 5 5 4		5					
W12	3	4	5					
W13	3	1	5					
W14	5	2 2 3 2 2 2 3	5					
W15	5	2	5					
W16	4	3	5					
W17	3	2						
W18	4	2	4					
W19	4	3	4					
W20	4		4					
W21	4	1	4					
W22 W23	4 3 7	2	4					
W23		5	7					
W24	7	2	7					
W25	7	2 3						
W26	7	4	7					
W27	6	1	7					
W28	4	3 2	4					
W29	4 5 4		6					
W30	4	0	4					

Sampling	Zooplankton						
sites	Pre Monsoon	Monsoon	Winter				
W31	4	2	4				
W32	4	2	4				
W33	7	4	7				
W34 W35	10	2	10				
W35	11	4	10				
W36	4	4	4				
W37	4	2	4				
W38	4	1	4				
W39	3	1	3				
W40	5	3	6				
W41	4	1	5				
W42	5 5	4	6				
W43	5	4	6				
W44	5	4	6				
W45	5 5 5	4	5 5 5				
W46	5	4	5				
W47		3					
W48	6	2	6				
W49	10	2	9				
W50	10	1	10				
W51	9	1	10				
W52	11	3	10				
W53	11	2	13				
W54	8	5	9				
W55	8	5	9				
W56	7	6	7				
W57	8	6	8				
W58	9	7	11				
W59	9	9	11				

7.3.4 Macro-Invertebrates

Macro-invertebrates are widely used to determine biological conditions and acts as an inline monitoring system for pollution. They are important part of food chain especially for fish. During the study, macro-invertebrate fauna comprised of 64 species falling under 11 Orders belonging to 40 Families. Ephemeroptera was the dominant Order represented by six families and 17 genera followed by Order Diptera with 7 families and 11 genera (Table 7.10). *Chironomus* sp. was the most abundant species and was recorded from 50 sampling sites during the surveys followed by *Ephemerella ignita*, *Isoperla* sp. and *Nemouridae* sp. (Table 7.11).

Table 7.9: List of macro-invertebrates found at different sampling locations

S.No. Order/Name of Species						
	Ephemeroptera					
1	Baetis rhodani					
2	Baetis niger					

S.No.	Order/Name of Species
3	Baetis muticus
4	Rithrogena sp.
5	Heptagenia sulphurea

.C3- beas	Basin in AP
S.No.	Order/Name of Species
6	Baetidae sp.
7	Heptagenia lateratis
8	Caenis sp.
9	Ephemera sp.
10	Ecdynurus sp.
11	Centroptilum sp.
12	Ephemerella ignita
13	Ameletus sp.
14	Sipholonurus sp.
15	Emphemerella doris
16	Ephemerella aleghoniensis
17	Stenonema sp.
	Trichoptera
18	Glossosoma sp.
19	Hydropsychae sp.
20	Brachycentrus sp.
21	Leptoceridae sp.
22	Acroneuria sp.
23	Isoperla sp.
24	Rhyacophila sp.
25	Limnephildae sp.
26	Polycentropus sp.
27	Ochrotricha sp.
	Diptera
28	Tabanus sp.
29	Tendipes sp.
30	Simulium sp.
31	Dixa sp.
32	Chironomus spp.
33	Antocha spp.
34	Culex spp.
35	Psychodidae
36	Culicidae sp.
37	Tipula sp.
38	Maruina spp.
	Plecoptera
39	Isoperla spp.
40	Perla spp.
41	Perlidae sp.
42	Gerris spp.
43	Perlidae sp.
44	Nemouridae sp.
45	Hydropsyche sp.
46	Rhyacophila sp.
47	Polycentropus sp.
48	Brachycentrus sp.
	Hemiptera
49	Gerris lacustris
50	Belostomatidae sp.
	Coleoptera
51	Psephanus sp.
52	Gyrinus spp.
53	Dytiscus spp
	,

S.No.	Order/Name of Species		
54	Elmis spp.		
55	Turbellaria spp.		
56	Planaria spp.		
	Odonata		
57	Macromia spp.		
58	Ophiogomphus spp.		
59	Agrion spp.		
Oligochaeta			
60	Pheretima posthuma		
	Annelida		
61	Glossiphonia spp.		
	Gastropoda		
62	Lymnea spp.		
	Clitellata		
63	Tubifex sp.		
64	Aeolosoma sp.		

CIA&CCS- Beas Basin in HP

Table 7.10: Total number of Macro-invertebrates species recorded during various seasons at different sampling sites

Sampling	Macro-Invertebrates							
sites	Pre Monsoon	Monsoon	Winter					
W1	25	13	20					
W2	17	11	11					
W3	15	12	15					
W4	15	10	16					
W5	13	9	14					
W6	13	9	12					
W7	14	11	14					
W8	13	10	14					
W9	17	5	18					
W10	10	7	9					
W11	10	7	9					
W12	10	6	9					
W13	10	6	9					
W14	9	5	9					
W15	9	6	9					
W16	9	6	9					
W17	9	6	9					
W18	14	11	15					
W19	16	15	15					
W20	16	15	15					
W21	15	12	15					
W22	16	7	15					
W23	20	9	23					
W24	22	10	23					
W25	22	14	23					
W26	20	14	23					
W27	19	13	17					
W28	17	10	19					
W29	15	7	16					
0	18	10	20					

Sampling	Macro-Invertebrates						
sites	Pre Monsoon	Pre Monsoon Monsoon					
W31	17	17 12					
W32	18	11	20				
W33	15	8	15				
W34	23	12	26				
W35	20	16	26				
W36	23	12	26				
W37	21	18	26				
W38	23	12	26				
W39	9	6	9				
W40	17	12	16				
W41	15	11	16				
W42	5	1	4				
W43	5	2	4				
W44	5	0	4				
W45	10	1	5				
W46	10	6	9				
W47	13	6	13				
W48	13	9	13				
W49	17	6	19				
W50	15	2	11				
W51	14	3	16				
W52	16	5	18				
W53	18	4	15				
W54	12	8	12				
W55	5	2	4				
W56	5	0	4				
W57	10	1	5				
W58	10	6	9				
W59	13	6	13				

7.3.5 Water Quality Assessment

The analysis of most of the physico-chemical parameters in general reveals that there is hardly any significant variation in most of the parameters most of them are within prescribed standards. The absence of heavy metals is mainly attributed to absence of heavy industries in the basin except for medium and small enterprises in towns like Kullu, Mandi and Kangra comprising mainly of Agro and Food Processing, mechanical and engineering based, wood, woollen items, and wooden based industries and main exportable items are fabric and ayurvedic medicines (Source: Industrial Profile of Kullu, Mandi and Kangra towns). Main economic activities are comprised of tourism and its related activities. Being hilly and mountainous region industries have not developed in the basin. The heavy metals in Beas river and its tributary streams are either Not Detectable or Below Detectable Limits.

Basin level overall assessment of important attributes of water quality have been discussed in the following paragraphs.

i) Dissolved Oxygen and pH

It can be seen from the chart below (**Figure 7.52**) that DO and pH across the Beas basin does not vary much during different seasons. Only at sites located in Beas V sub-basin near Pong Dam DO values were in the range of 4-6 mg/l. However in general DO values throughout the basin ranged between 8 and 10 mg/l.

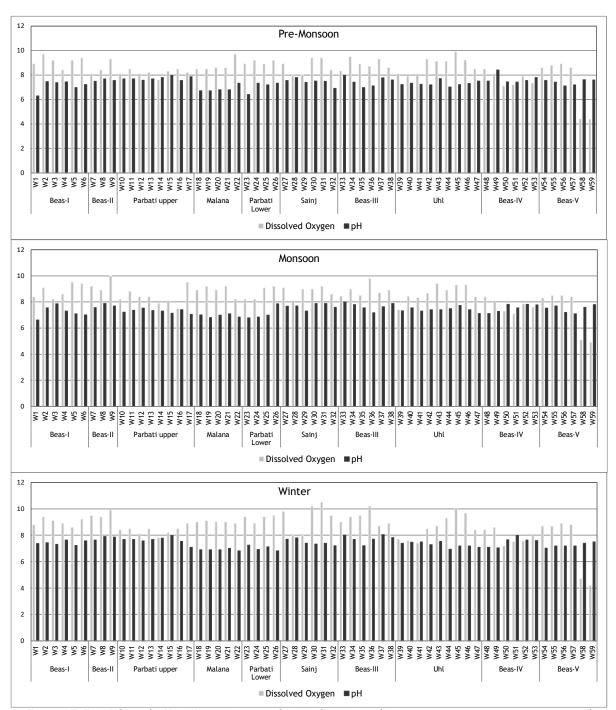


Figure 7.52: DO and pH in Beas river and its tributaries during pre-monsoon, monsoon and winter seasons in different sub-basins

ii) Total Dissolved Solids and Turbidity

Turbidity levels throughout the basin well within the acceptable limits in all the seasons. Only during monsoon are some places in the basin like Sainj sub-basin slightly higher levels of

turbidity was observed in the waters of Sainj Khad (see Figure 7.53). Total Dissolved Solids were also within the permissible range for freshwater streams except in Beas V sub-basin where TDS in Beas and its tributaries was more than 100 ppm.

iii) Total Hardness, Magnesium and Chlorides

Overall scenario of Total Hardness, Magnesium and Chlorides is given at **Figure 7.54**. It can be seen from the **Figure 7.54** that Magnesium concentrations were much higher especially in Parbati river in Parbati Upper sub-basin and Uhl river water in Uhl sub-basin during all seasons. The chlorides were quite high in streams in Uhl and Beas V sub-basins in all seasons. Total hardness followed the pattern of Magnesium and Chlorides in the basin.

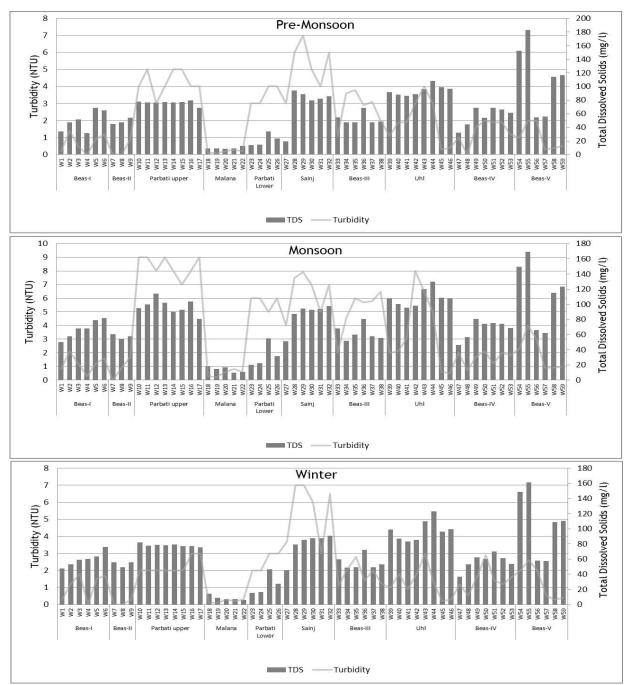


Figure 7.53: TDS and Turbidity in Beas river and its tributaries during pre-monsoon, monsoon and winter seasons in different sub-basins

iv) Biological Oxygen Demand, Chemical Oxygen Demand and Total Coliforms

The pollution levels in different streams in the basin can be assessed through BOD and presence of Total Coliforms at different locations in the basin. Biological oxygen demand throughout the entire basin except for Uhl and Beas V sub-basins was well within the permissible limits varying from 0.3 to 1.5 mg/L (see Figure 7.55). In Uhl and Beas V sub-basins BOD varied between 4 and 6 mg/L.

Chemical Oxygen Demand (COD) was quite high at some sampling sites in Beas I sub-basin (W5 & W6- project area of Allain Duhangan HEP). COD was high at 2 sampling sites in Uhl sub-basin at W42 & W43 i.e. Uhl II & Uhl III HE project area and 2 sites in Beas V sub-basin at W53 & W54 sampling sites in Thana Plaun HE project area.

The count of Total Coliforms in general in most of the streams throughout the basin was low. Only streams passing through Manali, Mandi, Joginder Nagar towns etc., had higher count of Total coliforms which might be due to sewage disposal into the streams. Total coliform count was high in Sainj river which is a tributary of Beas in Sainj sub-basin at sites W31 & W32 located in the Parbati III HE project area. However highest counts were recorded at Larji (W35) site during monsoon and winter seasons in Beas III sub-basin and at site W3 in the Bhang HE project area in Beas I sub-basin during monsoon.

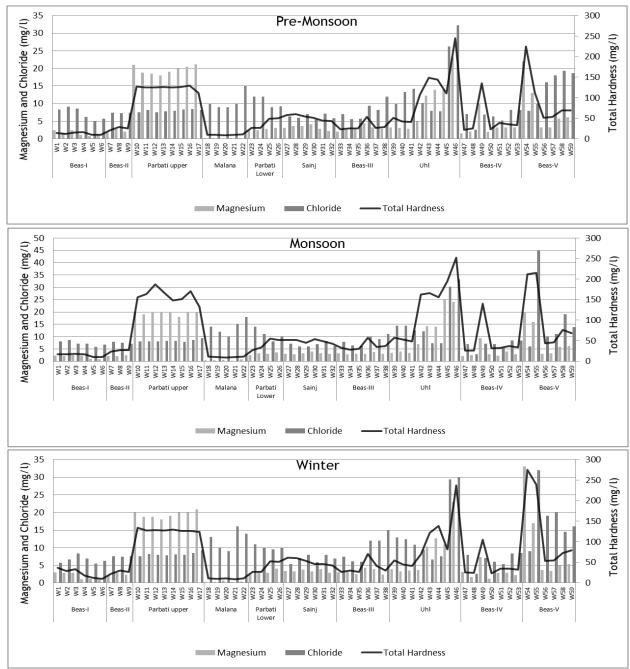


Figure 7.54: Chlorides, Total hardness and Magnesium in Beas river and its tributaries during pre-monsoon, monsoon and winter seasons in different sub-basins

In order to make an overall assessment of water quality of Beas river and its tributary streams water quality indicies like WQI for physico-chemical attributes and BMWP for biological attributes were used. Whereas WQI (Water Quality Index) based upon 9 different water quality parameters is used to measure the physico-chemical water quality in general while BMWP (Biological Monitoring Working Party) in indicative of biological richness of a particular river/stream which is based upon type of Macro-invertebrates inhabiting the particular stream.

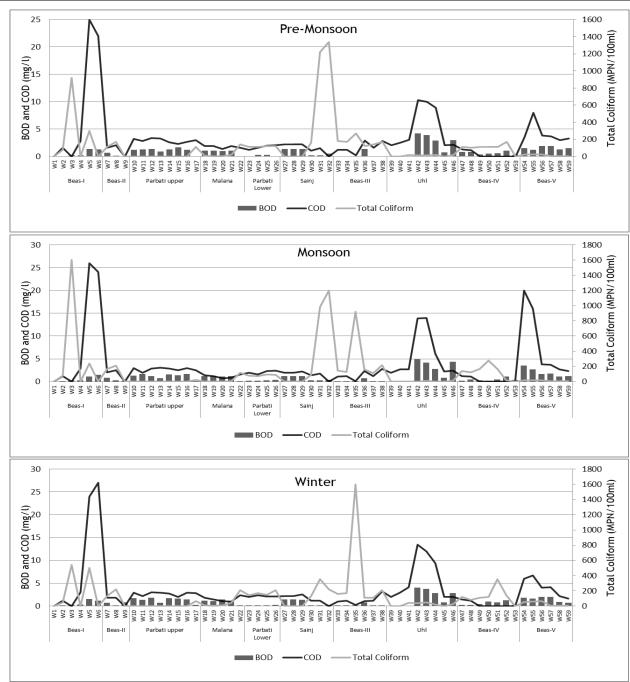


Figure 7.55: BOD, COD and Total Coliforms in Beas river and its tributaries during premonsoon, monsoon and winter seasons in different sub-basins

As already mentioned there is hardly any variation in some parameters and heavy metals are either Below Detectable Limits or Not Detectable at most of sites no detail discussion has been done on these aspects. However data compiled on these parameters is given at **Table 7.12**.

Table 7.11: Seasonal variation in Total alkalinity, sulphates and heavy metals at different sampling sites in Beas basin

				ps .								
Parameter Season	Coacon		Beas-I						Beas-II			
	W1	W2	W3	W4	W5	W6	W7	W8	W9			
Total alkalinity	PM	13	17	16	15	15	22	16	15	20		
(mg/l of	M	11	19	18	18	19	19	18	17	24		
CaCO ₃)	W	20	20	19	19	22	24	21	18	21		

RS Envirolink Technologies Pvt. Ltd.

Damamatan	C			Beas-II						
Parameter	Season	W1	W2	W3	W4	W5	W6	W7	W8	W9
Codebata	PM	3.4	4.2	3.2	2.4	4.99	4.99	2.12	2.32	2.32
Sulphate (mg/l)	М	5.4	5.1	4.4	3.7	5.66	5.19	2.45	2.43	2.56
	W	4.3	3.2	4.1	2.6	5.23	5.11	2.32	2.39	2.47
	PM	0.07	0.08	0.03	0.21	< 0.05	< 0.05	<0.05	<0.1	<0.1
Iron (mg/l)	М	0.09	0.07	0.02	0.41	< 0.05	< 0.05	<0.05	<0.1	<0.1
	W	0.03	0.05	0.04	0.3	< 0.05	< 0.05	<0.05	<0.1	<0.1
6 1 :	PM	0.004	0.002	0.004	N.D	0.021	0.03	N.D	N.D	N.D
Cadmium	М	0.005	0.001	0.003	N.D	0.0	0.0832	N.D	N.D	N.D
(mg/l)	W	0.007	0.003	0.006	N.D	0.0	0.0212	N.D	N.D	N.D
	PM	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Arsenic (mg/l)	М	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	W	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	PM	N.D	N.D	N.D	N.D	0.06	0.043	N.D	N.D	N.D
Mercury (mg/l)	М	N.D	N.D	N.D	N.D	0.1	0.052	N.D	N.D	N.D
	W	N.D	N.D	N.D	N.D	0.1	0.055	N.D	N.D	N.D
	PM	0.0002	0.004	0.003	N.D	<0.025	<0.025	N.D	N.D	N.D
Copper (mg/l)	М	0.0004	0.005	0.005	N.D	<0.025	<0.025	N.D	N.D	N.D
	W	0.003	0.005	0.004	N.D	<0.025	<0.025	N.D	N.D	N.D
	PM	0.011	0.003	0.011	0.04	0.012	0.023	N.D	N.D	N.D
Zinc (mg/l)	М	0.012	0.009	0.005	0.02	0.0	0.011	N.D	N.D	N.D
	W	0.012	0.01	0.007	0.1	0.0	0.011	N.D	N.D	N.D
Total	PM	N.D	N.D	N.D	N.D	<0.025	<0.025	N.D	N.D	N.D
Chromium	М	N.D	N.D	N.D	N.D	<0.025	<0.025	N.D	N.D	N.D
(mg/l)	W	N.D	N.D	N.D	N.D	<0.025	<0.025	N.D	N.D	N.D
	PM	0.02	0.04	0.03	0.02	0.04	0.03	N.D	N.D	N.D
Manganese (mg/l)	М	0.04	0.03	0.03	0.03	0.0	0.04	N.D	N.D	N.D
(IIIg/I)	W	0.04	0.02	0.04	0.03	0.0	0.04	N.D	N.D	N.D
	PM	0.0048	0.0043	0.0039	N.D	<0.06	<0.06	N.D	N.D	N.D
Lead (mg/l)	М	0.005	0.0052	0.0042	N.D	<0.06	<0.06	N.D	N.D	N.D
	W	0.0395	0.0212	0.0323	N.D	<0.06	<0.06	N.D	N.D	N.D

Parameter	C			Parbati Upper					
	Season	W10	W11	W12	W13	W14	W15	W16	W17
	PM	32	35	38	36	31	32	29	18
Total alkalinity (mg/l of CaCO ₃)	M	36	31	35	32	33	34	34	22
(Ilig/I of Cacos)	W	32	32	30	32	29	27	26	20
	PM	16	16	15.5	17.1	16	15.5	15.3	12.4
Sulphate (mg/l)	M	12.3	13.1	12.5	14.1	13.5	12.2	13.1	11.9
	W	16	16	15.5	17.1	16	15.5	15.3	12.6
	PM	0.16	0.16	0.16	0.16	0.15	0.17	0.15	0.13
Iron (mg/l)	M	0.12	0.6	0.11	0.9	0.17	0.16	0.16	0.15
	W	0.11	0.11	0.12	0.12	0.11	0.12	0.12	0.12
	PM	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
Cadmium (mg/l)	M	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
	W	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
	PM	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Arsenic (mg/l)	M	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	W	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	PM	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
Mercury (mg/l)	М	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
	W	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
_	PM	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
Copper (mg/l)	М	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
	W	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
Zinc (mg/l)	PM	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

Damamatan	Conson	Parbati Upper								
Parameter	Season	W10	W11	W12	W13	W14	W15	W16	W17	
	М	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
	W	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Total Chromium	PM	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	
(mg/l)	М	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	
	W	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	
Manganaga	PM	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	
Manganese	М	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	
(mg/l)	W	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	
	PM	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	
Lead (mg/l)	М	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	
, , ,	W	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	

Davamatar	Casass			Malana				Parba	ti Lower	
Parameter	Season	W18	W19	W20	W21	W22	W23	W24	W25	W26
Takal alkalinik.	PM	12	13	15	18	22	23	22	12	14
Total alkalinity (mg/l of CaCO ₃)	М	14	14	16	20	20	22	21	17	18
(IIIg/I OI CaCO3)	W	11	13	14	22	22	26	22	18	13
	PM	<0.1	<0.1	<0.1	<1	<1	<1	<1	<1	<1
Sulphate (mg/l)	M	<0.1	<0.1	<0.1	<1	<1	<1	<1	<1	<1
	W	<0.1	<0.1	<0.1	<1	<1	<1	<1	<1	<1
	PM	0.13	0.12	0.12	0.12	0.1	0.15	0.15	0.21	0.23
Iron (mg/l)	М	0.15	0.11	0.13	0.12	0.12	0.17	0.19	0.23	0.24
	W	0.13	0.12	0.12	0.13	0.13	0.12	0.14	0.22	0.26
	PM	<0.01	<0.01	<0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium (mg/l)	М	<0.01	<0.01	<0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	W	<0.01	<0.01	<0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	PM	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
Arsenic (mg/l)	М	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
	W	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
	PM	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
Mercury (mg/l)	М	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
	W	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
	PM	N.D	0.008	0.008	0.009	0.009	0.01	0.02	N.D	N.D
Copper (mg/l)	М	N.D	0.005	0.009	0.005	0.008	0.02	0.04	N.D	N.D
	W	N.D	0.009	0.008	0.009	0.004	0.01	0.03	N.D	N.D
	PM	N.D	0.01	0.01	0.01	0.02	0.01	0.01	<0.02	<0.02
Zinc (mg/l)	М	N.D	0.01	0.01	0.02	0.01	0.03	0.03	<0.02	<0.02
	W	N.D	0.01	0.01	0.01	0.01	0.02	0.02	<0.02	<0.02
Total Chromium	PM	N.D	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	М	N.D	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
(mg/l)	W	N.D	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Manganasa	PM	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.02	0.01
Manganese	M	0.08	0.04	0.05	0.04	0.07	0.08	0.6	0.03	0.02
(mg/l)	W	0.07	0.05	0.05	0.05	0.05	0.04	0.05	0.04	0.03
	PM	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
Lead (mg/l)	M	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
	W	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D

Parameter	Season	Sainj						Beas III					
rarameter	Season	W27	W28	W29	W30	W31	W32	W33	W34	W35	W36	W37	W38
Total	PM	11	12	12.9	12.4	10.2	12.1	20	20	21	22	19	18
alkalinity	M	14	14	14.2	14.1	12.1	13.3	24	21	25	24	21	22
(mg/l of	W	16	15	15.3	17.9	13.2	14.5	21.9	22	22	26	22	21

D	C			Sa	inj					Bea	s III		
Parameter	Season	W27	W28	W29	W30	W31	W32	W33	W34	W35	W36	W37	W38
CaCO ₃)													
6 1 1 1	РМ	<1	<1.0	<1.0	<1.0	<1.0	<1.0	4.23	2.12	2.25	4.23	3.22	4.12
Sulphate	М	<1	<1.0	<1.0	<1.0	<1.0	<1.0	4.4	2.84	2.7	5.01	4.12	4.8
(mg/l)	W	<1	<1.0	<1.0	<1.0	<1.0	<1.0	4.37	2.42	2.44	4.87	3.87	3.87
	РМ	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.12	0.11	0.12	<0.1	<0.1	<0.1
Iron (mg/l)	М	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	0.1	0.2	<0.1	<0.1	<0.1
	W	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.14	0.12	0.19	<0.1	<0.1	<0.1
C - d :	PM	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Cadmium	М	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(mg/l)	W	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
A	РМ	N.D											
Arsenic	М	N.D											
(mg/l)	W	N.D											
	РМ	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mercury	М	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(mg/l)	W	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
C	PM	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0003	0.0045	<0.1
Copper	М	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0002	0.0012	<0.1
(mg/l)	W	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0031	0.0002	<0.1
	PM	0.15	0.15	0.14	N.D								
Zinc (mg/l)	М	0.15	0.15	0.14	N.D								
	W	0.24	0.24	0.12	N.D								
Total	PM	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium	М	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(mg/l)	W	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	PM	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Manganese	М	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(mg/l)	W	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	РМ	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lead (mg/l)	М	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	W	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001

Damamatan	C				U	hl			
Parameter	Season	W39	W40	W41	W42	W43	W44	W45	W46
Total alkalinity	PM	89.3	82	90.32	89.3	78	67.5	78	63.7
(mg/l of	M	91.2	84.21	94.23	93.3	94.3	78.06	77.32	75.2
CaCO ₃)	W	81.68	81.94	89.45	80	90	70	69.67	60.67
Culmbaka	PM	8.3	12.9	9.3	10.3	9.2	10.3	12.2	10.2
Sulphate	М	10.4	9.32	9.87	11.2	10.8	11.3	10.2	13.2
(mg/l)	W	14	9.42	10.84	10.2	9.4	10.8	15.2	12.9
	PM	0.007	0.07	0.008	0.18	0.2	0.21	Α	Α
Iron (mg/l)	М	0.009	0.09	0.01	0.2	0.18	0.23	Α	Α
, ,	W	0.08	0.04	0.006	0.16	0.14	0.19	Α	Α
C - d :	PM	<0.1	<0.1	<0.1	BDL	BDL	BDL	Α	Α
Cadmium	М	<0.1	<0.1	<0.1	BDL	BDL	BDL	Α	Α
(mg/l)	W	<0.1	<0.1	<0.1	BDL	BDL	BDL	Α	Α
	PM	N.D	N.D	N.D	BDL	BDL	BDL	Α	Α
Arsenic (mg/l)	М	N.D	N.D	N.D	BDL	BDL	BDL	Α	Α
	W	N.D	N.D	N.D	BDL	BDL	BDL	Α	Α
	PM	<0.1	<0.1	<0.1	BDL	BDL	BDL	Α	Α
Mercury (mg/l)	М	<0.1	<0.1	<0.1	BDL	BDL	BDL	Α	Α
	W	<0.1	<0.1	<0.1	BDL	BDL	BDL	Α	Α
Conner (mg/l)	PM	<0.005	<0.005	<0.005	BDL	BDL	BDL	Α	Α
Copper (mg/l)	М	<0.005	<0.005	<0.005	BDL	BDL	BDL	Α	Α

Downstan	Season				U	hl			
Parameter	Season	W39	W40	W41	W42	W43	W44	W45	W46
	W	<0.005	<0.005	<0.005	BDL	BDL	BDL	Α	Α
	PM	<0.001	<0.001	<0.001	BDL	BDL	BDL	Α	Α
Zinc (mg/l)	M	<0.001	<0.001	<0.001	BDL	BDL	BDL	Α	Α
	W	<0.001	<0.001	<0.001	BDL	BDL	BDL	Α	Α
Total	PM	ND	ND	ND	BDL	BDL	BDL	Α	Α
Chromium	М	ND	ND	ND	BDL	BDL	BDL	Α	Α
(mg/l)	W	ND	ND	ND	BDL	BDL	BDL	Α	Α
Management	PM	<0.1	<0.1	<0.1	BDL	BDL	BDL	N.D	N.D
Manganese	M	<0.1	<0.1	<0.1	BDL	BDL	BDL	N.D	N.D
(mg/l)	W	<0.1	<0.1	<0.1	BDL	BDL	BDL	N.D	N.D
	PM	<0.001	<0.001	<0.001	BDL	BDL	BDL	Α	Α
Lead (mg/l)	М	<0.001	<0.001	<0.001	BDL	BDL	BDL	Α	Α
	W	<0.001	<0.001	<0.001	BDL	BDL	BDL	Α	Α

D	C			Е	Beas IV						Bea	as V		
Parameter	Season	W47	W48	W49	W50	W51	W52	W53	W54	W55	W56	W57	W58	W59
Total	PM	18	32	32	29	33	30	29.4	77	79	67	71	69	68
alkalinity	М	20	30	33	27	34	28	26.9	75	85	71	77	67	61
(mg/l of CaCO ₃)	W	21	32	28	30	36	24	24.5	75	75	75	79	71	77
Sulphate	PM	4.3	3.2	6.01	5.32	3.9	6.8	7.9	14	11	4	5	4.2	3.9
· ·	М	4.2	3	5.87	5.7	3.5	6.8	7.21	10	9	4	3.5	4.3	4.1
(mg/l)	W	4.9	3.9	5.89	5.32	4.3	6.9	7.23	12	15	5	6	3.9	4
	PM	0.24	<0.01	1.7	0.2	0.2	0.1	0.12	0.02	0.02	0.5	0.6	0.31	0.3
Iron (mg/l)	М	0.21	<0.01	1.6	0.12	0.3	0.12	0.11	0.025	0.03	0.3	0.8	0.32	0.5
	W	0.23	<0.01	1.2	0.13	0.3	0.13	0.13	0.033	0.028	0.7	0.8	0.3	0.1
c	PM	N.D	N.D	0.01	N.D	N.D	N.D	N.D	<0.01	<0.01	<0.01	<0.01	0.009	0.008
Cadmium	М	N.D	N.D	0.01	N.D	N.D	N.D	N.D	<0.01	<0.01	<0.01	<0.01	0.007	0.007
(mg/l)	W	N.D	N.D	0.01	N.D	N.D	N.D	N.D	<0.01	<0.01	<0.01	<0.01	0	0
	PM	N.D	<0.001	N.D	N.D	N.D	N.D	N.D	<0.05	<0.05	<0.001	<0.001	<0.001	<0.001
Arsenic	М	N.D	<0.001	N.D	N.D	N.D	N.D	N.D	<0.05	<0.05	<0.001	<0.001	<0.001	<0.001
(mg/l)	W	N.D	<0.001	N.D	N.D	N.D	N.D	N.D	<0.05	<0.05	<0.001	<0.001	<0.001	<0.001
	PM	N.D	<0.1	N.D	N.D	N.D	N.D	N.D	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Mercury	М	N.D	<0.1	N.D	N.D	N.D	N.D	N.D	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
(mg/l)	W	N.D	<0.1	N.D	N.D	N.D	N.D	N.D	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
C	PM	N.D	<0.1	N.D	N.D	N.D	N.D	N.D	<0.01	<0.01	<0.001	<0.02	<0.02	<0.02
Copper	М	N.D	<0.1	N.D	N.D	N.D	N.D	N.D	<0.01	<0.01	<0.001	<0.02	<0.02	<0.02
(mg/l)	W	N.D	<0.1	N.D	N.D	N.D	N.D	N.D	<0.01	<0.01	<0.001	<0.02	<0.02	<0.02
	PM	N.D	<0.05	N.D	N.D	N.D	N.D	N.D	<0.01	<0.01	<0.02	<0.05	<0.05	<0.05
Zinc (mg/l)	М	N.D	<0.05	N.D	N.D	N.D	N.D	N.D	<0.01	<0.01	<0.02	<0.05	<0.05	<0.05
	W	N.D	< 0.05	N.D	N.D	N.D	N.D	N.D	<0.01	<0.01	<0.02	< 0.05	<0.05	<0.05
Total	PM	N.D	N.D	N.D	N.D	N.D	N.D	N.D	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chromium	М	N.D	N.D	N.D	N.D	N.D	N.D	N.D	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
(mg/l)	W	N.D	N.D	N.D	N.D	N.D	N.D	N.D	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
***************************************	PM	N.D	<0.1	N.D	N.D	N.D	N.D	N.D	N.D	N.D	0.02	0.02	0.01	0.14
Manganese	М	N.D	<0.1	N.D	N.D	N.D	N.D	N.D	N.D	N.D	0.03	0.04	0.02	0.2
(mg/l)	W	N.D	<0.1	N.D	N.D	N.D	N.D	N.D	N.D	N.D	0.02	0.01	0.12	0.21
	PM	N.D	0.76	N.D	N.D	N.D	N.D	N.D	<0.05	<0.05	<0.01	<0.01	0.31	0.36
Lead (mg/l)	М	N.D	0.87	N.D	N.D	N.D	N.D	N.D	<0.05	<0.05	<0.01	<0.01	0.32	0.021
	W	N.D	0.56	N.D	N.D	N.D	N.D	N.D	<0.05	<0.05	<0.01	<0.01	0.0257	0.0263

7.3.5.1 WQI (Water Quality Index)

In order to assess the overall physico-chemical water quality of Beas river as well as its tributaries a WQI (Water Quality Index) was used which has been developed at Washington State Department of Ecology, Environmental Assessment Programme. The WQI used in the report is a unitless number ranging from 1 to 100. A higher number is indicative of better water quality. For temperature, pH, coliforms and dissolved oxygen, the index expresses result relative to levels required to maintain beneficial uses (based on criteria in Washington's Water Quality Standards, WAC 173-201A).

Water quality index is a 100-point scale that summarizes results from a total of 9 different parameters listed below in the table.

pН	Temerature Change ⁰ C	Total Phosphates
		mg/L
Dissolved Oxygen	Total Coliforms	Nitrates
(DO) Saturation (%)	MPN/100mL	mg/L
Turbidity	Biochemical Oxygen Demand	Total Suspended Solids
NTU	(BOD)	(TSS)
	mg/L	m/L

The analysis of water quality therefore has been based upon 9 parameters as defined for WQI above and based upon the score at each sampling site water quality has been designated as Excellent, Good, Medium, etc. as per the range defined in the tabe below. The analysis of river water quality in Beas basin and its tributary streams throughout the basin based upon WQI is given in the following paragraphs.

Water Quality Index						
Range	Quality					
90-100	Excellent					
70-90	Good					
50-70	Medium					
25-50	Bad					
0-25	Very bad					

As discussed earlier in order to assess the physico-chemical water quality of Beas river and its tributary streams WQI was calculated and results of the same are shown in Figure 7.56. As seen from the chart WQI varied from 64.94 to 93.49. The chart shows that WQI at majority of sampling sites in different sub-basins during all seasons ranges from Good to Excellent as the values in general range between 70 and 94 which indicates that water quality based upon above parameters is largely Good or Excellent. Only at some of the sampling sites in Parbati Lower (W23 - W26 Parbati, Sharni and Sarsadi HE project areas is in Medium category. It was also seen that BOD values were higher than the normal range and Total Coliforms were also on high side presumably due to discharge of untreated discharge of domestic sewage directly into Beas river where towns like Manali, Kullu and Mandi.

Similarly, biological water quality of Beas river as well its tributary streams was also estimated. Macro-invertebrates are one of the indicators of water quality of freshwater

streams. The water quality assessment of Beas river and its tributaries was assessed by calculating BMWP and ASPT values which are based upon type of species found in the water which are an indicative of river water quality. There are certain genera which are pollution sensitive and their presence in a particular streams indicates Excellent water quality whereas presence of pollution tolerant genera is indicative of polluted waters of the streams. The methodology to calculate these indices has been given in Chapter 3-Methodology of this report.

For ease of interpretation, the BMWP cumulative total scores thus calculated have been banded to distinguish broad categories of water quality as shown in table below.

Description	Score Band
Excellent	>150
Very Good	101 - 150
Good	51 - 100
Moderate	26 - 50
Poor	<25

BMWP score calculated for different sampling sites in different sub-basins during various seasons is given at **Figure 7.57**. It varied from lowest value of 24 to highest value of 144. Water quality during monsoon in general was Poor to Good in most of water sampling sites in Parbati Lower, Uhl, Sainj, Beas III, Beas IV and Beas V sub-basins. Water quality however was in Good category during winters at all the above sites. Water quality scenario was almost similar to winters in pre-monsoon season at all these sites. At majority of the sampling sites water quality is in 'Very Good' category at sampling sites located in Parbati Upper and Parbati Lower sub-basins especially during pre-monsoon and winters.

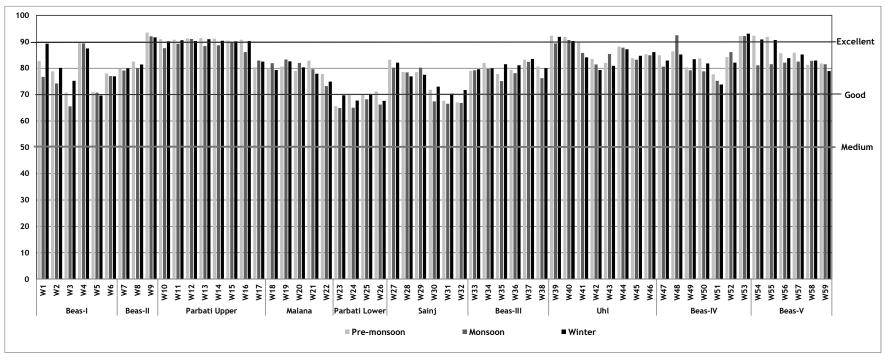


Figure 7.56: WQI in Beas river and its tributaries during pre-monsoon, monsoon and winter seasons in different sub-basins

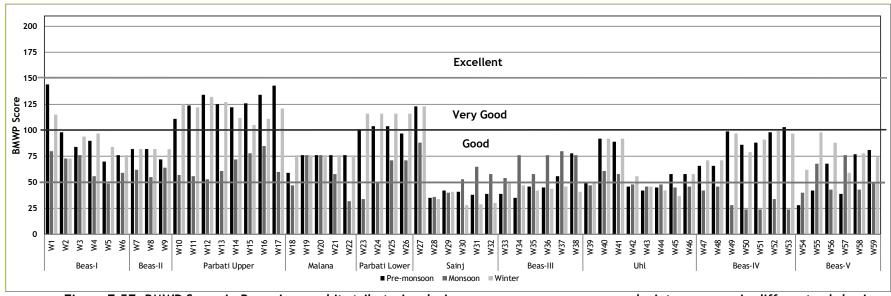


Figure 7.57: BMWP Score in Beas river and its tributaries during pre-monsoon, monsoon and winter seasons in different sub-basins

The average sensitivity of the families of the organisms present is known as the Average Score per Taxon (ASPT). The ASPT index gives an indication of the evenness of community diversity. ASPT is calculated by dividing the BMWP score for each site by the total number of scoring families found there, so it is independent of sample size. The ASPT score varied from 3.0 to 8 (see Figure 7.58). ASPT scores are higher at sites located at higher elevations in Beas I, Beas II, Parbati Upper, Malana and Parbati Lower sub-basins.

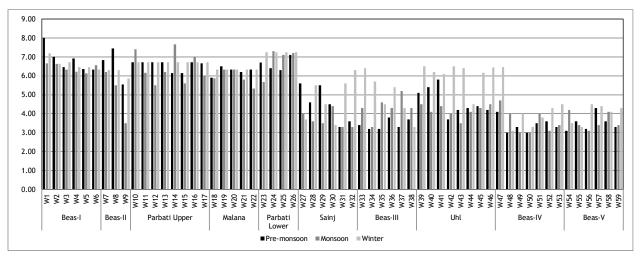


Figure 7.58: ASPT Scores in Beas river and its tributaries during pre-monsoon, monsoon and winter seasons in different sub-basins

7.4 FISHES

Fishes have great significance in the life of mankind, being an important natural source of protein, and also providing certain other useful products as well as economic sustenance. The Himalaya from south to north exhibits a variety of physiographic features, climate, and rock types belonging to the long geological history. These characteristics affect the physical, chemical and biological properties of the stream and river water alongwith their respective gradients. These features are also reflected in the habitat of the fish fauna. The Himalayan streams are well known for their cold-water fisheries, particularly at the higher elevations. The fish density and diversity gradually decreases from lower to upper reaches, because it mainly depends on the water current velocity, water temperature, dissolved oxygen and food availability.

The state of Himachal Pradesh is a mountainous region spread over an area of 55,673 sq km. It is drained by rivers like Ravi, Beas, Sutlej and Chenab with elevation ranging from 450 m to 6,500 m (Jagtap, 2013). Beas river is a one of the largest glacierfed rivers in the state flowing for a length of 470 km before joining the Sutlej River at Harike Pattan south of Amritsar in state of Punjab. The total catchment area of Beas river in Himachal Pradesh is 12,591 sq km and its length in the study area is about 274 km.

All these river basins in the state are well known for their cold-water fisheries. The fisheries in the state is well organized as compared to that of other Himalayan states like Uttarakhand, Jammu & Kashmir, Sikkim and Arunachal Pradesh. It addition to rivers the state also harbours

4 large reservoirs like Gobind Sagar, Maharana Pratap Sagar, Pandoh and Chamera. These reservoirs play a vital role in commercial fishery and state revenue (Jagtap, 2013).

7.4.1 Beas Drainage System Characteristics

Beas darainage system in Himachal Pradesh is spread over a length of more than 900 km, which is comprised of 274 km of Beas river and about 626 km of tributaries (Sehgal, 1983). Important from viewpoit of fishes are Baner, Binwa, Neugal, Dehar, Awa, Banganga, Gaj, Manuni, Parbati, Patlikuhl, Sainj, Suketi, Tirthan and Uhl. Northern and eastern tributaries are perennial and snow fed while southern tributaries are seasonal. Coldwater streams are characterized by high transparency and dissolved oxygen. Major cold-water fishes belong to Cyprinidae, Cobitidae and Sisoridae and these fishes are small in size. Most of the hill stream fishes live at the bottom or on the banks due to low water current than the main Beas river. Fishes living in torrential tributary streams have special organs for attachment. These fishes thrive in the hilly streams and have bottom dwelling habits.

According to classification of Rosgen (1996) Beas River can be divided into following categories on the basis of general features, substratum and altitude of the stream to know the adequate habitat of the fish.

- 1. Type A1 Stream (>1251 m): These type of streams are dominated by large boulders and have very steep gradient. Step pools are the main habitat of such streams. The streams are narrow with torrential flow of current with dense riparian vegetation. The depth to width ratio of the stream is more than 1.
- 2. Type A Stream (1250-951 m): These types of streams are also narrow but comparatively broader than 'A' type streams and are their bed is characterised by big and small boulders followed by cobbles and gravel. These are almost silt free. Rapids and riffles constitute the main habitats.
- **3. Type B Stream (950-751 m):** These streams are wider than 'A' type of streams. The width and the depth ratio are almost same in these streams. Pools constitute the main habitat of these streams. Large and small boulders are almost in equal proportions followed by cobbles and gravel. Riffles constitute the main habitat followed by rapids and runs.
- **4. Type C (750-500 m):** These streams are mostly of open type and the width of the streams is comparatively more than that of the depth. Their riverbed is dominated by cobbles and gravels. Boulders are scattered along the bank and in the stream. Runs and riffles are the main habitat of these streams.
- **5. Type F Stream (<500 m):** These stream sites are wide and also of open type and mostly located in the meadows and urban areas. The streams are dominated by sand and cobbles while small stones are scattered. The streams are shallow and water flows smoothly in the stream.

Snow trout is the dominant species of A1, A and B streams while Mahseer is dominant fish species in Type B and C streams.

7.4.2 Fish Species Diversity

An inventory of fish fauna of Beas basin was prepared with the help of secondary literature. The secondary literature comprises Environment Master Plan of Government of Himachal Pradesh, Jindal *et al.* (2014), Jagtap (2013), Sharma (2007), Kumar (2010), Mehta and Uniyal (2004), Johal *et al.* (2001).

Mehta and Uniyal (2004) had reported 104 species of fishes grouped under 17 families in Himachal Pradesh whereas Environment Master Plan of State Government has mentioned 83 species from the state. Zoololgical Survey of India (ZSI) have published reports on fishes of Beas river which are by Sharma and Mehta (2010) and Sharma (2010). Other studies include studies by Kumar (2010). Sharma (2010) had listed 67 fish species from Beas river. Based upon the data compiled various secondary sorces cited above fish fauna in the Beas basin is comprised of 84 species belonging to 14 families (**Table 7.13**). Cyprinidae is the largest family represented by 43 species followed by Cobitidae and Sisoridae with 11 species each. As many as 57 species have been reported from Pong Dam reservoir itself. The conservation status of fish species was assessed with the help of IUCN Redlist, Conservation Assessment and Management Plan (CAMP) Workshops Report (1998) and Threatened Freshwater Fishes of India by National Bureau of Fish Genetic Resources, Lucknow (NBFGR, 2010).

The experimental fishing was carried out in different stretches of the Beas river and its tributaries to assess the fish composition in the Beas basin (Editor-Director, ZSI, 2009).

Conservation Status Common S. No. Family Scientific name **IUCN Red** CAMP **NBFGR** name List 1 Ambassidae Chanda nama Chilwa LC 2 Amblycipitidae Amblyceps mangois Sundal LC LRnt ΕN LC Bagridae Aorichthys seenghala 3 VU 4 Bagridae Mystus bleekeri LC 5 Bagridae Mystus vittatus Kingra LC VU Bagridae Rita rita LC LRnt 6 Khagga Bagridae LC VU 7 Sperata aor 8 Chanidae Channa marulius Saul LC LRnt 9 LC ۷U Chanidae Channa orieltalis 10 Chanidae Channa striatus LC LRlc Achanthocobitis botia 11 Cobitidae LC LRnt 12 Cobitidae Botia birdi Chipar LRnt _ 13 Cobitidae Botia dario LC LRnt VU 14 Cobitidae Botia rostrata ۷U Lepidocephalichthys Jiwa LC 15 Cobitidae guntea 16 Cobitidae Nemacheilus corica Talana LC LRnt Paraschistura montana 17 Cobitidae (=Nemacheilus ΕN kangrae)

Schistura carletoni

Schistura

Table 7.12: List of Fishes reported from Beas basin

Cobitidae

Cobitidae

18

19

EN

ΕN

				Cons	ervation Sta	atus
S. No.	Family	Scientific name	Common name	IUCN Red List	CAMP	NBFGR
		himanchalensis				
20	Cobitidae	Schistura horai		-	VU	-
21	Cobitidae	Schistura rupecula		-	LRnt	-
22	Cyprinidae	Barilius barila		LC	VU	-
23	Cyprinidae	Barilius barna	Patha	LC	LRnt	-
24	Cyprinidae	Barilius bendelisis	Patha	LC	LRnt	-
25	Cyprinidae	Barilius modestus	Chilwa	-	-	-
26	Cyprinidae	Barilius vagra	Lohari	LC	VU	-
27	Cyprinidae	Catla catla		-	VU	-
28	Cyprinidae	Cirrhinus mrigala	Mori/ Mrigal	LC	LRnt	-
29	Cyprinidae	Cirrhinus reba		LC	VU	-
30	Cyprinidae	Crosscheilus diplochilus		LC	DD	-
31	Cyprinidae	Crossocheilus latius	Tiller	LC	DD	VU
32	Cyprinidae	Danio rerio	Kangi	LC	LRnt	-
33	Cyprinidae	Devario devario	Parrandah	LC	LRnt	-
34	Cyprinidae	Esomus danrica	Makni	LC	LRlc	-
35	Cyprinidae	Garra gotyla	Sunni, Kurka	LC	VU	VU
36	Cyprinidae	Garra lamta	Janne, Harria	LC	-	VU
37	Cyprinidae	Labeo bata		LC	LRnt	-
38	Cyprinidae	Labeo calbasu	Kalbans	LC	LRnt	_
39	Cyprinidae	Labeo dero	Gid	LC	VU	_
40	Cyprinidae	Labeo dyocheilus	Kunni	LC	VU	-
41	Cyprinidae	Labeo gonius	Kullili	LC	LRnt	-
42	Cyprinidae	Labeo gangusia		LC	LRnt	VU
43	Cyprinidae	Labeo rohita	Rohu	LC	LRnt	-
44	Cyprinidae	Oreinus sinuatus	KOHU	LC	LRnt	
44 45				LC	LRIIL	-
	Cyprinidae	Osteobrama cotio		LC		-
46	Cyprinidae	Pethia conchonius		LC	VU	-
47	Cyprinidae	Pethia phutunio	D (1)		LRlc	-
48	Cyprinidae	Pethia ticto	Puthi	LC	LRnt	-
49	Cyprinidae	Puntius chola	Chidu	LC	VU	VU
50	Cyprinidae	Puntius sophore	Chidu	LC	LRnt	-
51	Cyprinidae	Raiamas bola	61 1 1 1 1	LC	VU	-
52	Cyprinidae	Rasbora daniconius	Chindolachal	LC	-	-
53	Cyprinidae	Salmophasia bacaila		LC	-	-
54	Cyprinidae	Salmophasia orrisaensis		LC	-	-
55	Cyprinidae	Schizothorax plagiostomus	Gurgal, Googly	-	-	-
56	Cyprinidae	Schizothorax richardsonii	Gurgal, Googly	VU	VU	VU
57	Cyprinidae	Systomus sarana	3.7	LC	VU	VU
58	Cyprinidae	Tor mosal		-	EN	EN
59	Cyprinidae	Tor putitora	Mahseer, Chiniartu	EN	EN	EN
60	Cyprinidae	Tor tor	Mahseer	NT	EN	EN
61	Gobiidae	Glossogobius giuris	manacci	LC	LRnt	
62	Mastacembelidae	Mastacembelus	Bami	LC	-	-
		armatus Asanthasahitis hatis			I Dint	
63	Nemacheilidae	Acanthocobitis botia	Sundal	LC	LRnt	-
64	Notopteridae	Notopterus notopterus	Moh	LC	LRnt	-
65	Schibeidae	Clupisoma garua	AA . 11 *	LC	VU	-
66	Siluridae	Wallago attu	Malli	NT	LRnt	-
67	Sisoridae	Bagarius bagarius		NT	VU	VU
68	Sisoridae	Glyptothorax brevipinnis		DD	VU	-
69	Sisoridae	Glyptothorax conirostris		DD	-	-
70	Sisoridae	Glyptothorax gracilis		DD	-	-

			C	Cons	ervation Sta	atus
S. No.	Family	Scientific name	Common name	IUCN Red List	CAMP	NBFGR
71	Sisoridae	Glyptothorax horai		LC	-	-
72	Sisoridae	Glyptothorax indicus		LC	VU	-
73	Sisoridae	Glyptothorax telchitta		LC	LRnt	-
74	Sisoridae	Glyptothrax garhwali		LC	CR	-
75	Sisoridae	Glyptothrax pectinopterus		LC	LRnt	-
76	Sisoridae	Glyptothrax stolickae	Naiya	LC	CR	-
77	Sisoridae	Pseudocheneis sulcatus	•	LC	VU	VU
	Exotic					
78	Cyprinidae	Amblypharyngodon mola	Chilwa	LC	LRlc	-
79	Cyprinidae	Carrasius auratus		LC	-	-
80	Cyprinidae	Ctenopharyngodon idella		-	-	-
81	Cyprinidae	Hypophthalmichthys molitrix		NT	-	-
82	Salmonidae	Cyprinus carpio		VU	-	-
83	Salmonidae	Oncorhynchus mykiss	Rainbow trout	-	-	-
84	Salmonidae	Salmo trutta fario	Brown trout	-	-	-

CR= Critically Endangered; EN= Endangered; VU= Vulnerable; DD= Data Deficient; LC= Least Concern; LRnt= Low Risk near threatened; LRlc= Low Risk least concern

Out of 84 species a total of 77 are native/indigenous while remaining 7 fish viz. Amblypharyngodon mola (Mola Carplet), Hypophthalmichthys molitrix (Silver Carp), Ctenopharyngodon idella (Grass carp), Carassius auratus (Gold Fish), Cyprinus carpio (Common Carp), Salmo trutta fario (Brown Trout) and Oncorhynchus mykiss (Rainbow Trout) are exotic. Fish diversity decreases along the elevational gradient, thus lower reaches of basin/sub-basins harbour relatively high species richness.

Sub-basin wise distribution pattern of fish indicates that Beas IV sub-basin harbours the highest number of species while lowest richness computed for Beas I sub-basin (Table 2). Rich fish fauna of Beas IV sub-basin can be attributed to the presence of Pong Dam reservoir at the foot of the basin and many perennial tributaries like Baner Khad, Gaj Khad and Dehar Khad. These tributaries are considered as sanctuaries of fish. Baner is one of the known spawning ground of *Tor putitora* (Golden Mahseer). The seeds of Golden mahseer had been collected by Joshi (1980) from Baner Khad successfully. The sub-basins like Uhl, Beas III and Beas IV extend in lower reaches are dominated by carp fishes like *Labeo* spp., *Tor putitora*, *Catla catla* (Main river) and minor carp like *Barilius* spp., *Puntius* spp., *Nemacheilus* spp., etc. (in tributaries). Sub-basins in upper reaches like Beas I, Beas II, Sainj Khad, Tirthan, Parbati I, Parbati II and Malana II are dominated by Snow Trout (*Schizothorax richardsonii*). However, due to regular introduction of Brown Trout (*Salmo trutta fario* and Rainbow Trout (*Onchorhynchus myskiss*), the native populations have been adversely affected and some of the river stretches are dominated by these exotic trout.

Table 7.16: Distribution of fish species in Beas Basin and their conservation status

		isii species iii beas basi	No. of	No of RET Species		
Sub-basin	Projects	River/Stream	Fish species	IUCN	CAMP	
	Beas Kund	Beas Kund Nala				
	Palchan Bhang	Kothi Nala/Beas river				
Beas I	Bhang	Beas River	11	1	3	
Deas 1	Jobrie	Jobrie & Allain Nala	''	•	J	
	Allain Duhangan	Allain & Duhangan Nala				
	Baragaon	Sanjoin & Bijara Nala				
Beas II	Fozal	Fozal Nala	22	1	5	
Deas II	Raison	Beas	22	ı	3	
	Sarbari II	Sarbari Khad				
	Malana I	Malana Nala				
Malana	Malana II	Malana Nala	17	1	3	
	Malana III	Malana Nala				
	Nakhtan	Tosh Nala & Parbati				
	Tosh	Tosh Nala				
Parbati	Jari	Parbati				
	Balargha	Parbati	12	1	3	
Upper	Parbati II	Parbati	1			
	Parbati	Parbati				
Daulaati	Sharni	Parbati				
Parbati	Sarsadi	Parbati	20	1	3	
Lower	Sarsadi II	Parbati				
	Sainj	Sainj				
Sainj	Parbati III	Sainj	20	1	4	
-	Hurla I	Hurla Nala				
Tirthan	-	Tirthan	18	1	4	
	Patikari	Bakhli Khad				
Beas III	Pandoh	Beas	22	2	13	
	Larji	Beas	1			
	Lambadug	Lambadug Khad				
	Uhl	Uhl				
	Uhl I (Shanan)	Uhl	1			
Uhl	Uhl II (Bassi)	Rana & Neri Khad	24	2	13	
	Uhl III	Rana & Neri Khad				
	Lower Uhl	Uhl				
	Uhl Khad	Uhl				
	Gaj	Gaj Khad				
	Khauli	Khauli Khad				
	Baner	Baner Khad				
Poss IV	Neugal	Neugal Khad	57	2	າາ	
Beas IV	Baner II	Baner Khad	57	2	22	
-	Binwa	Binwa Khad	1			
	Kilhi Bahl	Binwa & Awa Nala	1			
	Pong Dam	Beas	1			
	Triveni Mahadev	Beas				
Beas V	Dhaulasidh			2	17	
	Thana Plaun	Beas	41			

7.4.3 Conservation Status

The conservation of fish species in Beas basin was assessed by using the criteria of IUCN (2016), CAMP (1998) and National Bureau of Fish Genetic Resources (NBFGR, 2010). Out of 84 fish species reported from the basin, 70 species have been evaluated by IUCN Redlist and 59 species are under Least Concern category. Under the IUCN redlist 8 species have been included in different threat categories. Only one species *Tor putitora* is listed as Endangered,

4 species are listed as Near Threatened viz. Bagarius bagarius, Hypophthalmichthys molitrix, Tor tor and Wallagu attu. CAMP (1998) have evaluated 63 species and a total of 29 species are categorised as 'Vulnerable', 'Endangered' and 'Critically Endangered' species out of which 6 are Endangered and 21 are under 'Vulnerable' category (Table 7.15). Two species namely Glyptothorax garhwali and Glyptothorax stolickae are listed as Critically Endangered and are confined to the lower reaches of Beas basin and prefer to inhabit lower reaches of Beas river tributaries. Fifteen species have been included in list of frsehwater threatened fishspecies of India by NBFGR, out of which 4 are listed as Endangered while 11 species are listed under Vulnerable category. Amblyceps mangois, Tor mosal, Tor putitora and Tor tor have been listed as Endangered species.

7.4.4 Fish Migration & Spawning

The migration of fish in Himalayan rivers are generally attributed to their spawning habit. In Beas basin, two species viz. *Tor putitora* and *Tor tor* are relatively long distance migratory species, which ascend and spawn in tributaries. *Tor putitora* is periodic and specific in migration and spawning and span in tributaries of mid elevations while *Tor tor* spawns in low land tributaries. Sehgal (1990) stated that prior to construction of Pandoh dam, *Tor putitora* used to migrate in Beas river up to Sultanpur and Kullu but Pandoh dam has hampered its migration and presently it is restricted to downstream of Pandoh dam only.

Clupisoma garua is another long distance migratory fish. It performs upstream migration during July to September and downstream migration in October-November.

Labeo dero and Schizothorax richardsonii (Snow trout) are medium distance migratory species. Labeo dero is known to migrate upstream from March to August and it comes down in September. Snow trout performs upstream migration from March to May and moves downstream during November-December.

Snow trout in Beas river migrates upstream during breeding where the temperature is less. It is known to breed twice, in the summer (May-June) and in (July-October), in the shallow water along the bank of the streams (Sharma, 2010) up to November. Juni stream (a left bank tributary of Beas, upstream of Pandoh dam) once was one of the potential spawning ground of *Tor putitora* but due to construction of Pandoh dam, the population of Golden mahseer has disappeared from this tributary. In the downstream stretch various tributaries of Beas river have been identified by different workers as spawning grounds of mahseer. Baner stream is one of the spawning ground of Golden mahseer. Uhl is one of the largest tributary of Beas in lower reaches. Machchiyal lake (825 m) fed by Uhl river is known as a temple sanctuary of fish and population of Golden mahseer in known to occur in this lake and is considered to be spawning ground of Golden mahseer. There is a temple of Machendru Devta on the lake bank with ancient idols of fish-god. Fishes are fed and worshipped here regularly and fishing is strictly prohibited in the lake.

In order to understand various fisheries related aspects a fisheries map of Beas basin was prepared and the same is given at **Figure 7.59**.

CIA&CCS- Beas Basin in HP

Draft Final Report: Chapter 7

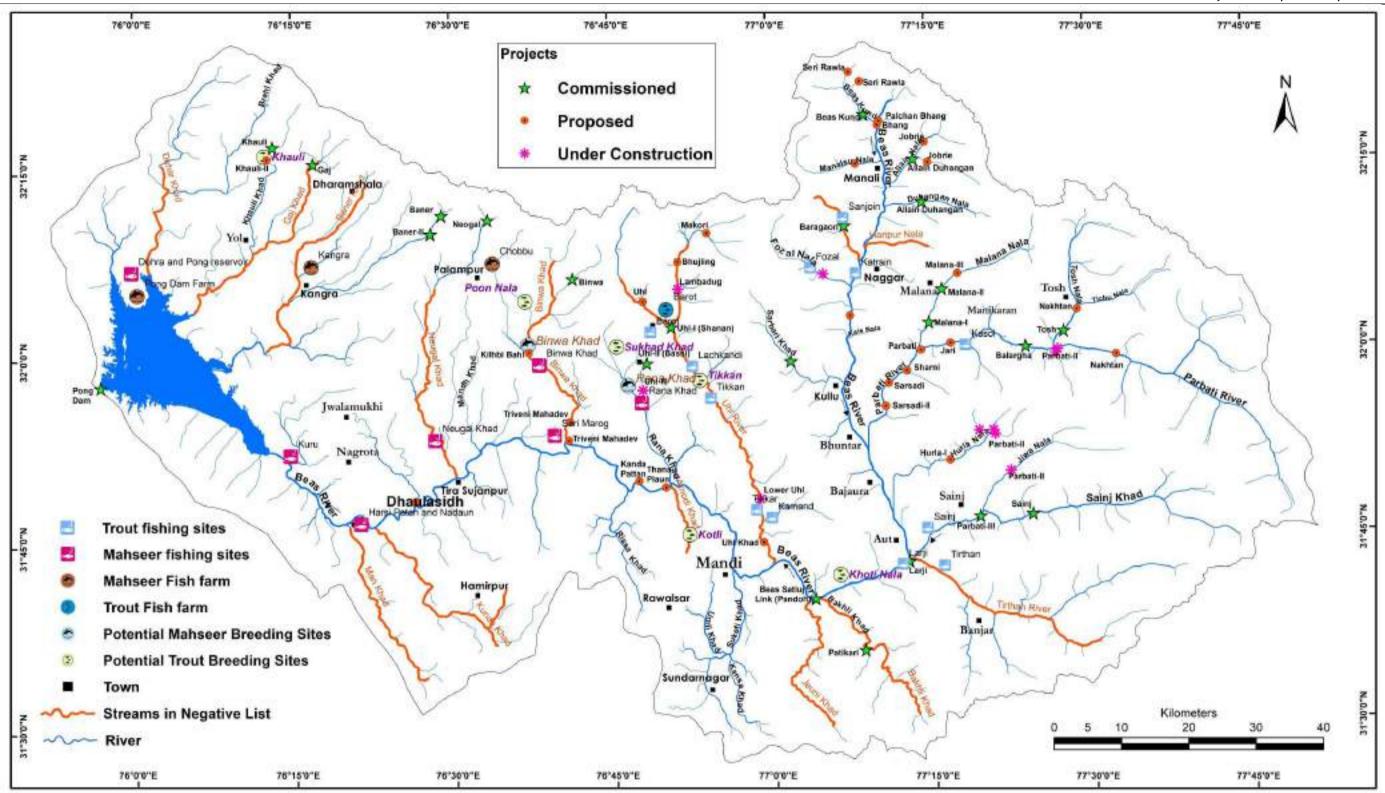


Figure 7.59: Fisheries map of Beas basin

7.4.5 Potential Streams for Spawning and Breeding in Beas basin

Zoological Survey of India (ZSI) has identified number of potential streams for breeding of snow trout especially and the same have been matked as potential breeding sites for trout amd mahseer in **Figure 7.59**. The following sites have been recognized as the potential sites for the breeding of the snow trout and mahseer fishery.

Potential Trout Sites

i) Uhl Khad (1500 m)

This potential site is located in Uhl Khad near village Tikkan about 13 Km from Ghatasni village in Mandi district. The site is characterized by large hillocks on the left side while right bank slopes are covered with good vegetation cover. The bottom of the stream is irregular with big boulders, stones and pebbles. Different sizes of *Schizothorax richardsonii* are found in this stream. This site is more potential than other streams.

ii) Khauli (1160 m)

This site is located near Darini village about 14 km north of Shahpur in Kangra district. The stream is of closed type having dense trees of chir pines on the hillocks and is dominated by big boulders.

iii) Arnodi Khad (1090 m)

This potential trout site is located near Kotli village about 40 km far from Dharampur, in district Mandi. The site is open and wide. There are pools in the stream harbouring snow trout. It is a good site for the breeding of the fish.

iv) Sukhad Khad (975 m)

This site is located near Sainthal village at distance of about 7 km from Chauntra town in Mandi district. The stream site is open and wide. There are pools in the stream. The fishes here are protected in this pool due to religious reasons. Therefore, the site provides a congenial environment for the snow trout breeding.

v) Khoti Nala (990 m)

This potential trout site is located near Khoti village about 9 km from Pandoh in district Mandi. Khoti Nala is bordered on both the sides by large hills. The site is deep gorge with stony bottom. Step pool habitats are also found at this stream site.

vi) Poon Nala (990 m)

The site is 10 km from Baijnath towards the right side of the main National highway. This stream site is located at Sarsowa near Neelkanth Mahadev, district Kangra. The stream site is surrounded by hillock and by dense vegetation. The bottom bed is irregular, stony and dominated by boulders. There is a pool locally called 'Machyal' of snow trout fishes near the site. Due to the presence of this pool, also the fries of fish it is provides suitable environment for the breeding of snow trout.

All the above mentioned streams can be classified as Type A streams and harbor good populations of snow trouts.

The streams with lot of shaded area with dense vegetation are favorable for the breeding of trout fish. Highly oxygenated water i.e. high DO values and rapid current are pre-requisite for

the fish. It has been found that an alkaline pH, high DO with water velocity more than 1.8 m/s is the most suitable habitats for snow trout.

Potential Mahseer Sites

vii) Binwa Khad (810 m)

This site on Binwa Khad is located at a distance of 7 km from Baijnath on the way to Panchrukhi. The stream at this site is open and the bottom is irregular with big boulders, stones and pebbles. It is one of the potential breeding ground of snow trout as well as mahseer.

viii) Rana Khad (860 m)

The Rana Khad potential site near village Tikru about 15 km from Chautra in district Mandi. Three tributaries of the Beas River i.e. Sukhad, Bajgar and Gugali known as Triveni join in this area. This site is dominated by riffles and rapids with thick vegetation along the bank of the stream.

Both these streams can be termed as Type B streams and are more suitable for spawning and breeding of Mahseer.

7.4.6 List of Streams for Fish Conservation, GoHP

Man Khad, Kunah Khad and Gasoti Khad in Hamirpur district, Binwa Khad, Gaj Khad, Neugal Khad, Baner Khad and Dehar Khad streams in Kangra district, Haripur Nala, Sujan/Sanjoin Nala and Tirthan river in Kullu district and Rana Khad and its tributaries, Lambadug/ Uhl, Arnodi Khad, Bakhli Khad and Jeuni Khad in Mandi district have been put in negative list for setting up of hydroelectric projects and recommended for *in situ* conservation of fisheries by the Government of HP (http://hpfisheries.nic.in/pdf/RiversKhadsNegList.pdf).

Based upon the number studies undertaken by different researchers and the present field surveys, Beas river and its tributary streams can be classified into trout and mahseer streams. There are number of streams in Beas where one can easily find trouts and mahseers. Brief description of these is given in the following paragraphs.

7.4.7 Trout Streams

Barot is one of the important areas in Beas basin where trout farming is done. It is located in Uhl sub-basin in Mandi district at a distance of about 75 km from the Mandi town. It is known not only for its reservoir and landscape but also for trout fishing which is abundant in the Uhl river, a right bank tributary of river Beas. Some of the finest fishing spots are located at Luhandi, Puran hatchery, Lachkkandi, Tikkar, Balh and Kamand in this sub-basin. Besides Barot the entire stretch of Beas river from Pandoh Dam to Aut on the Mandi-Manali national highway is also considered good for trout fishing.

The Beas river meanders through Kullu valley and along with its tributaries like Sarbari, Sanjoin and Phojal offers ideal habitats for trout and provides ample opportunities for fishing. Sainj and Tirthan rivers which form a tri-junction with Beas river about 100m downstream

near Larji are also known trout streams. The main Kullu valley right from Manali to Bhuntar provides some excellent pools for fishing especially at Patlikuhl, Katrain and Raison. Trout hatcheries have also been developed at Patlikuhl and Bathad.

Parbati river another large tributary is also suitable habitat for trout in Parbati Lower sub-basin and is famous for trout fishing at places like Kasol. The Parbati river valley with its slopes covered with dense forest along the hillsides, offers some excellent trout prospects throughout the course of the river Parbati from Manikaran to the confluence at Bhuin, Kasol, 5 km downstream of Manikaran where slopes lead down to sandy riverbed of Parbati river providing excellent places for game fishing.

7.4.8 Mahseer Streams

While Kullu and Mandi districts are known for trout fishing, Kangra valley abutting Dhauladhar ranges, is drained by streams which descend from perennial snow. Kangra is known as the home of mighty mahseer for which fairly large account of evidence is available. The river Beas and the Pong Dam reservoir provide attractive fisingh grounds to the anglers. Besides mahseer, the other fishes which are found here are malhi, soal, bachwa, god shingara, etc. Although there are many places and rivers and streams where mahseer is available, the following forested areas are known as the best.

Different streams which are known for mahseer fisheries according to locals and HP Fisheries Department are described as follows:

a) Sari Marog

Sari Marog is located at the confluence of the Binwa Khad with the river Beas. It known for large size of fish catch, with deep pools and many stones and hiding places.

b) The stretch between Harsi Pattan and Nadaun

In this Beas river stretch there are number of beats, easily accessible from the Palampur-Bhawarana-Thural road. The famous spots are the Man Khad confluence, Lambagaon pool, Neugal Khad confluence near Alampur and Ambter, 2 km from Nadaun itself.

c) Kuru

Kuru village offers two fishing spots, both of which are accessible from one of the two river banks. At Kuru a pool is formed at the confluence of a small Khad with the Beas river, joining about 1 km above the village and forming a small bay, harboring good fish populations.

d) Dehra and Pong Dam Reservoir

Pong reservoir from Dehra to the Dam proper offers excellent fishing for mahseer almost round the year when fishing is open.

e) Larji

Larji is located at a distance of about 7 km from Aut on National Highway-21 is an ideal trout area on river Tirthan. Larji HE project is located immediately downstream of the confluence of Tirthan river with Beas. There is a provision for fish movement in the Larji dam which is however is in bad shape.

Himachal Government has specifically declared Tirthan river as an angling reserve and not to allow any hydropower project on this river as well as its tributaries in order to maintain its

aquatic biodiversity. Every year fingerlings of brown as well as rainbow trout are stocked in this river by the department.

7.4.9 Commercial Fisheries

Commercial fisheries in Himachal Pradesh is well developed as compared to other Himalayan states. In order to enhance the commercial fisheries in the state, various exotic fishes (Brown Trout, Rainbow Trout, Grass Carp, Common Carp, Silver Carp) were introduced in the reservoirs and farms in past. The introduction of exotic species led to changes in the fish species composition especially in reservoirs. Reservoirs contribute significantly in commercial fishery as compared to the rivers. To understand the fish production trend, **Table 7.14** gives detailed fish production in four districts like Kangra, Hamirpur, Mandi and Kullu, which lie entirely or partly in the Beas river basin. In Beas river basin Pong and Pandoh are major reservoirs.

A report of Directorate, State Fishery Department (http://himachal.nic.in/WriteReadData/l892s/4_l892s/1467788386.pdf) indicates that fish catch in Pong reservoir increased from 311.6 tonnes in 2006-07 to 415.42 to tonnes in 2016-16. It contributed Rs. 4137.80 lakhs to the state revenue during these years. *Mystus (Aorichthys) seenghala* dominates the fish catch in Pong reservoir. Pandoh lacks the organized fishery, however, capture fishery is under operation. In 1978 Common Carp (exotic) had been introduced in Pandoh reservoir, but later it was discontinued (Sugunan, 1995). Exotic Trout plays an important role in commercial fishery of Kullu district.

Table 7.13: Fish Production (in MT) in Beas basin

District	2007			2008			2009		
	River	Pond	Reservoir	River	Pond	Reservoir	River	Pond	Reservoir
Hamirpur	318	201	0	251.5	235.8	0	256	244	0
Kangra	1465	706.5	311.6	1470.6	742.5	375	1481.7	775	283
Mandi	618	100.5	0	593.9	100	0	608.2	87	0
Kullu	242.7	15.5	0	275.4	13	0	252	15	0

Source: Environment Master Plan, Govt of Himachal Pradesh

In order to conserve the fish HP fisheries Department has established number of Fish Farms in the basin. These are:

Trout Farms are located at Patli Kuhl in Kullu and Barot in Mandi.

Mahseer Farms have been established at Chobbu in Palampur and at Kangra.

CHAPTER-8

ENVIRONMENTAL FLOWS

8.1 INTRODUCTION

The environmental flow is an important aspect in the development of hydropower projects. Release of environmental flow is to be ensured immediately downstream of the diversion structure at all times to sustain the ecology and environment of project area. Protecting and maintaining river flow regimes and hence the ecosystems they support by providing adequate environmental flows have become a critical aspect of hydropower development. Ecological systems supported by the rivers are too complicated to be summarized by a single minimum flow requirement but require comprehensive environmental flow regimes to be defined. "Environmental flow regime" means a schedule of flow quantities that reflects seasonal fluctuations and should be adequate to support a sound ecological environment to maintain productivity, extent, and persistence of key aquatic habitats in and along the affected water bodies.

The aquatic biota in Himalayan glacier-fed rivers has adapted to annual flow pulses, which vary from a gradual increase in discharge in summer, through floods in the monsoon period, and reduce to low flows in winter. During the dry season, the waters become clear, allowing algae (primarily diatoms) to obtain necessary light and carbon dioxide for photosynthesis. Effective quantification of flow includes the ecologically important range of flow magnitudes (low flows, high flow pulses, and floods), as well as the timing, duration, frequency, and rate of change of these flow conditions. Globally, these flows are most commonly referred to as "environmental flows".

The most critical reach for assessing release of environmental flow is immediately downstream of diversion structure till first significant tributary meets river.

8.2 CURRENT NORMS BEING FOLLOWED FOR ENVIRONMENTAL FLOW

There are no set norms for minimum releases to be maintained at all times on account of ecology and environment and to address issues concerning riparian rights, drinking water, health, aquatic life, wildlife, fisheries, silt and even to honour the sensitive religious issues like cremation and other religious rites, etc. on the river banks.

Expert Appraisal Committee (EAC) for River Valley and Hydroelectric Projects of Ministry of Environment, Forests and Climate Change (MoEF&CC) recommends minimum environmental flow during lean season as 20% of the average discharge in four leanest months in 90% dependable year of the water availability series used to design the project. They have also been discussing the requirement of varied environmental flow during monsoon and other months as discharge available in the river and flow requirement cannot be the same as that of lean season. In absence of any site specific study or unless a site specific study specifies otherwise, EAC has been generally recommending ecological releases for monsoon months should be maintained as 30% of flows in monsoon months of 90% dependable year and for non-lean and non-monsoon months, environmental flow provision should be kept between 20-30%.

Scope of present study requires suggesting approach to be adopted for determining environmental flows and to determine environmental releases for various planned projects and river reaches in the Beas basin.

Himachal Pradesh state government has declared its policy regarding ensuring minimum flow of water in HEPs vide communication no. MPP-F(2)-16/2008 of Department of MPP and Power, Government of Himachal Pradesh (copy enclosed as **Annexure VIII** of **Volume II** of the report). As per this policy, the ROR projects shall ensure minimum flow of 15% water immediately downstream of the diversion structure of the project throughout the year. For the purpose of determination of minimum discharge, the average discharge in the lean months i.e. from December to February shall be considered.

THE NATIONAL GREEN TRIBUNAL, PRINCIPAL BENCH, NEW DELHI in Original Application No. 498 of 2015 (M.A. No. 628/2016) Item No 21, August 09, 2017 has directed that all the rivers in the Country shall maintain minimum 15 % to 20% of the average lean season flow of that river. (copy enclosed as **Annexure IX** of **Volume II** of the report).

8.3 DESCRIPTION OF VARIOUS METHODOLOGIES FOR E-FLOW

There are four relatively discrete types of environmental flow methodologies: (1) hydrological, (2) hydraulic rating, (3) habitat simulation and (4) holistic methodologies; among other techniques occasionally applied during Environmental flow Assessment. The four types are briefly described below.

8.3.1 Hydrological Methodologies

These represent the simplest set of techniques where, at a desktop level, hydrological data, as naturalized, historical monthly or average daily flow records are analysed to derive standard flow indices, which then become the recommended environmental flows.

Hydrological Index Methods provide a relatively rapid, non-resource intensive, but low-resolution estimate of environmental flows. The methods are most appropriate at the planning level of water resources development, or in low controversy situations where they may be used as preliminary estimates. Hydrological Index methods may be used as tools within habitat simulation, holistic or combination environmental flow methodologies. They have been applied in developed and developing countries. Commonly, the EFR is represented as a proportion of flow (often termed the 'minimum flow') intended to maintain river health, fisheries or other highlighted ecological features at some acceptable level, usually on an annual, seasonal or monthly basis. As a result of the rapid and non-resource intensive provision of low resolution flow estimates, hydrological methodologies are generally used mainly at the planning stage of water resource developments, or in situations where preliminary flow targets and exploratory water allocation trade-offs are required.

Environmental flow is usually given as a percentage of average annual flow or as a percentile from the flow duration curve, on an annual, seasonal or monthly basis.

The most frequently used methods under this category are:

(i) Tennant Method

Donald Tennant developed this method in Montana, USA through several field observations and measurements. The Tennant study used 58 cross sections from 11 streams in Montana, Nebraska and Wyoming (Mann, 2006). The technique utilizes only the Mean Annual Flow (MAF) for the stream. It then states that certain flows relate to the qualitative fish habitat rating, which is used to define the flow needed to protect fish habitat, expressed in tabular form. Tennant concluded that 10% of MAF is the minimum for short-term fish survival, 30% of MAF is considered to be able to sustain fair survival conditions and 60% of MAF is excellent to outstanding habitat (Tennant, 1975).

	Flow to be released during				
Description of Flow	April to September	October to March			
Flushing flow (from 48 - 96 hours)	200% MAF (Mean Annual Flow)	Not Applicable			
Optimum range of flow	60-100% MAF	60-100% MAF			
Outstanding habitat	60% MAF	40% MAF			
Excellent habitat	50% MAF	30% MAF			
Good habitat	40% MAF	20% MAF			
Fair or degrading habitat	30% MAF	10% MAF			
Poor or minimum habitat	10% MAF	10% MAF			
Severe degradation	<10% MAF	<10% MAF			

This means that if the quantity of water that the basin managers can provide for EFR is $\leq 20\%$ of MAF (10% during April to September and 10% during October to March) then the environmental quality of the habitat in that reach will face "Severe Degradation". If a "Good" habitat is desired, then at least 60% of the MAF must be allocated for EFR, 40% during April-September and 20% during October to March.

Tessman modified the Tennant method and it resulted in an approach called as Modified Tennant Method or Tessman Method. Tessman adopted Tennant seasonal flow recommendation to calibrate the percentage of Mean Annual flow (MAF) to local hydrologic and biological conditions including monthly variability in terms of Minimum Monthly Flow (MMF).

Under these changes, the following rules were formulated.

- If MMF < 40% of MAF, then monthly minimum equals the MMF
- If MMF > 40% MAF, then monthly minimum equals 40% MAF
- If 40% MMF > 40% MAF, then monthly minimum equals 40% MAF
- The flushing flow criterion is still a requirement to be met on an annual basis.

(ii) Index Method

This method defined the value of the Minimum In-stream Flow (MIF) that must be maintained downstream of water diversion in order to maintain vital conditions of ecosystem functionality and quality (Maran, 2007). Based on Q355 (the flow not exceeded more than 355 days per year) this means that, on average, the natural flow is less than Q355 value only for 10 days in a year (Maran, 2007).

MIF = Ka*Kb*Kc* Q355 where:

• Ka is corrective coefficient for different environmental sensitive of the interested river stretch [0.7 to 1.0]

- Kb = implementation factor [0.25 to 1.0]
- Kc is corrective coefficient to account for different level of protection due to the naturalistic value of the interested area [1.0 to 1.5].

The concept of "environmental sensitive" is linked with Flow Duration Curve (FDC). When the slope of the FDC is flat, for example when Q90 \geq 30% AAF, the flow in the river is very stable thought the year, and the ecosystem is getting used to have a constant rate of flow in the river most of the time. This type of ecosystem is more sensitive to any change in river flow regime and the value of Ka will be taken as 1 (one). On other hand, when the FDC slope is steep, say Q90 < 10% AAF, the river flow is very unstable and present high extreme values (floods and droughts). Under this condition, ecosystem is getting used to water scarcity during some periods of the year, therefore this ecosystem is less sensitive to changes in flow regime, because the river naturally present a wide variability in flow regime. In this case, the value of Ka can be taken as 0.7.

The implementation factor refers to upgrade a degraded river condition, in which the quantity of water in the river is very low, due to abstractions made for different purposes (domestic, industrial, agriculture, etc.). The recovery of natural conditions of the river flow must be done gradually, because another uses of water will be affected. In this case, the value of Kb could be 0.25. In the case of no significant abstractions, the value of Kb will be 1.

The Kc factor increases the value of MIF, for protection of special conditions in the river ecosystem like naturalistic and tourism values, fisheries development and medicinal or religious issues.

(iii) Desktop Analysis

Desktop analysis can be sub-divided into (i) those based purely on hydrological data, and (ii) those that employ both hydrological and ecological data.

Desktop methods based on hydrological data

(a) Flow Duration Curve Based Method

A flow duration curve (FDC) is a plot of flow vs. percentage time equalled or exceeded. FDC can be prepared using the entire time series data of flow or the flow data pertaining to a specific period (such as a month) in different years. Further, it can be developed for a particular site or combining data for different sites on per unit catchment area basis in a hydro meteorologically homogeneous region.

(b) Environmental Management Class (EMC) based FDC Approach

Smakhtin and Anputhas (2006) reviewed various hydrology based environmental flow assessment methodologies and their applicability in Indian context. Based on the study, they suggested a flow duration curve based approach which links environmental flow requirement with environmental management classes.

This EFA method is built around a period-of-record FDC and includes several subsequent steps. The first step is the calculation of a representative FDC for each site where the

environmental water requirement (EWR) is to be calculated. In this study, the sites where EF is calculated coincide with the major flow diversion. The sites with observed flow data are further referred to as 'source' sites. The sites where reference FDC and time series are needed for the EF estimation are referred to as 'destination' sites. All FDCs are represented by a table of flows corresponding to the 17 fixed percentage points. For each destination site, a FDC table was calculated using a source FDC table from either the nearest or the only available observation flow station upstream. To account for land-use impacts, flow withdrawal, etc., and for the differences between the size of a source and a destination basin, the source FDC is scaled up by the ratio of 'natural' long term mean annual run-off (MAR) at the outlet and the actual MAR calculated from the source record.

(c) Defining Environmental Management Classes

EF aim to maintain an ecosystem in, or upgrade it to, some prescribed or negotiated condition/ status also referred to as "desired future state", "environmental management class"/ "ecological management category", "level of environmental protection", etc. (e.g., Acreman and Dunbar 2004; DWAF 1997). This report uses the term 'environmental management class' (EMC). The higher the EMC, the more water will need to be allocated for ecosystem maintenance or conservation and more flow variability will need to be preserved. Ideally, these classes should be based on empirical relationships between flow and ecological status/conditions associated with clearly identifiable thresholds. However, so far there is insufficient evidence for such thresholds (e.g., Beecher, 1990; Puckridge et al. 1998). These categories are therefore a management concept, which has been developed and used in the world because of a need to make decisions in the conditions of limited lucid knowledge. Placing a river into a certain EMC is normally accomplished by expert judgment using a scoring system. Alternatively, the EMCs may be used as default 'scenarios' of environmental protection and corresponding EWR and EF - as 'scenarios' of environmental water demand. Six EMCs are used generally and six corresponding default levels of EWR may be defined. The set of EMCs starts with the unmodified and largely natural conditions (rivers in classes A and B), where no or limited modification is present or should be allowed from the management perspective. In moderately modified river ecosystems (class C rivers), the modifications are such that they generally have not (or will not - from the management perspective) affected the ecosystem integrity. Largely modified ecosystems (class D rivers) correspond to considerable modification from the natural state where the sensitive biota is reduced in numbers and extent. Seriously and critically modified ecosystems (classes E and F) are normally in poor conditions where most of the ecosystem's functions and services are lost. Rivers which fall into classes C to F would normally be present in densely populated areas with multiple man-induced impacts. Poor ecosystem conditions (classes E or F) are sometimes not considered acceptable from the management perspective and the management intention is always to "move" such rivers up to the least acceptable class D through river rehabilitation measures (DWAF 1997). This restriction is not however applied here, primarily because the meaning of every EMC is somewhat arbitrary and needs to be filled with more ecological substance in the future. Some studies use transitional EMCs (e.g., A/B, B/C, etc.) to allow for more flexibility in EWR determinations. It can be noted, however, that ecosystems in class F are likely to be those which have been modified beyond rehabilitation to anything approaching a natural condition. It is possible to estimate EWR corresponding to all or any of the above EMCs and then consider which one is best suited/feasible for the river in question,

given existing and future basin developments. On the other hand, it is possible to use expert judgment and available ecological information in order to place a river into the most probable/achievable EMC. The EMCs are described in **Table 8.1** as scenarios of aquatic ecosystem condition.

Table 8.1: Environment Management Classes

EMC	Ecological description	Management perspective
A: Natural	Pristine condition or minor modification of in-stream and riparian habitat	Protected rivers and basins. Reserves and national parks. No new water projects (dams, diversions, etc.) allowed
B: Slightly modified	Largely intact biodiversity and habitats despite water resources development and/or basin modifications	Water supply schemes or irrigation development present and/or allowed
C: Moderately	The habitats and dynamics of the modified biota have been disturbed, but basic ecosystem functions are still intact. Some sensitive species are lost and/or reduced in extent. Alien species present	Multiple disturbances associated with the need for socio-economic development, e.g., dams, diversions, habitat modification and reduced water quality
D: Largely modified	Large changes in natural habitat, biota and basic ecosystem functions have occurred. A clearly lower than expected species richness. Much lowered presence of intolerant species. Alien species prevail	Significant and clearly visible disturbances associated with basin and water resources development, including dams, diversions, transfers, habitat modification and water quality degradation
E: Seriously modified	Habitat diversity and availability have declined. A strikingly lower than expected species richness. Only tolerant species remain. Indigenous species can no longer breed. Alien species have invaded the ecosystem	High human population density and extensive water resources exploitation
F: Critically modified	Modifications have reached a critical level and ecosystem has been completely modified with almost total loss of natural habitat and biota. In the worst case, the basic ecosystem functions have been destroyed and the changes are irreversible	This status is not acceptable from the management perspective. Management interventions are necessary to restore flow pattern, river habitats, etc. (if still possible/feasible) - to 'move' a river to a higher management category

8.3.2 Hydraulic Rating Methodologies

Hydraulic rating methodologies use changes in simple hydraulic variables, such as wetted perimeter or maximum depth, usually measured across single, flow-limited river cross-sections (commonly riffles), as a surrogate for habitat factors known or assumed to be limiting to target biota. Environmental flows are determined from a plot of the hydraulic variable(s) against discharge, commonly by identifying curve breakpoints where significant percentage reductions in habitat quality occur with decreases in discharge. It is assumed that ensuring some threshold value of the selected hydraulic parameter at a particular level of altered flow will maintain aquatic biota and thus, ecosystem integrity. These relatively low-resolution hydraulic techniques have been superseded by more advanced habitat modeling tools, or assimilated into holistic methodologies (Tharme, 1996; Jowett, 1997; Arthington and

Zalucki, 1998; Tharme, 2003). However, select approaches continue to be applied and evaluated, notably the Wetted Perimeter Method (e.g. Gippel and Stewardson, 1998).

8.3.3 Habitat Simulation or Micro-Habitat Modeling Methodologies

Habitat simulation methodologies also make use of hydraulic habitat-discharge relationships, but provide more detailed, modelled analyses of both the quantity and suitability of the physical river habitat for the target biota. Thus, environmental flow recommendations are based on the integration of hydrological, hydraulic and biological response data. Flow-related changes in physical microhabitat are modelled in various hydraulic programs, typically using data on depth, velocity, substratum composition and cover; and more recently, complex hydraulic indices (e.g. benthic shear stress), collected at multiple cross-sections within each representative river reach. Simulated information on available habitat is linked with seasonal information on the range of habitat conditions used by target fish or invertebrate species (or life-history stages, assemblages and/or activities), commonly using habitat suitability index curves (e.g. Groshens and Orth, 1994). The resultant outputs, in the form of habitat-discharge relationships for specific biota, or extended as habitat time and exceedance series, are used to derive optimum environmental flows. The habitat simulation-modeling package PHABSIM (Bovee, 1982, 1998; Milhous, 1998, 1982; Milhous et al., 1989; Stalnaker et al., 1994), housed within the In-stream Flow Incremental Methodology (IFIM), is the pre-eminent modeling platform of this type.

8.3.4 Holistic Methodologies

Over the past decade, river ecologists have increasingly made the case for a broader approach to the definition of environmental flows to sustain and conserve river ecosystems, rather than focusing on just a few target fish species (Arthington and Pusey, 1993; King and Tharme, 1994; Sparks, 1992, 1995; Richter et al., 1996; Poff et al., 1997). From the conceptual foundations of a holistic ecosystem approach, a wide range of holistic methodologies has been developed and applied, initially in Australia and South Africa and later in the United Kingdom. This type of approach reasons that if certain features of the natural hydrological regime can be identified and adequately incorporated into a modified flow regime, then, all other things being equal, the extant biota and functional integrity of the ecosystem should be maintained (Arthington et al., 1992; King and Tharme 1994). Importantly, holistic methodologies aim to address the water requirements of the entire "riverine ecosystem" rather than the needs of only a few taxa (usually fish or invertebrates). These methodologies share a common objective - to maintain or restore the flow related biophysical components and ecological processes of in-stream and groundwater systems, floodplains and downstream receiving waters (e.g. terminal lakes and wetlands, estuaries and near-shore marine ecosystems). Ecosystem components that are commonly considered in holistic assessments include geomorphology, hydraulic habitat, water quality, riparian and aquatic vegetation, macro-invertebrates, fish and other vertebrates with some dependency upon the river/riparian ecosystem (i.e. amphibians, reptiles, birds, mammals). Each of these components can be evaluated using a range of field and desktop techniques and their flow requirements are then incorporated into EFA recommendations, using various systematic approaches.

Holistic approaches have been described as either 'bottom-up' methods, which are designed to 'construct' a modified flow regime by adding flow components to a baseline of zero flows;

or 'top-down' methods i.e. by assessing how much a river's flow regime can be modified before the aquatic ecosystem begins to noticeably change or degrade.

8.3.4.1 The Building Block Methodology (BBM)

The BBM is introduced in King & Tharme (1994) and King (1996), and is comprehensively described in Tharme & King (1998), and King & Louw (1998). The methodology is under on going development, and has been applied routinely in South Africa, with some application in Australia and UK. The methodology is based on the concept that some flows within the complete hydrological regime of a river are more important than others for maintenance of the riverine ecosystem, and that these flows can be identified, and described in terms of their magnitude, duration, timing, and frequency. In combination, these flows constitute the EFR as a riverspecific modified flow regime, linked to a predetermined future state. A number of specialists in a workshop situation use hydrological base flow and flood data, including various hydrological indices, cross-section based hydraulic data, and information on the flow-related needs of ecosystem components, to identify specific flow elements for the EFR.

8.3.4.2 The Downstream Response to Imposed Flow Transformations Methodology

The DRIFT Methodology was developed in southern Africa for use in the Palmiet IFR study (Brown et al., 2000) and Lesotho Highlands Water Project (Brown & King, 1999, 2000). It is an interactive, top-down holistic approach based on the same conceptual tenets and multidisciplinary, workshop-based interaction as the BBM and Holistic Approach. However, it focuses on the identification of a series of river water levels associated with a particular set of biophysical functions and of specific hydrological and hydraulic character. Specialists in each discipline describe the consequences of reducing discharges through these identified flow bands and their thresholds, in terms of deterioration in biotic and abiotic condition. The identification of the 'minimum degradation' reduction level and its consequences typically provides the starting point for the process. Once a wide range of flow reductions has been assessed, there is considerable scope for the comparative evaluation of a vast number of EFR scenarios, each reflecting the presence or absence of different flow bands with attendant consequences.

Holistic methodologies exhibit several advantages over other types of environmental flow methodology, most importantly in that they can potentially be used to address all components of the riverine ecosystem and have strong links with the natural hydrological regime. Also, they incorporate biological, geomorphological and hydrological data, and consider all aspects of the flow regime, such as the magnitude and timing of both base flow and flood events. However, holistic methodologies rely to a considerable extent on professional judgment, so care must be taken to apply them in a rigorous, well-structured manner, in order to ensure sufficiently reproducible results. The methodologies are firmly based on South African and Australian experiences of variable climate and hydrology, heterogeneous geomorphology, and of limited available information on biological flow dependencies of riverine biota (Growns & Kotlash, 1994; Tharme, 1996). As with most other current environmental flow methodologies, there are few applications of holistic methodologies other than in their place of origin.

For the purpose of environmental flow assessment in Beas basin, hydraulic modeling and

habitat simulation methodologies is considered to be best suited as discussed in the following section.

8.4 ADOPTED METHODOLOGY TO ESTABLISH ENVIRONMENTAL FLOW

8.4.1 Basics of Environmental Flow Assessment Methods

Environmental flows (EF) are an ecologically acceptable flow regime designed to maintain a river in an agreed or predetermined state. Therefore, EF are a compromise between hydro development, on one hand, and river maintenance in a healthy or at least reasonable condition, on the other. Difficulties in the actual estimation of EF values arise primarily due to the inherent lack of both the understanding of and quantitative data on relationships between river flows and multiple components of river ecology. The major criteria for determining EF should include the maintenance of both spatial and temporal patterns of river flow, i.e., the flow variability, which affect the structural and functional diversity of rivers, and which in turn influence the species diversity of the river. All components of the hydrological regime have certain ecological significance. High flows of different frequency are important for channel maintenance, bird breeding, wetland flooding and maintenance of riparian vegetation. Moderate flows are critical for cycling of organic matter from river banks and for fish migration, while low flows of different magnitudes are important for algae control, water quality maintenance and the use of the river by local people. Therefore, many elements of flow variability have to be maintained in a modified-EF-regime.

The focus on maintenance of flow variability has several important implications. First, it moves away from a 'minimum flow attitude' to aquatic environment. Second, it effectively considers that aquatic environment is also 'held accountable' and valued similarly to other sectors - to allow informed trade-offs to be made in water deprived conditions. Because wetland and river ecosystems are naturally subjected to droughts or low flow periods and can recover from those, then building this variability into the picture of EFA may be seen as environmental water demand management. This brings us back to the issue of 'compromise' and implies that EF is a very pragmatic concept: it does not accept a bare minimum, but it is for a trade. Bunn and Arthington (2002) have formulated four basic principles that emphasize the role of flow regime in structuring aquatic life and show the link between flow and ecosystem changes:

- Flow is a major determinant of physical habitat in rivers, which in turn is the major determinant of biotic composition. Therefore, river flow modifications eventually lead to changes in the composition and diversity of aquatic communities.
- Aquatic species have evolved life history strategies primarily in response to the natural flow regimes. Therefore, flow regime alterations can lead to loss of biodiversity of native species.
- Maintenance of natural patterns of longitudinal and lateral connectivity in river systems
 determines the ability of many aquatic species to move between the main river and its
 tributaries. Loss of longitudinal and lateral connectivity can lead to local extinction of
 species.

In this report, hydraulic rating methodologies and habitat simulations or micro-habitat modeling methodologies have been used. The primary reason for using this method is objectivity of the methodology, availability of data including surveyed river cross-sections and limited timeframe available for the study.

Main reasons for not using Hydrological Index Methods is that though these provide a relatively rapid, non-resource intensive, but give low resolution estimate of environmental flows. The methods are only appropriate at the planning level where they may be used as preliminary estimates. These methods may be used as tools within habitat simulation, holistic or combination environmental flow methodologies. Commonly, the EFR is represented as a proportion of flow (often termed the 'minimum flow') intended to maintain river health, fisheries or other highlighted ecological features at some acceptable level, usually on an annual, seasonal or monthly basis.

Building Block Method (BBM) could not be used because of following reasons:

- The BBM is essentially a prescriptive approach, designed to construct a flow regime for maintaining a river in a predetermined condition. Building Block Method can use detailed data from different sectors and have the provision of consultation among the experts and stakeholders. However, application of BBM for large number of sites requires a lot of time and resources.
- The BBM has advanced the field of environmental flow assessment and being a holistic methodology it addresses the health (structure and functioning) of all components of the riverine ecosystem, rather than focusing on selected group or species. But in context of Beas basin study, the major stakeholder is only riverine ecology and fish. Hence adopting such rigorous exercise is neither needed nor practical within a limited time frame and resources.

Environmental flow regime would be worked out keeping annual occurrence of following main seasons in this region. These are:

- (a) Season I: This season is considered as low or lean or dry flow season which covers the months from December to March or November to February or November to April depending upon the flow series used.
- (b) Season II: It is considered as high flow season influenced by monsoon. It covers the months from June to September, generally for all the flow series.
- (c) Season III: This season is considered as average flow period, covers the months of April, May and October, November or March, April, May and October or May and October depending upon the flow series used.

8.5 HYDRO-DYNAMIC MODELING

To assess environmental flow requirements, a flow simulation study is carried out using one dimensional mathematical model MIKE 11 developed by Danish Hydraulic Institute of Denmark.

8.5.1 MIKE 11 Model

MIKE 11 is an integrated system of software, designed for interactive use in a multi-tasking environment. The system is comprised of a graphical user interface, separate hydraulic analysis components, data storage and management capabilities, graphics and reporting facilities. The core of the MIKE 11 system consists of the HD (hydrodynamic) module, which is capable of simulating unsteady flows in a network of open channels. The results of a HD

simulation consist of time series of water levels, discharges, flow velocities, water widths etc. MIKE 11 hydrodynamic module is an implicit, finite difference model for unsteady flow computation. The model can describe sub-critical as well as supercritical flow conditions through a numerical description, which is altered according to the local flow conditions in time and space. The MIKE 11 system contains three one-dimensional hydraulic components for: i) Steady flow surface profile computations; ii) quasi-unsteady flow simulation and iii) unsteady flow simulation. The steady/unsteady flow components are capable of modeling subcritical, supercritical, and mixed flow regime water surface profiles. The system can handle a full network of channels, a dendritic system, or a single river reach. The basic computational procedure is based on the solution of one-dimensional energy equation. Energy losses are evaluated by friction (Manning's equation) and contraction/expansion (coefficient multiplied by the velocity head). The momentum equation is utilized in situations where the water surface profile is rapidly varied.

The graphics include X-Y plots of the river system schematic, cross-sections, profiles, rating curves, hydrographs, and many other hydraulic variables. Users can select from pre-defined tables or develop their own customized tables. All graphical and tabular output can be displayed on the screen, sent directly to a printer, or passed through the Windows clipboard to other software, such as word processor or spread sheet. Reports can be customized as to the amount and type of information desired.

The following approach has been used for various data inputs:

8.5.2 Hydropower Projects considered for e flow assessment/Modeling

There are 51 hydro projects in the Beas river basin, out of which 19 projects are with installed capacity of 25 MW or more i.e. projects which are covered under EIA notification and can be studied for environment flow assessment by habitat simulation and hydraulic modelling. Smaller projects (less than 25 MW installed capacity) do not give good results when subjected to modelling and therefore for all such projects environment flow is recommended based on present norms of EAC/MoEF&CC.

List of HEPs considered for modelling study is given at Table 8.2.

Table 8.2: HEPs considered for e-flow assessment

Capacity

Status

S. No.	Name of Project	Capacity (MW)	Status		River stretch affected (km)
1	Beas Satluj Link	990	Commissioned	Beas River	Inter-basin
					Transfer
2	Parbati-III HEP	520	Commissioned	Sainj River	13.7 Km
3	Allain Duhangan HEP	192	Commissioned	Allain and	Allain 9.2 Km;
				Duhangan Nalla	Duhangan 5 Km
4	Larji HEP	126	Commissioned	Beas River	5.65 Km
5	Uhl-I (Shanan) HEP	110	Commissioned	Uhl River	40 Km of Uhl river
					downstream;
					water diverted
					ends in Beas after
					Uhl III
6	Malana-II HEP	100	Commissioned	Malana Nalla	5.2 Km
7	Sainj HEP	100	Commissioned	Sainj River	9 Km
8	Malana-I HEP	86	Commissioned	Malana Nalla	2.32 Km

Pong Dam

Parbati-II HEP

Lambadug HEP

Nakhtan HEP

Thana Plaun HEP

Malana-III HEP

Kanda Pattan

Dhaulasidh

Triveni Mahadev HEP

Uhl II

Uhl III

No. 9

10

11

12

13

14

15

16

17

18

19

Name of Project

Capacity

(MW)

66

396

800

25

100

460

191

96

30

66

40

Parbati - 8.9 Km;

Tosh 4.4 Km (upto

Dam Toe; 12.7 Km

Tosh HEP)

upto TM

3.35 Km

Beas 5.5 Km;

Binwa 3.2 Km

Dam Toe; 37 Km upto Pong Reservoir

Out of 19 projects, considered for modelling study for the purpose of environment flow
assessment, 10 are commissioned projects, 3 are under construction, 5 are under different stages
of survey & investigations and one, Kanda Pattan, is a newly identified and yet to be allotted
project. Downstream of Pong dam is outside the study area and therefore it was not considered
for environment flow assessment. Similarly, Uhl II (Basi) is tailrace development of Uhl I without
any additional diversion and therefore, the water release from Uhl I will remain in Uhl river and
no additional release is considered from Uhl II. For Uhl III, in the absence of discharge data,
assessment could not be carried out. Similarly, for Kanda Pattan, no discharge data is available
and therefore, modeling could not be carried out.

Yet to be allotted

Status

Commissioned

Commissioned

Under Construction

Under Construction

Under Construction

Under S&I

Under S&I

Under S&I

Under S&I

Under S&I

Neri Khad

Toss and

Beas River

Beas River and

Binwa Khad

Malana Nalla

Beas River

Beas River

Parbati

Therefore, 15 projects were subjected to environment flow assessment based on modeling study. Data for following 10 projects have been made available by the respective project developers:

- 1. Nakhtan
- 2. Parbati II
- 3. Sainj
- 4. Parbati III
- 5. Malana I
- 6. Malana II
- 7. Than Plaun
- 8. Triveni Mahadev
- 9. Dhaulasidh
- 10. Allain Duhangan

Discharge series for following five projects have been derived based on catchment area proportions and taking into account relevant interception catchment proportions:

1. Malana III

- 2. Lambadug
- 3. Uhl I (Shanan)
- 4. Larji
- 5. Beas Satluj Link (Pandoh)

Hydro dynamic modelling has been carried out for above 15 projects. Input data used for present modeling study has been described below:

8.5.3 Discharge Data

Discharge data for all these projects for 90% dependable year has been shown in **Section 5.2** in Chapter 5, "Hydro-meteorology".

Out of the full year flow series, three average values have been calculated viz.

- Average of four leanest months
- Average of four monsoon months
- · Average of remaining four months

Flow simulations have been carried out for 10%, 15%, 20%, 25%, 30%, 40%, 50% and 100% releases of the average discharge for each of above three scenarios for the identified projects. Various key parameters for establishing habitat requirement have been calculated which include water depth, flow velocity and top width of waterway.

Average discharge for four leanest months, monsoon months and other months have been calculated for entire year and is shown in **Tables below**.

	Nakhtan		Parbati II	Parbati III	Sainj
	Parbati river	Tosh nala	Parbati river &	Sainj	Sainj khad
			Jigrai nala	Khad	
	CA: 687.44 Km ²	332.67 Km ²	CA: 1155 Km ²	CA: 650	CA: 434.33 Km ²
			+ CA: 44 Km ²	Km ²	
Year	2006-	07	2001-02	1992-93	1998-99
	cumec	cumec	cumec	cumec	cumec
		Monsoo	<u> </u> on (June-Septemb	er)	
Average	39.19	26.16	108.64	56.42	22.30
10 % of average	3.92	2.62	10.86	5.64	2.23
15 % of average	5.88	3.92	16.3	8.46	3.34
20 % of average	7.84	5.23	21.73	11.28	4.46
25 % of average	9.8	6.54	27.16	14.1	5.57
30 % of average	11.76	7.85	32.59	16.93	6.69
40 % of average	15.68	10.47	43.46	22.57	8.92
50 % of average	19.6	13.08	54.32	28.21	11.15
		cember-March	1)		Lean (Nov-Feb)
Average	5.70	3.73	14.97	7.54	3.54
10 % of average	0.57	0.37	1.5	0.75	0.35
15 % of average	0.85	0.56	2.25	1.13	0.53
20 % of average	1.14	0.75	2.99	1.51	0.71
25 % of average	1.42	0.93	3.74	1.89	0.89
30 % of average	1.71	1.12	4.49	2.26	1.06
40 % of average	2.28	1.49	5.99	3.02	1.42
50 % of average	2.85	1.87	7.48	3.77	1.77
Non-mor	nsoon, non-lean (A	oril, May and C	October, Novembe	er)	Non-monsoon, non-lean (Mar-
					May and Oct)
Average	14.7	9.95	25.30	18.89	10.73
10 % of average	1.47	1	2.53	1.89	1.07
15 % of average	2.21	1.49	3.79	2.83	1.61
20 % of average	2.94	1.99	5.06	3.78	2.15

25 % of average	3.68	2.49	6.32	4.72	2.68
30 % of average	4.41	2.99	7.59	5.67	3.22
40 % of average	5.88	3.98	10.12	7.55	4.29
50 % of average	7.35	4.98	12.65	9.44	5.36

	Malana-I	Malana-II	Malana-III
	Malana river	Malana river	Malana river
	CA: 178.50 Km ²	CA: 158.00 Km ²	CA: 124.75 Km ²
Year	1998-99	1990-91	1992-93
	cumec	cumec	cumec
	Monsoon (June-	September)	
Average	22.16	17.07	13.50
10 % of average	2.22	1.71	1.35
15 % of average	3.32	2.56	2.03
20 % of average	4.43	3.41	2.70
25 % of average	5.54	4.27	3.38
30 % of average	6.65	5.12	4.05
40 % of average	8.86	6.83	5.40
50 % of average	11.08	8.53	6.75
	Lean (Decemb	er-March)	
Average	2.45	2.61	2.07
10 % of average	0.24	0.26	0.21
15 % of average	0.37	0.39	0.31
20 % of average	0.49	0.52	0.41
25 % of average	0.61	0.65	0.52
30 % of average	0.73	0.78	0.62
40 % of average	0.98	1.04	0.83
50 % of average	1.22	1.31	1.03
Non-monse	oon, non-lean (April, A	May and October, No	vember)
Average	8.30	7.97	6.30
10 % of average	0.83	0.80	0.63
15 % of average	1.24	1.20	0.95
20 % of average	1.66	1.59	1.26
25 % of average	2.07	1.99	1.58
30 % of average	2.49	2.39	1.89
40 % of average	3.32	3.19	2.52
50 % of average	4.15	3.98	3.15

	Larji	Beas Satluj Link (Pandoh)	Thana Plaun	Triveni Mahadev	
	Beas river	Beas river	Beas river	Beas river	Binwa khad
	CA: 4921 Km ²	CA: 5280 Km ²	CA: 7378 Km ²	CA: 8155 (77	40+415) Km ²
Year	1998-99	1990-91	2002-03	2002-03	2007-08
	cumec	cumec	cumec	cumec	cumec
		Monsoon (June-S	September)		
Average	427.13	431.45	310.81	360.33	30.68
10 % of average	42.71	43.15	31.08	36.03	3.07
15 % of average	64.07	64.72	46.62	54.05	4.60
20 % of average	85.43	86.29	62.16	72.07	6.14
25 % of average	10.6.78	107.86	77.70	90.08	7.67
30 % of average	128.14	129.44	93.24	108.10	9.21
40 % of average	170.85	172.58	124.32	144.13	12.27
50 % of average	213.56	215.73	155.40	180.17	15.34
Lean (Dec-March)			Lean (Nov-Feb)		
Average	57.1	94.95	25.27	28.09	28.09
10 % of average	5.71	9.5	2.53	2.81	2.81

	Larji	Beas Satluj Link (Pandoh)	Thana Plaun	Triveni i	Mahadev
	Beas river	Beas river	Beas river	Beas river	Binwa khad
	CA: 4921 Km ²	CA: 5280 Km ²	CA: 7378 Km ²	CA: 8155 (77	40+415) Km ²
Year	1998-99	1990-91	2002-03	2002-03	2007-08
	cumec	cumec	cumec	cumec	cumec
15 % of average	8.56	14.24	3.79	4.21	4.21
20 % of average	11.42	18.99	5.05	5.62	5.62
25 % of average	14.27	23.74	6.32	7.02	7.02
30 % of average	17.13	28.49	7.58	8.43	8.43
40 % of average	22.84	37.98	10.11	11.24	11.24
50 % of average	28.55	47.48	12.64	14.05	14.05
Non-monsoon, non- and October,		Non-monsoon, non-lean (Mar-May and Oct)			
Average	142.98	171.59	77.63	96.63	96.63
10 % of average	14.3	17.16	7.76	9.66	9.66
15 % of average	21.45	25.74	11.64	14.49	14.49
20 % of average	28.6	34.32	15.53	19.33	19.33
25 % of average	35.74	42.90	19.41	24.16	24.16
30 % of average	42.89	51.48	23.29	28.99	28.99
40 % of average	57.19	68.64	31.05	38.65	38.65
50 % of average	71.49	85.79	38.81	48.31	48.31

	Allain I	Duhangan	Lambadug	Uhl-I (Shanan)	Dhaulasidh
	Allain	Duhangan	Lambadug	Uhl River	Beas River
	Nala	Nala	khad	On Kivei	
		(Allain Nala) +	CA: 197.00 sq	CA: 365.00 sq	CA: 9580 sq km
	,	ingan Nala) sq	km	km	
		km			
Year		1998-99	1990-91	2002-03	2003-04
	cumec	cumec	cumec	cumec	cumec
	•	,	une-September)		1
Average	16.18	6.42	8.52	15.78	302.63
10 % of average	1.62	0.64	0.85	1.58	30.26
15 % of average	2.43	0.96	1.28	2.37	45.39
20 % of average	3.24	1.28	1.7	3.16	60.53
25 % of average	4.04	1.60	2.13	3.95	75.66
30 % of average	4.85	1.92	2.56	4.74	90.79
40 % of average	6.47	2.57	3.41	6.31	121.05
50 % of average	8.09	3.21	4.26	7.89	151.32
Lear	(Dec-March)		Lean (N	Lean (Nov-Apr)	
Average	2.11	0.77	1.18	2.18	31.18
10 % of average	0.21	0.08	0.12	0.22	3.12
15 % of average	0.32	0.11	0.18	0.33	4.68
20 % of average	0.42	0.15	0.24	0.44	6.24
25 % of average	0.53	0.19	0.29	0.54	7.80
30 % of average	0.63	0.23	0.35	0.65	9.36
40 % of average	0.84	0.31	0.47	0.87	12.47
50 % of average	1.05	0.38	0.59	1.09	15.59
Non-monsoon, non-lean (April, May and October, November)			Non-monsoon, non-lean (Mar-May and Oct)		Non-monsoon, non-lean (May & Oct)
Average	5.67	1.99	3.98	7.37	40.48
10 % of average	0.57	0.20	0.40	0.74	4.05
15 % of average	0.85	0.30	0.60	1.11	6.07
20 % of average	1.13	0.40	0.80	1.47	8.10

25 % of average	1.42	0.50	0.99	1.84	10.12
30 % of average	1.7	0.60	1.19	2.21	12.15
40 % of average	2.27	0.79	1.59	2.95	16.19
50 % of average	2.84	0.99	1.99	3.69	20.24

8.5.4 River cross sections

Environmental flow assessment is carried out for the stretch of river, which starts downstream of diversion structure and up to the tailrace channel outfall point; generally termed as intermediate stretch between dam and powerhouse. For each project this stretch is calculated. Out of this stretch initial 1-2 Km or the length up to which first major tributary meets the river is considered critical as for the rest of the stretch tributary will add to the environmental flow released from the diversion structure. Therefore, modeling exercise to work out the environmental flow to meet the habitat requirement for the initial critical stretch hold good for the rest of the river. Keeping this in view, 8-10 cross sections of the river were taken immediately downstream of the diversion structure for each project and used in the modeling exercise. These sections have been represented in MIKE 11 model set up.

No data on river profile is available. Therefore digital data available in public domain i.e. The Shuttle Radar Topography Mission (SRTM) elevation data on a near-global scale to generate Digital Elevation Model. SRTM data is the most complete high-resolution digital topographic database of Earth. SRTM consisted of a specially modified radar system that flew on-board the Space Shuttle Endeavour. SRTM is an international project spearheaded by the National Geospatial-Intelligence Agency (NGA), NASA, the Italian Space Agency (ASI) and the German Aerospace Center (DLR). As there are three resolution outputs available, 1 kilometer, 90 meter and a 30 meter resolution. For the present study 30 meter resolution data have been used. The cross-sections are being generated from DEM in GIS environment using GIS software. In order to check the accuracy of the cross-sections thus generated, random ground checks are performed in the field for different rivers wherever the field conditions permitted. In case of any error the cross-sections are reconciled based upon inputs of ground checks. This methodology has been consistently adopted by central agencies like Central Water Commission also.

8.5.5 Manning's roughness coefficient

Manning's roughness coefficient for different type of channels as suggested by Chow, 1959 is given in **Table 8.3**. For the present study the river reaches correspond to mountain stream with steep bank and bed consisting of cobbles and large boulders. For such type of river the value of Manning's n varies from 0.040 to 0.070. For a lower value of Manning's n the depth of water will be less in comparison to a higher value of Manning's n for the same discharge. Hence to have a conservative estimate of water depth the Manning's n has been adopted as varying from 0.045 to 0.06 for the study reach in different projects. For projects in lower reaches like Thana Plaun and Triveni Mahadev projects, Manning's n has been considered as 0.045, for projects in higher elevations like Nakhtan, Malana I and Malana II projects, a value of 0.06 has been taken while for other projects like Parbati II, Parbati III, Allain Duhangan and Sainj projects, Manning's n has been considered as 0.05. For Dhaulasidh HEP, Manning's n has been considered as 0.04.

Table 8.3: Manning's roughness coefficient

Manning's n for Channels (Chow, 1959).

Type of Channel and Description	Minimum	Normal	Maximum
Natural streams - minor streams (top width at floodstage	< 100 ft)		
1. Main Channels			
a. clean, straight, full stage, no rifts or deep pools	0.025	0.030	0.033
b. same as above, but more stones and weeds	0.030	0.035	0.040
c. clean, winding, some pools and shoals	0.033	0.040	0.045
d. same as above, but some weeds and stones	0.035	0.045	0.050
e. same as above, lower stages, more ineffective slopes and sections	0.040	0.048	0.055
f. same as "d" with more stones	0.045	0.050	0.060
g. sluggish reaches, weedy, deep pools	0.050	0.070	0.080
h. very weedy reaches, deep pools, or floodways with heavy stand of timber and underbrush	0.075	0.100	0.150
Mountain streams, no vegetation in channel, banks along banks submerged at high stages	usually stee	ep, trees ar	nd brush
a. bottom: gravels, cobbles, and few boulders	0.030	0.040	0.050
b. bottom: cobbles with large boulders	0.040	0.050	0.070
3. Floodplains			
a. Pasture, no brush			
1.short grass	0.025	0.030	0.035
2. high grass	0.030	0.035	0.050
b. Cultivated areas			
1. no crop	0.020	0.030	0.040
2. mature row crops	0.025	0.035	0.045
3. mature field crops	0.030	0.040	0.050
c. Brush			
1. scattered brush, heavy weeds	0.035	0.050	0.070
2. light brush and trees, in winter	0.035	0.050	0.060
light brush and trees, in summer	0.040	0.060	0.080
4. medium to dense brush, in winter	0.045	0.070	0.110
5. medium to dense brush, in summer	0.070	0.100	0.160
d. Trees			
1. dense willows, summer, straight	0.110	0.150	0.200
2. cleared land with tree stumps, no sprouts	0.030	0.040	0.050
same as above, but with heavy growth of sprouts	0.050	0.060	0.080
 heavy stand of timber, a few down trees, little undergrowth, flood stage below branches 	0.080	0.100	0.120
same as 4. with flood stage reaching branches	0.100	0.120	0.160

8.5.6 MIKE 11 Model set up

The MIKE 11 model set up for flow simulation study consist of a river reach, upstream boundary and a downstream boundary. The reach of rivers from diversion site of a hydroelectric project up to its confluence with first stream shall be represented in model by number of surveyed cross sections or derived using SRTM data as discussed already. The releases from the respective diversion sites are the upstream boundary of the model set up applied at upper most cross section. The normal depth is used as the downstream boundary for the model set up. In order to have independent results of water depth the downstream boundary is applied at the cross section of respective rivers at few hundred meters downstream of the study reach.

CIA&CCS- Beas Basin in HP Final Report: Chapter 8

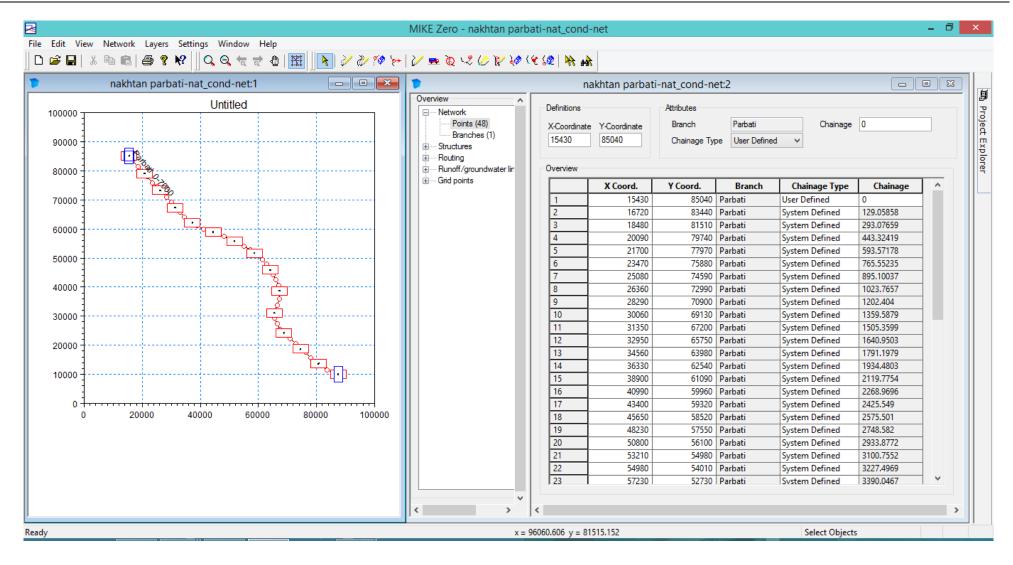


Figure 8.1: Location of various surveyed river cross sections (A typical MIKE 11 model set-up)

CIA&CCS- Beas Basin in HP Final Report: Chapter 8

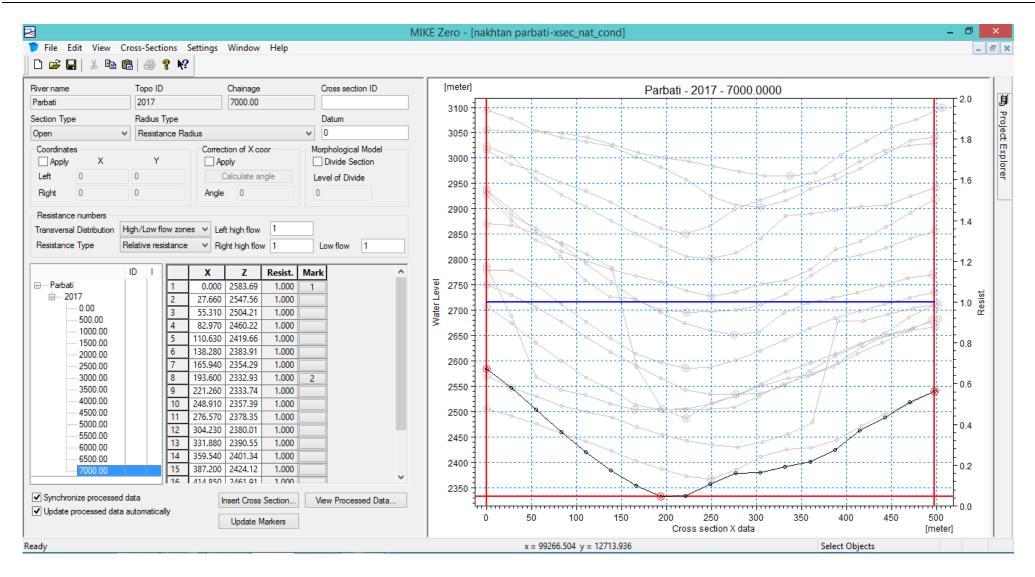


Figure 8.2: A typical view of surveyed river cross section considered for hydro-dynamic modeling (A typical MIKE 11 model set-up)

CIA&CCS- Beas Basin in HP

8.5.7 Model outputs

Model output for each HEP would be for three different scenario viz. monsoon average, lean season average and other four months average discharge values. For each scenario, output would be in the form of water depth, flow velocity and flow top width for each river cross-section considered in the critical reach i.e. from diversion structure to where first tributary meets the river. To discuss the results of the simulation modeling and assess the environmental flow requirement for each project separately, average values calculated for depth, velocity and flow top width for each scenario would be worked out.

Model Output for Different Release Scenarios for Parbati III HEP

Season	Release Scenario	River Bed	Water Level	Water depth	Flow Velocity	Flow Width
Š		(m)	(m)	(cm)	(m/s)	(m)
	10% release (0.75 m³/s)	1224.08	1224.21	13.32	0.69	21.28
_	15% release (1.13 m ³ /s)	1224.08	1224.24	15.97	0.77	22.44
Low (Dec-March)	20% release (1.51 m ³ /s)	1224.08	1224.27	18.92	0.83	23.64
ر- ¥ د- ¥	25% release (1.89 m³/s)	1224.08	1224.29	20.75	0.89	24.49
(De	30% release (2.26 m ³ /s)	1224.08	1224.30	22.32	0.95	25.22
Š.	40% release (3.02 m ³ /s)	1224.08	1224.35	26.81	1.04	27.22
_	50% release (3.77 m ³ /s)	1224.08	1224.38	30.16	1.11	28.81
	100% release (7.54 m³/s)	1224.08	1224.48	39.98	1.34	33.12
	10% release (5.64 m ³ /s)	1224.08	1224.44	35.53	1.24	31.24
	15% release (8.46 m³/s)	1224.08	1224.50	41.89	1.39	33.84
pt)	20% release (11.28 m ³ /s)	1224.08	1224.55	47.11	1.51	35.62
High (June-Sept)	25% release (14.10 m ³ /s)	1224.08	1224.60	51.61	1.61	37.07
l ä	30% release (16.93 m ³ /s)	1224.08	1224.64	55.66	1.70	38.36
ر ا	40% release (22.57 m ³ /s)	1224.08	1224.71	62.72	1.85	40.60
Ĭ	50% release (28.21 m ³ /s)	1224.08	1224.77	68.86	1.98	42.42
	100% release (56.42 m ³ /s)	1224.08	1225.01	92.52	2.43	48.56
ي ا	10% release (1.89 m³/s)	1224.08	1224.29	20.75	0.89	24.49
Α̈́	15% release (2.83 m³/s)	1224.08	1224.34	25.59	1.02	26.65
<u>,</u>	20% release (3.78 m ³ /s)	1224.08	1224.38	30.18	1.11	28.83
, t, (25% release (4.72 m ³ /s)	1224.08	1224.41	33.04	1.18	30.12
e (0c May)	30% release (5.67 m ³ /s)	1224.08	1224.44	35.63	1.24	31.28
liate	40% release (7.55 m³/s)	1224.08	1224.48	40.00	1.34	33.13
mec	50% release (9.44 m³/s)	1224.08	1224.52	43.79	1.43	34.49
Intermediate (Oct, Nov, Apr, May)	100% release (18.89 m ³ /s)	1224.08	1224.66	58.23	1.75	39.18

Model Output for Different Release Scenarios for Allain Duhangan HEP (Allain Nala)

Season	Release Scenario	River Bed	Water Level	Water depth	Flow Velocity	Flow Width
×		(m)	(m)	(cm)	(m/s)	(m)
	10% release (0.21 m ³ /s)	2313.90	2314.03	12.93	1.25	3.51
_	15% release (0.32 m ³ /s)	2313.90	2314.07	16.10	1.43	3.81
arch	20% release (0.42 m ³ /s)	2313.90	2314.09	18.53	1.54	4.08
(Dec-March)	25% release (0.53 m ³ /s)	2313.90	2314.11	20.38	1.65	4.39
(De	30% release (0.63 m ³ /s)	2313.90	2314.12	21.77	1.73	4.62
Low	40% release (0.84 m³/s)	2313.90	2314.15	24.26	1.87	5.04
	50% release (1.05 m³/s)	2313.90	2314.17	26.37	1.98	5.48
	100% release (2.11 m³/s)	2313.90	2314.25	34.27	2.35	7.13

Final Report: Chapter 8

	10% release (1.62 m³/s)	2313.90	2314.21	31.04	2.20	6.45
	15% release (2.43 m ³ /s)	2313.90	2314.27	36.14	2.44	7.51
£)	20% release (3.24 m ³ /s)	2313.90	2314.31	40.24	2.62	8.37
High (June-Sept)	25% release (4.04 m³/s)	2313.90	2314.34	43.72	2.77	9.09
- Jun	30% release (4.85 m ³ /s)	2313.90	2314.37	46.83	2.90	9.66
	40% release (6.47 m³/s)	2313.90	2314.43	52.17	3.12	10.51
Ξ̈́,	50% release (8.09 m³/s)	2313.90	2314.47	56.72	3.30	11.22
	100% release (16.18 m³/s)	2313.90	2314.64	73.66	3.95	13.22
pr,	10% release (0.57 m³/s)	2313.90	2314.11	20.98	1.68	4.49
, A	15% release (0.85 m³/s)	2313.90	2314.15	24.37	1.88	5.07
2	20% release (1.13 m ³ /s)	2313.90	2314.18	27.11	2.01	5.64
e (Oct	25% release (1.42 m ³ /s)	2313.90	2314.20	29.55	2.13	6.14
ite (30% release (1.70 m ³ /s)	2313.90	2314.22	31.59	2.23	6.57
edia	40% release (2.27 m ³ /s)	2313.90	2314.26	35.23	2.40	7.32
Intermediate (Oct, Nov, Apr, May)	50% release (2.84 m³/s)	2313.90	2314.29	38.31	2.54	7.97
Into	100% release (5.67 m³/s)	2313.90	2314.40	49.66	3.02	10.11

Model Output for Different Release Scenarios for Allain Duhangan HEP (Duhangan Nala)

Season	Release Scenario	River Bed	Water Level	Water depth	Flow Velocity	Flow Width
S		(m)	(m)	(cm)	(m/s)	(m)
	10% release (0.08m³/s)	2181.64	2181.71	6.39	0.98	3.11
=	15% release (0.11 m³/s)	2181.64	2181.74	9.36	1.09	3.21
Low (Dec-March)	20% release (0.15 m ³ /s)	2181.64	2181.75	10.95	1.20	3.38
C-Wi	25% release (0.19 m³/s)	2181.64	2181.76	12.02	1.28	3.49
(De	30% release (0.23 m³/s)	2181.64	2181.77	12.94	1.36	3.59
ð.	40% release (0.31 m ³ /s)	2181.64	2181.79	14.56	1.50	3.76
	50% release (0.38 m ³ /s)	2181.64	2181.81	16.65	1.60	3.94
	100% release (0.77 m ³ /s)	2181.64	2181.86	21.75	1.96	4.77
	10% release (0.64 m ³ /s)	2181.64	2181.85	20.25	1.86	4.52
	15% release (0.96 m³/s)	2181.64	2181.89	24.53	2.08	5.25
Sept	20% release (1.28 m ³ /s)	2181.64	2181.92	27.34	2.23	5.84
ne-9	25% release (1.60 m ³ /s)	2181.64	2181.94	29.72	2.36	6.35
High (June-Sept)	30% release (1.92 m ³ /s)	2181.64	2181.96	31.83	2.47	6.80
ig.	40% release (2.57 m ³ /s)	2181.64	2182.00	35.48	2.66	7.59
_	50% release (3.21 m ³ /s)	2181.64	2182.03	38.59	2.81	8.25
	100% release (6.42 m ³ /s)	2181.64	2182.14	50.02	3.35	10.63
Oct	10% release (0.20 m ³ /s)	2181.64	2181.77	12.25	1.30	3.51
ay,	15% release (0.30 m ³ /s)	2181.64	2181.79	14.37	1.48	3.74
, . ×	20% release (0.40 m ³ /s)	2181.64	2181.81	16.96	1.63	3.98
Intermediate (April, May, Oct and Nov)	25% release (0.50 m³/s)	2181.64	2181.83	18.45	1.74	4.21
te (. ind i	30% release (0.60 m³/s)	2181.64	2181.84	19.79	1.83	4.43
edia	40% release (0.79 m³/s)	2181.64	2181.86	21.97	1.98	4.81
, i	50% release (0.99 m³/s)	2181.64	2181.89	24.82	2.10	5.31
Inte	100% release (1.99 m ³ /s)	2181.64	2181.97	32.25	2.50	6.90

Model Output for Different Release Scenarios for Nakhtan HEP (Parbati River)

eason	Release Scenario	River Bed	Water Level	Water depth	Flow Velocity	Flow Width
Ň		(m)	(m)	(cm)	(m/s)	(m)
(De c-	10% release (0.57 m³/s)	2622.66	2622.85	18.82	1.23	9.03

						, , , , , , , , , , , , , , , , , , ,
	15% release (0.85 m³/s)	2622.66	2622.91	24.47	1.44	9.75
	20% release (1.14 m ³ /s)	2622.66	2622.95	28.83	1.60	10.42
	25% release (1.42 m ³ /s)	2622.66	2622.98	32.42	1.72	10.97
	30% release (1.71 m³/s)	2622.66	2623.02	35.65	1.83	11.47
	40% release (2.28 m³/s)	2622.66	2623.07	40.97	1.99	12.29
	50% release (2.85 m³/s)	2622.66	2623.11	45.37	2.13	12.90
	100% release (5.70 m³/s)	2622.66	2623.26	60.40	2.56	14.77
	10% release (3.92 m³/s)	2622.66	2623.18	51.95	2.32	13.72
	15% release (5.88 m³/s)	2622.66	2623.27	61.12	2.58	14.86
) £	20% release (7.84 m³/s)	2622.66	2623.34	68.33	2.77	15.76
High (June-Sept)	25% release (9.80 m³/s)	2622.66	2623.40	74.43	2.93	16.53
nne	30% release (11.76 m³/s)	2622.66	2623.46	79.79	3.07	17.20
ے ج	40% release (15.68 m³/s)	2622.66	2623.55	89.01	3.30	18.36
Hig	50% release (19.60 m³/s)	2622.66	2623.63	96.89	3.49	19.35
	100% release (39.19 m ³ /s)	2622.66	2623.92	126.13	4.16	23.00
ڻ	10% release (1.47 m³/s)	2622.66	2622.99	33.00	1.74	11.06
Αp	15% release (2.21 m³/s)	2622.66	2623.06	40.39	1.98	12.20
,)	20% release (2.94 m³/s)	2622.66	2623.12	45.98	2.14	12.98
t, 1	25% release (3.68 m³/s)	2622.66	2623.17	50.63	2.28	13.55
e (Oc May)	30% release (4.41 m ³ /s)	2622.66	2623.21	54.51	2.39	14.04
liate /	40% release (5.88 m³/s)	2622.66	2623.27	61.12	2.58	14.86
шес	50% release (7.35 m³/s)	2622.66	2623.33	66.67	2.73	15.55
Intermediate (Oct, Nov, Apr, May)	100% release (14.70 m³/s)	2622.66	2623.53	86.87	3.25	18.09

Model Output for Different Release Scenarios for Nakhtan HEP (Tosh Nala)

Season	Release Scenario	River Bed	Water Level	Water depth	Flow Velocity	Flow Width
Ň		(m)	(m)	(cm)	(m/s)	(m)
	10% release (0.37 m³/s)	2812.66	2812.77	10.46	0.94	16.41
	15% release (0.56 m³/s)	2812.66	2812.79	12.52	1.02	16.74
h	20% release (0.75 m ³ /s)	2812.66	2812.82	15.23	1.09	17.37
¥	25% release (0.93 m ³ /s)	2812.66	2812.83	16.62	1.14	17.80
(De	30% release (1.12 m ³ /s)	2812.66	2812.84	17.92	1.19	18.21
Low (Dec-March)	40% release (1.49 m ³ /s)	2812.66	2812.87	20.11	1.28	18.93
_	50% release (1.87 m ³ /s)	2812.66	2812.89	22.07	1.36	19.36
	100% release (3.73 m³/s)	2812.66	2812.97	30.48	1.68	20.89
	10% release (2.62 m ³ /s)	2812.66	2812.93	26.39	1.50	20.18
	15% release (3.92 m³/s)	2812.66	2812.98	31.13	1.71	21.01
£	20% release (5.23 m ³ /s)	2812.66	2813.04	37.17	1.86	22.66
High (June-Sept)	25% release (6.54 m³/s)	2812.66	2813.07	40.66	1.98	23.41
l š	30% release (7.85 m ³ /s)	2812.66	2813.10	43.73	2.08	24.08
) L	40% release (10.47 m ³ /s)	2812.66	2813.16	49.14	2.25	25.25
ΞΞ̈́	50% release (13.08 m ³ /s)	2812.66	2813.20	53.77	2.40	26.26
	100% release (26.16 m ³ /s)	2812.66	2813.38	71.34	2.91	29.59
t,	10% release (1.00 m ³ /s)	2812.66	2812.84	17.12	1.16	17.96
(Oc lay)	15% release (1.49 m³/s)	2812.66	2812.87	20.11	1.28	18.93
Intermediate (Oct, Nov, Apr, May)	20% release (1.99 m³/s)	2812.66	2812.89	22.64	1.39	19.45
nedi , Ap	25% release (2.49 m³/s)	2812.66	2812.92	25.83	1.48	20.08
tern	30% release (2.99 m³/s)	2812.66	2812.94	27.83	1.56	20.43
Ē	40% release (3.98 m³/s)	2812.66	2812.98	31.33	1.71	21.06

50% release (4.98 m ³ /s)	2812.66	2813.03	36.42	1.83	
100% release (9.95 m ³ /s)	2812.66	2813.15	48.13	2.22	25.

Model Output for Different Release Scenarios for Malana-I HEP

Season	Release Scenario	River Bed	Water Level	Water depth	Flow Velocity	Flow Width
Š		(m)	(m)	(cm)	(m/s)	(m)
	10% release (0.24 m ³ /s)	1622.92	1623.08	16.55	1.34	9.55
=	15% release (0.37 m ³ /s)	1622.92	1623.11	19.44	1.58	9.80
arch	20% release (0.49 m ³ /s)	1622.92	1623.15	22.92	1.73	10.05
C- W	25% release (0.61 m³/s)	1622.92	1623.17	24.94	1.81	10.26
(De	30% release (0.73 m³/s)	1622.92	1623.18	26.71	1.88	10.46
Low (Dec-March)	40% release (0.98 m ³ /s)	1622.92	1623.22	29.86	2.00	10.80
_	50% release (1.22 m ³ /s)	1622.92	1623.24	32.45	2.09	11.08
	100% release (2.45 m ³ /s)	1622.92	1623.34	42.28	2.46	12.17
	10% release (2.22 m ³ /s)	1622.92	1623.32	40.74	2.41	12.00
	15% release (3.32 m³/s)	1622.92	1623.39	47.41	2.66	12.74
pt)	20% release (4.43 m ³ /s)	1622.92	1623.45	52.85	2.86	13.35
High (June-Sept)	25% release (5.54 m³/s)	1622.92	1623.49	57.51	3.03	13.88
June	30% release (6.65 m ³ /s)	1622.92	1623.53	61.60	3.18	14.35
) L	40% release (8.86 m³/s)	1622.92	1623.60	68.61	1623.60	15.15
Ĭ	50% release (11.08 m ³ /s)	1622.92	1623.66	74.57	3.65	15.92
	100% release (22.16 m ³ /s)	1622.92	1623.88	96.43	4.36	18.92
þr,	10% release (0.83 m ³ /s)	1622.92	1623.20	28.05	1.93	10.60
,× ,×	15% release (1.24 m ³ /s)	1622.92	1623.24	32.66	2.10	11.11
8	20% release (1.66 m ³ /s)	1622.92	1623.31	39.65	2.37	11.88
e (Oct, May)	25% release (2.07 m³/s)	1622.92	1623.34	42.54	2.47	12.20
Intermediate (Oct, Nov, Apr, May)	30% release (2.49 m³/s)	1622.92	1623.34	42.54	2.47	12.20
edia	40% release (3.32 m³/s)	1622.92	1623.39	47.41	2.66	12.74
Ē	50% release (4.15 m ³ /s)	1622.92	1623.43	51.58	2.81	13.21
Int	100% release (8.30 m ³ /s)	1622.92	1623.59	66.94	3.38	14.96

Model Output for Different Release Scenarios for Malana II HEP

Season	Release Scenario	River Bed	Water Level	Water depth	Flow Velocity	Flow Width
×		(m)	(m)	(cm)	(m/s)	(m)
	10% release (0.26 m³/s)	2275.06	2275.21	14.84	1.36	2.87
	15% release (0.39 m ³ /s)	2275.06	2275.24	18.08	1.51	3.15
l dr	20% release (0.52 m ³ /s)	2275.06	2275.26	20.22	1.64	3.41
C-₩	25% release (0.65 m ³ /s)	2275.06	2275.28	22.06	1.75	3.62
Low (Dec-March)	30% release (0.78 m³/s)	2275.06	2275.29	23.67	1.85	3.81
ŏ.	40% release (1.04 m ³ /s)	2275.06	2275.33	27.41	2.00	4.30
_	50% release (1.31 m ³ /s)	2275.06	2275.35	29.75	2.11	4.67
	100% release (2.61 m³/s)	2275.06	2275.44	38.58	2.51	6.06
	10% release (1.71 m ³ /s)	2275.06	2275.43	37.20	2.45	5.85
£	15% release (2.56 m³/s)	2275.06	2275.49	43.30	2.71	6.80
-Se	20% release (3.41 m ³ /s)	2275.06	2275.54	48.21	2.91	7.58
Jung	25% release (4.27 m ³ /s)	2275.06	2275.58	52.43	3.08	8.24
High (June-Sept)	30% release (5.12 m ³ /s)	2275.06	2275.62	56.14	3.22	8.82
Ξ̈́Ξ	40% release (6.83 m³/s)	2275.06	2275.68	62.57	3.47	9.77
	50% release (8.53 m³/s)	2275.06	2275.74	68.03	3.67	10.39

Final	Report:	Chapter	8
-------	---------	---------	---

	100% release (17.07 m³/s)	2275.06	2275.94	88.25	4.38	12.66
Apr,	10% release (0.80 m ³ /s)	2275.06	2275.31	24.82	1.91	3.95
	15% release (1.20 m³/s)	2275.06	2275.36	29.94	2.12	4.70
, Nov,	20% release (1.59 m ³ /s)	2275.06	2275.39	33.38	2.28	5.24
e (Oct, May)	25% release (1.99 m ³ /s)	2275.06	2275.42	36.33	2.41	5.71
ite (30% release (2.39 m ³ /s)	2275.06	2275.45	38.82	2.52	6.10
edia	40% release (3.19 m ³ /s)	2275.06	2275.49	43.30	2.71	6.80
ntermediate (50% release (3.98 m ³ /s)	2275.06	2275.53	47.04	2.87	7.39
Int	100% release (7.97 m³/s)	2275.06	2275.67	61.03	3.41	9.56

Model Output for Different Release Scenarios for Sainj HEP

Model Output for Different Release Scenarios for Sainj HEP								
Season	Release Scenario	River Bed	Water Level	Water depth	Flow Velocity	Flow Width		
Š		(m)	(m)	(cm)	(m/s)	(m)		
	10% release (0.35 m³/s)	1522.91	1523.03	12.67	0.87	10.22		
	15% release (0.53 m³/s)	1522.91	1523.06	15.01	0.96	10.72		
(qə	20% release (0.71 m ³ /s)	1522.91	1523.07	16.91	1.04	11.12		
	25% release (0.89 m ³ /s)	1522.91	1523.09	18.59	1.10	11.46		
Low (Nov-Feb)	30% release (1.06 m ³ /s)	1522.91	1523.11	20.00	1.16	11.75		
Low	40% release (1.42 m³/s)	1522.91	1523.13	22.79	1.26	12.34		
	50% release (1.77 m³/s)	1522.91	1523.16	25.43	1.36	12.90		
	100% release (3.54 m³/s)	1522.91	1523.27	36.04	1.67	15.10		
	10% release (2.23 m³/s)	1522.91	1523.20	29.03	1.46	13.62		
	15% release (3.34 m³/s)	1522.91	1523.26	35.22	1.64	14.94		
pt)	20% release (4.46 m³/s)	1522.91	1523.30	39.49	1.78	15.80		
High (June-Sept)	25% release (5.57 m³/s)	1522.91	1523.34	43.13	1.89	16.53		
June	30% release (6.69 m³/s)	1522.91	1523.37	46.38	1.99	17.18		
ر. پا	40% release (8.92 m³/s)	1522.91	1523.43	52.00	2.16	18.31		
Ξij	50% release (11.15 m³/s)	1522.91	1523.47	56.84	2.30	19.27		
	100% release (22.30 m³/s)	1522.91	1523.66	75.06	2.79	22.86		
Þ	10% release (1.07 m ³ /s)	1522.91	1523.11	20.07	1.16	11.77		
y ar	15% release (1.61 m³/s)	1522.91	1523.15	24.42	1.32	12.69		
-Wa	20% release (2.15 m³/s)	1522.91	1523.19	28.61	1.44	13.54		
arch	25% release (2.68 m ³ /s)	1522.91	1523.22	31.46	1.53	14.14		
. (Ma Oct)	30% release (3.22 m ³ /s)	1522.91	1523.25	34.70	1.62	14.84		
liate	40% release (4.29 m ³ /s)	1522.91	1523.29	38.88	1.76	15.68		
med	50% release (5.36 m ³ /s)	1522.91	1523.33	42.47	1.87	16.40		
Intermediate (March-May and Oct)	100% release (10.73 m³/s)	1522.91	1523.47	55.98	2.27	19.10		

Model Output for Different Release Scenarios for Parbati II HEP

Season	Release Scenario	River Bed	Water Level (m)	Water depth	Flow Velocity	Flow Width
	10% release (1.50 m³/s)	2040.60	2040.91	30.32	1.20	10.49
	15% release (2.25 m³/s)	2040.60	2040.96	35.32	1.33	12.21
(Dec-March)	20% release (2.99 m³/s)	2040.60	2041.00	39.29	1.42	13.48
ec-V	25% release (3.74 m³/s)	2040.60	2041.03	42.73	1.51	14.50
0 >	30% release (4.49 m ³ /s)	2040.60	2041.06	45.79	1.58	15.27
Low	40% release (5.99 m³/s)	2040.60	2041.11	51.07	1.70	16.41
	50% release (7.48 m³/s)	2040.60	2041.16	55.58	1.80	17.32

	100% release (14.97 m³/s)	2040.60	2041.33	72.61	2.16	20.55
	10% release (10.86 m³/s)	2040.60	2041.24	64.15	1.98	19.04
	15% release (16.30 m ³ /s)	2040.60	2041.35	75.05	2.21	20.96
pt)	20% release (21.73 m ³ /s)	2040.60	2041.44	83.96	2.39	22.46
e-Se	25% release (27.16 m ³ /s)	2040.60	2041.52	91.69	2.54	23.73
High (June-Sept)	30% release (32.59 m ³ /s)	2040.60	2041.59	98.55	2.67	24.78
ر چ	40% release (43.46 m ³ /s)	2040.60	2041.71	110.50	2.89	26.50
Ξ̈́	50% release (54.32 m ³ /s)	2040.60	2041.81	120.77	3.08	27.73
	100% release (108.64 m³/s)	2040.60	2042.20	160.20	3.78	32.23
, May)	10% release (2.5375 m³/s)	2040.60	2040.97	36.91	1.37	12.73
Apr	15% release (3.79 m³/s)	2040.60	2041.03	42.95	1.51	14.56
, 6	20% release (5.06 m ³ /s)	2040.60	2041.08	47.91	1.63	15.76
,t Z	25% release (6.32 m ³ /s)	2040.60	2041.12	52.12	1.72	16.62
ő	30% release (7.59 m ³ /s)	2040.60	2041.16	55.90	1.80	17.39
iate	40% release (10.12 m ³ /s)	2040.60	2041.23	62.40	1.95	18.70
nedi	50% release (12.65 m ³ /s)	2040.60	2041.28	68.03	2.06	19.77
Intermediate (Oct, Nov, Apr, May)	100% release (25.30 m³/s)	2040.60	2041.49	89.17	2.49	23.33

Model Output for Different Release Scenarios for Thana Plaun HEP

Season	Release Scenario	River Bed	Water Level	Water depth	Flow Velocity	Flow Width
Š		(m)	(m)	(cm)	(m/s)	(m)
	10% release (2.53 m³/s)	622.99	623.38	38.86	0.63	22.28
	15% release (3.79 m³/s)	622.99	623.45	45.69	0.70	24.33
9	20% release (5.05 m ³ /s)	622.99	623.50	51.27	0.76	25.92
-Fe	25% release (6.32 m ³ /s)	622.99	623.55	56.17	0.81	27.30
ģ	30% release (7.58 m ³ /s)	622.99	623.60	60.47	0.86	28.52
Low (Nov-Feb)	40% release (10.11 m ³ /s)	622.99	623.67	68.02	0.93	30.65
	50% release (12.64 m³/s)	622.99	623.74	74.51	0.99	32.48
	100% release (25.27 m ³ /s)	622.99	623.98	98.92	1.21	39.13
	10% release (31.08 m³/s)	622.99	624.07	107.66	1.28	42.01
	15% release (46.62 m³/s)	622.99	624.26	127.03	1.44	46.75
	20% release (62.16 m ³ /s)	622.99	624.42	142.89	1.57	50.90
pt)	25% release (77.70 m ³ /s)	622.99	624.56	156.54	1.67	55.18
e-Se	30% release (93.24 m ³ /s)	622.99	624.68	168.65	1.76	58.40
High (June-Sept)	40% release (124.32 m ³ /s)	622.99	624.89	189.58	1.91	67.56
Ξ̈́	50% release (155.40 m ³ /s)	622.99	625.06	207.29	2.03	70.62
	100% release (310.81 m ³ /s)	622.99	625.73	274.27	2.51	80.03
May	10% release (7.76 m³/s)	622.99	623.60	61.07	0.86	28.69
- F	15% release (11.64 m³/s)	622.99	623.71	72.03	0.97	31.79
Mar ct)	20% release (15.53 m ³ /s)	622.99	623.80	81.04	1.05	34.32
Intermediate (March-May and Oct)	25% release (19.41 m ³ /s)	622.99	623.88	88.78	1.12	36.50
edia an	30% release (23.29 m ³ /s)	622.99	623.95	95.66	1.18	38.30
erm	40% release (31.05 m ³ /s)	622.99	624.07	107.62	1.28	42.00
Int	50% release (38.81 m ³ /s)	622.99	624.17	117.86	1.37	44.53

	100% release (77.63	622 00	624.56	156.49	1 47	55.16
	m^3/s)	622.99	024.30	130.49	1.6/	33.16

Model Output for Different Release Scenarios for Triveni Mahadev HEP (Beas River)

Season	Release Scenario	River Bed (m)	Water Level (m)	Water depth (cm)	Flow Velocity (m/s)	Flow Width (m)
	10% release (2.81 m³/s)	555.95	556.24	28.81	0.42	30.74
	15% release (4.21 m³/s)	555.95	556.34	38.98	0.50	35.55
<u>a</u>	20% release (5.62 m ³ /s)	555.95	556.42	46.94	0.57	38.21
-Fe	25% release (7.02 m ³ /s)	555.95	556.47	51.93	0.61	39.62
Š	30% release (8.43 m ³ /s)	555.95	556.51	56.42	0.65	40.85
Low (Nov-Feb)	40% release (11.24 m ³ /s)	555.95	556.59	64.44	0.71	43.06
تا	50% release (14.05 m ³ /s)	555.95	556.66	71.48	0.76	45.00
	100% release (28.09 m ³ /s)	555.95	556.94	98.53	0.94	52.03
	10% release (36.03 m³/s)	555.95	557.06	110.55	1.01	55.12
	15% release (54.05 m³/s)	555.95	557.28	133.33	1.15	60.95
	20% release (72.07 m ³ /s)	555.95	557.47	152.12	1.25	66.22
⊕	25% release (90.08 m³/s)	555.95	557.63	168.31	1.33	71.89
ne-Sep	30% release (108.10 m ³ /s)	555.95	557.78	182.60	1.40	77.88
High (June-Sept)	40% release (144.13 m³/s)	555.95	558.02	207.15	1.51	89.66
_	50% release (180.17 m ³ /s)	555.95	558.23	228.04	1.60	96.08
	100% release (360.33 m ³ /s)	555.95	559.01	306.41	1.96	110.97
ᄝ	10% release (9.66 m³/s)	555.95	556.55	60.07	0.68	41.85
y ar	15% release (14.49 m³/s)	555.95	556.67	72.50	0.77	45.28
-Wa	20% release (19.33 m³/s)	555.95	556.78	82.85	0.84	47.99
arch	25% release (24.16 m ³ /s)	555.95	556.87	91.89	0.90	50.31
(Ma Oct)	30% release (28.99 m³/s)	555.95	556.95	99.97	0.95	52.40
liate	40% release (38.65 m ³ /s)	555.95	557.09	114.21	1.04	56.06
med	50% release (48.31 m ³ /s)	555.95	557.22	126.59	1.11	59.24
Intermediate (March-May and Oct)	100% release (96.63 m³/s)	555.95	557.69	173.69	1.36	74.35

Model Output for Different Release Scenarios for Triveni Mahadev HEP (Binwa River)

Season	Release Scenario	River Bed	Water Level	Water depth	Flow Velocity	Flow Width
<u> </u>		(m)	(m)	(cm)	(m/s)	(m)
	10% release (0.46 m³/s)	571.10	571.46	36.56	0.39	13.01
	15% release (0.70 m³/s)	571.10	571.51	40.67	0.44	14.79
(ep)	20% release (0.93 m ³ /s)	571.10	571.54	43.82	0.47	16.15
Low (Nov-Feb)	25% release (1.16 m³/s)	571.10	571.56	46.52	0.50	17.32
Ž	30% release (1.39 m ³ /s)	571.10	571.59	48.95	0.53	18.34
Low	40% release (1.85 m ³ /s)	571.10	571.63	53.08	0.57	20.03
	50% release (2.32 m ³ /s)	571.10	571.67	56.74	0.61	20.87
	100% release (4.63 m³/s)	571.10	571.80	70.34	0.74	23.94
- 4 -	10% release (3.07 m ³ /s)	571.10	571.72	61.79	0.66	22.01
High (June-	15% release (4.60 m³/s)	571.10	571.80	70.20	0.74	23.91
, 0	20% release (6.14 m³/s)	571.10	571.87	77.16	0.80	25.47

	25% release (7.67 m³/s)	571.10	571.93	83.15	0.85	26.77
	30% release (9.21 m ³ /s)	571.10	571.98	88.53	0.90	27.93
	40% release (12.27 m ³ /s)	571.10	572.08	97.87	0.98	29.94
	50% release (15.34 m ³ /s)	571.10	572.16	105.96	1.04	31.62
	100% release (30.68 m³/s)	571.10	572.46	136.18	1.28	37.31
Þ	10% release (1.00 m ³ /s)	571.10	571.55	44.69	0.48	16.52
(March-May and Oct)	15% release (1.50 m³/s)	571.10	571.60	50.00	0.54	18.80
-Wa	20% release (2.01 m ³ /s)	571.10	571.64	54.40	0.58	20.33
arch	25% release (2.51 m ³ /s)	571.10	571.68	58.10	0.62	21.18
(Ma	30% release (3.01 m ³ /s)	571.10	571.71	61.40	0.65	21.93
liate	40% release (4.01 m ³ /s)	571.10	571.77	67.18	0.71	23.23
med	50% release (5.02 m ³ /s)	571.10	571.82	72.21	0.75	24.36
Intermediate C	100% release (10.03 m³/s)	571.10	572.01	91.20	0.92	28.51

Model Output for Different Release Scenarios for Larji HEP

Season	Release Scenario	River Bed	Water Level	Water depth	Flow Velocity	Flow Width
×		(m)	(m)	(cm)	(m/s)	(m)
	10% release (5.71 m ³ /s)	928.25	928.84	58.61	0.87	25.87
	15% release (8.56 m ³ /s)	928.25	928.94	68.95	0.98	28.13
। ਜ਼ਿੰ	20% release (11.42 m ³ /s)	928.25	929.03	77.51	1.06	29.64
Marc	25% release (14.27 m ³ /s)	928.25	929.10	84.93	1.13	30.86
Low (Dec-March)	30% release (17.13 m ³ /s)	928.25	929.17	91.58	1.20	31.95
) »o	40% release (22.84 m ³ /s)	928.25	929.28	103.15	1.31	33.71
	50% release (28.55 m ³ /s)	928.25	929.38	113.23	1.40	35.16
	100% release (57.10 m ³ /s)	928.25	929.77	151.75	1.74	40.33
	10% release (42.71 m ³ /s)	928.25	929.59	134.15	1.59	38.06
	15% release (64.07 m ³ /s)	928.25	929.84	159.40	1.81	41.24
	20% release (85.43 m ³ /s)	928.25	930.05	180.36	1.98	43.72
ept)	25% release (106.78 m ³ /s)	928.25	930.24	198.56	2.12	45.79
High (June-Sept)	30% release (128.14 m ³ /s)	928.25	930.40	214.88	2.25	47.62
High	40% release (170.85 m³/s)	928.25	930.69	243.49	2.47	50.82
	50% release (213.56 m³/s)	928.25	930.93	268.29	2.65	53.53
	100% release (427.13 m³/s)	928.25	931.88	362.98	3.28	63.20
Þr,	10% release (14.30 m ³ /s)	928.25	929.10	85.00	1.14	30.87
o, ∧	15% release (21.45 m ³ /s)	928.25	929.26	100.52	1.28	33.33
l ti	20% release (28.60 m ³ /s)	928.25	929.38	113.30	1.40	35.18
Intermediate (Oct, Nov, Apr, May)	25% release (35.74 m ³ /s)	928.25	929.50	124.43	1.51	36.77
diat	30% release (42.89 m ³ /s)	928.25	929.59	134.37	1.59	38.09
erme	40% release (57.19 m ³ /s)	928.25	929.77	151.85	1.74	40.34
Int	50% release (71.49 m ³ /s)	928.25	929.92	167.07	1.87	42.15

100% release (142.98	928.25	930.50	225.34	2.33	48.79
m^3/s					

Model Output for Different Release Scenarios for Pandoh HEP

Season	Release Scenario	River Bed	Water Level	Water depth	Flow Velocity	Flow Width
<u> </u>		(m)	(m)	(cm)	(m/s)	(m)
	10% release (9.50 m³/s)	814.04	814.97	93.59	1.00	23.18
	15% release (14.24 m³/s)	814.04	815.13	108.93	1.11	26.51
(q	20% release (18.99 m³/s)	814.04	815.25	121.37	1.19	29.01
Low (Nov-Feb)	25% release (23.74 m³/s)	814.04	815.36	132.03	1.26	31.11
S N	30% release (28.49 m³/s)	814.04	815.45	141.46	1.32	32.78
ě	40% release (37.98 m³/s)	814.04	815.62	157.82	1.42	35.47
	50% release (47.48 m³/s)	814.04	815.76	171.87	1.51	37.63
	100% release (94.95 m ³ /s)	814.04	816.28	224.78	1.83	44.71
	10% release (43.15 m³/s)	814.04	815.69	165.69	1.47	36.70
	15% release (64.72 m³/s)	814.04	815.97	193.64	1.64	40.80
	20% release (86.29 m³/s)	814.04	816.20	216.53	1.78	43.76
pt)	25% release (107.86 m³/s)	814.04	816.40	236.32	1.90	45.91
High (June-Sept)	30% release (129.44 m³/s)	814.04	816.58	254.01	2.00	47.64
High (J	40% release (172.58 m³/s)	814.04	816.89	285.06	2.18	50.60
	50% release (215.73 m ³ /s)	814.04	817.16	312.17	2.34	53.12
	100% release (431.45 m ³ /s)	814.04	818.20	416.57	2.89	62.36
Þ	10% release (17.16 m³/s)	814.04	815.21	116.82	1.16	28.10
y ar	15% release (25.74 m³/s)	814.04	815.40	136.13	1.29	31.84
Intermediate (March-May and Oct)	20% release (34.32 m³/s)	814.04	815.56	151.84	1.39	34.53
	25% release (42.90 m³/s)	814.04	815.69	165.31	1.47	36.65
	30% release (51.48 m³/s)	814.04	815.81	177.28	1.55	38.44
	40% release (68.64 m³/s)	814.04	816.02	198.11	1.67	41.41
ned	50% release (85.79 m³/s)	814.04	816.20	216.04	1.78	43.71
Interr	100% release (171.59 m ³ /s)	814.04	816.88	284.38	2.18	50.54

Model Output for Different Release Scenarios for Lambadug HEP

Season	Release Scenario	River Bed	Water Level	Water depth	Flow Velocity	Flow Width
Š		(m)	(m)	(cm)	(m/s)	(m)
	10% release (0.12 m ³ /s)	1977.20	1977.33	13.02	0.86	4.35
	15% release (0.18 m³/s)	1977.20	1977.37	16.31	0.94	4.71
(qə	20% release (0.24 m ³ /s)	1977.20	1977.38	18.20	1.01	4.98
Low (Nov-Feb)	25% release (0.29 m³/s)	1977.20	1977.40	19.57	1.05	5.18
	30% release (0.35 m ³ /s)	1977.20	1977.41	21.04	1.10	5.39
Lov	40% release (0.47 m³/s)	1977.20	1977.44	23.56	1.18	5.75
	50% release (0.59 m³/s)	1977.20	1977.46	25.68	1.25	6.06
	100% release (1.18 m³/s)	1977.20	1977.54	33.48	1.49	7.18
High June- Sept)	10% release (0.85 m³/s)	1977.20	1977.50	29.54	1.37	6.61
High (June Sept)	15% release (1.28 m³/s)	1977.20	1977.55	34.55	1.52	7.33

300 200 200 Million 100 Millio						
	20% release (1.70 m ³ /s)	1977.20	1977.59	38.49	1.64	7.90
	25% release (2.13 m ³ /s)	1977.20	1977.62	41.92	1.74	8.42
	30% release (2.56 m ³ /s)	1977.20	1977.65	44.92	1.82	8.90
	40% release (3.41 m ³ /s)	1977.20	1977.70	50.05	1.96	9.77
	50% release (4.26 m ³ /s)	1977.20	1977.75	54.41	2.07	10.52
	100% release (8.52 m³/s)	1977.20	1977.91	70.57	2.46	13.24
Intermediate (March-May and Oct)	10% release (0.40 m³/s)	1977.20	1977.42	22.15	1.13	5.55
	15% release (0.60 m³/s)	1977.20	1977.46	25.86	1.25	6.08
	20% release (0.80 m ³ /s)	1977.20	1977.49	28.86	1.34	6.51
	25% release (0.99 m³/s)	1977.20	1977.52	31.32	1.42	6.86
	30% release (1.19 m ³ /s)	1977.20	1977.54	33.58	1.49	7.19
	40% release (1.59 m ³ /s)	1977.20	1977.58	37.53	1.61	7.76
	50% release (1.99 m³/s)	1977.20	1977.61	40.85	1.71	8.26
Inte	100% release (3.98 m³/s)	1977.20	1977.73	53.05	2.03	10.28

Model Output for Different Release Scenarios for Malana-III HEP

model Output to Different Release Scenarios for Maiana-III FIEF							
Season	Release Scenario	River Bed	Water Level	Water depth	Flow Velocity	Flow Width	
Ň		(m)	(m)	(cm)	(m/s)	(m)	
	10% release (0.21 m ³ /s)	2736.92	2737.03	11.48	0.90	4.33	
=	15% release (0.31 m³/s)	2736.92	2737.05	13.50	1.03	4.66	
l dr	20% release (0.41 m ³ /s)	2736.92	2737.07	15.19	1.12	4.91	
Ŭ-₩	25% release (0.52 m³/s)	2736.92	2737.09	17.50	1.20	5.28	
Low (Dec-March)	30% release (0.62 m ³ /s)	2736.92	2737.10	18.69	1.26	5.52	
ŏ.	40% release (0.82 m ³ /s)	2736.92	2737.13	21.87	1.37	6.15	
	50% release (1.03 m ³ /s)	2736.92	2737.15	23.80	1.45	6.69	
	100% release (2.06 m³/s)	2736.92	2737.22	30.91	1.72	8.70	
	10% release (1.35 m ³ /s)	2736.92	2737.21	29.81	1.68	8.38	
	15% release (2.02 m ³ /s)	2736.92	2737.26	34.68	1.86	9.75	
pt)	20% release (2.70 m ³ /s)	2736.92	2737.30	38.64	2.00	10.82	
High (June-Sept)	25% release (3.37 m ³ /s)	2736.92	2737.34	41.96	2.12	11.53	
June	30% release (4.04 m ³ /s)	2736.92	2737.37	44.94	2.22	12.13	
<u>ئ</u> چ	40% release (5.39 m ³ /s)	2736.92	2737.42	50.03	2.39	13.15	
Ĭ	50% release (6.74 m ³ /s)	2736.92	2737.46	54.40	2.53	14.04	
	100% release (13.48 m ³ /s)	2736.92	2737.62	70.67	3.03	16.90	
þr,	10% release (0.63 m ³ /s)	2736.92	2737.11	19.66	1.31	5.71	
, A	15% release (0.94 m ³ /s)	2736.92	2737.16	24.01	1.45	6.75	
Intermediate (Oct, Nov, Apr, May)	20% release (1.26 m ³ /s)	2736.92	2737.18	26.73	1.56	7.52	
	25% release (1.57 m³/s)	2736.92	2737.21	29.06	1.65	8.17	
	30% release (1.89 m³/s)	2736.92	2737.23	31.12	1.73	8.75	
	40% release (2.52 m ³ /s)	2736.92	2737.26	34.68	1.86	9.75	
	50% release (3.15 m ³ /s)	2736.92	2737.29	37.69	1.96	10.61	
Int	100% release (6.29 m ³ /s)	2736.92	2737.40	48.81	2.35	12.91	

Model Output for Different Release Scenarios for Uhl (Shanan) HEP

Season	Release Scenario	River Bed (m)	Water Level (m)	Water depth (cm)	Flow Velocity (m/s)	Flow Width
Low (Nov- Feb)	10% release (0.22 m ³ /s)	1740.67	1740.76	9.34	0.53	4.02
	15% release (0.33 m ³ /s)	1740.67	1740.81	13.98	0.65	5.03
	20% release (0.44 m³/s)	1740.67	1740.87	19.77	0.80	5.99

						, ,
	25% release (0.54 m ³ /s)	1740.67	1740.90	23.43	0.82	6.78
	30% release (0.65 m ³ /s)	1740.67	1740.92	25.39	0.87	7.33
	40% release (0.87 m ³ /s)	1740.67	1740.95	28.27	0.93	8.17
	50% release (1.09 m³/s)	1740.67	1740.98	30.79	0.98	8.89
	100% release (2.18 m³/s)	1740.67	1741.07	39.94	1.17	11.53
	10% release (1.58 m³/s)	1740.67	1741.02	35.38	1.08	10.22
	15% release (2.37 m³/s)	1740.67	1741.08	41.21	1.20	11.90
pt)	20% release (3.16 m ³ /s)	1740.67	1741.13	45.91	1.28	13.25
High (June-Sept)	25% release (3.95 m³/s)	1740.67	1741.17	49.92	1.36	14.41
June	30% release (4.74 m³/s)	1740.67	1741.20	53.43	1.42	15.38
, ,	40% release (6.31 m ³ /s)	1740.67	1741.26	59.48	1.53	17.03
Hiệ	50% release (7.89 m³/s)	1740.67	1741.32	64.68	1.62	18.44
	100% release (15.78 m ³ /s)	1740.67	1741.51	83.90	1.93	23.52
and	10% release (0.74 m³/s)	1740.67	1740.93	26.63	0.89	7.69
lay .	15% release (1.11 m ³ /s)	1740.67	1740.98	30.99	0.99	8.95
ch-A	20% release (1.47 m ³ /s)	1740.67	1741.01	34.46	1.06	9.94
(Maro	25% release (1.84 m³/s)	1740.67	1741.04	37.47	1.12	10.82
te (i	30% release (2.21 m ³ /s)	1740.67	1741.07	40.14	1.17	11.59
edia	40% release (2.95 m³/s)	1740.67	1741.12	44.73	1.26	12.91
Intermediate (March-May and Oct)	50% release (3.69 m³/s)	1740.67	1741.16	48.65	1.34	14.05
Inte	100% release (7.37 m ³ /s)	1740.67	1741.30	63.06	1.59	18.00

Model Output for Different Release Scenarios for Dhaulasidh HEP

son		River Bed	Water Level	Water depth	Flow Velocity	Flow Width
Season	Release Scenario	(m)	(m)	(cm)	(m/s)	(m)
	10% release (3.12 m ³ /s)	473.86	474.05	18.58	0.40	43.56
	15% release (4.68 m³/s)	473.86	474.22	35.42	0.46	45.45
prij	20% release (6.24 m ³ /s)	473.86	474.35	49.13	0.50	46.96
V-A	25% release (7.80 m ³ /s)	473.86	474.47	61.17	0.55	48.28
S)	30% release (9.36 m ³ /s)	473.86	474.58	71.98	0.58	49.47
Low (Nov-April)	40% release (12.47 m ³ /s)	473.86	474.77	91.23	0.65	51.59
_	50% release (15.59 m ³ /s)	473.86	474.95	108.33	0.70	53.47
	100% release (31.18 m ³ /s)	473.86	475.62	176.08	0.89	60.16
	10% release (30.26 m ³ /s)	472.86	475.59	272.60	0.38	59.95
ber	15% release (45.39 m ³ /s)	473.86	476.11	224.30	1.01	63.01
High (June-September)	20% release (60.53 m ³ /s)	473.86	476.54	268.10	1.11	65.61
Sept	25% release (75.66 m³/s)	473.86	476.93	306.70	1.20	67.90
ne-(30% release (90.79 m ³ /s)	473.86	477.28	341.65	1.28	69.97
nr)	40% release (121.05 m ³ /s)	473.86	477.90	403.52	1.41	73.63
ligh	50% release (151.32 m ³ /s)	473.86	478.44	457.82	1.52	76.77
_	100% release (302.63 m ³ /s)	473.86	480.55	668.45	1.92	87.49
pu	10% release 4.05 m ³ /s)	473.86	474.15	29.13	0.14	44.75
er a	15% release (6.07 m ³ /s)	473.86	474.34	47.73	0.17	46.80
tobí	20% release (8.10 m ³ /s)	473.86	474.49	63.28	0.55	48.52
te (Oci May)	25% release (10.12 m³/s)	473.86	474.63	76.93	0.60	50.02
ate Ma	30% release (12.15 m ³ /s)	473.86	474.76	89.37	0.64	51.39
iedi	40% release (16.19 m ³ /s)	473.86	474.98	111.43	0.71	53.81
Intermediate (October and May)	50% release (20.24 m ³ /s)	473.86	475.17	131.02	0.77	55.97
Int	100% release (40.48 m ³ /s)	473.86	475.95	208.58	0.97	62.08

8.6 ENVIRONMENTAL FLOW ASSESSMENT

Environmental flows are flows that are to be released into a river system with the specific purpose of managing the modified river regime as close as possible to the natural state.

In Himalayan Rivers, annual discharges vary by orders of magnitude from year to year. Species that persist in such rivers generally survive, though not necessarily breed, during years when there is much less water than average. The presence of sequences of wet and dry years supports the suggestion that the biota can survive repeated years when the total annual discharge is less than the average, however, it may not remain unchanged in permanent drought conditions.

Studies in South African rivers (Weeks *et al.*, 1996) showed that major community shifts occur among the fish fauna during droughts, and also during normal low flow seasons. However, provided conditions do not drastically differ from those that have occurred in the past, recovery reflects in the short to medium term. Some studies have shown evidence that a lower than normal flow regime, which still incorporates all the major features of the natural regime, would not permanently change the biota of the river. It is therefore suggested that, other things such as catchment condition being equal, a carefully designed modified flow regime which maintains the ecologically important components of the natural flow regime should be able to maintain a river's natural biota.

Therefore, for assessment of environmental flow focus should be on the characteristic features of the natural flow regime of the river. The most important of these are degree of perenniality; magnitude of base flows in the dry and wet season; magnitude, timing and duration of floods in the wet season; and small pulses of higher flow, that occur between dry and wet months. Attention is then given to which flow features are considered most important for maintaining or achieving the desired future condition of the river, and thus should not be eradicated during development of the river's water resources.

Fish assemblages often include a range of species and reflect the integrated effects of environmental changes. Their presence is used to infer the presence of other aquatic organisms, since the adult fish occupy the top of the food chain in most aquatic systems. They also pass through most trophic levels above the primary producer stage during their development from larvae to adults. Fish can thus be regarded as reflecting the integrated environmental health of a river (Karr *et al.*, 1986). Fish species in river can guide to prepare specification of the flows necessary to meet their needs, and be useful in the monitoring and management of those flows. It is often surmised that if management of flows for fish maintenance is successful, then flow requirements for aquatic invertebrates will also be satisfied. This is because of the larger scale of fish habitat.

Therefore, the approach adopted for environmental flow assessment is based on the meeting the needs of dominant fish species with larger habitat requirement. Baseline data on fish fauna in Beas basin is discussed in **Chapter - 7**; where entire Beas basin can be divided in two predominant fish zones viz. Mahseer Zone and Trout Zone. Mahseer being a large fish requires more flow in all the seasons and this aspect has been kept in mind while recommending environmental flow for projects in Mahseer zone. Therefore, environmental flow assessment should be based on meeting its habitat requirement in lean, monsoon and pre/post monsoon period.

A minimum depth requirement of 40 cm and 50 cm is considered for trout and mahseer zones respectively to assess the environmental flow requirement in lean season. Higher depth is

considered for intermediate period and monsoon period to ensure mimicking of natural discharge pattern. For intermediate period in Mahseer zone, a depth range of 60-75 cm is considered and for monsoon season a depth range of 85-100 cm is considered. Similarly, for intermediate period in trout zone, a depth range of 55-65 cm is considered and for monsoon season in trout zone, a depth range of 70-80 cm is considered as minimum requirement. However, some exceptions are considered, as many of the times, in small tributaries even in natural conditions such depths are not available. In such cases, recommendations are made to ensure that even during lower discharges giving lower depths and widths of water in the rivers, a part of it is maintained in the river as environment flow in such a manner that reduction in depth is restricted to about 50% of the natural river depth.

Keeping in view the EAC/MoEF&CC's requirement of minimum release in lean season as 20%, monsoon/peak season as 20-30% and other months also as 20-25%; calculated based on average discharge in four leanest months in 90% dependable year, the same is considered as the overriding criteria even if the modeling exercise is suggesting that a lower discharge can meet the depth requirement.

For Dam Toe power houses, where intermediate river stretch is very small, continuous release from the turbines can be used as the contribution towards environmental flow.

8.7 ENVIRONMENTAL FLOW RELEASE RECOMMENDATIONS

Based on the above criteria, environmental flow requirements is established for each project separately and final recommendations for the projects assessed by modeling exercise is tabulated below (**Table 8.4**). Values are given in percentage as per the prevalent norms, however, for the purpose of implementation absolute values (in cumec) should be used wherever, there is discrepancy.

For two projects, viz. Pong Dam and Uhl III, no recommendations is made as explained above.

For Uhl III and Kanda Pattan, in the absence of discharge data, assessment could not be carried out, therefore, it is recommended that Uhl III and Kanda Pattan maintains 20%, 30% and 25% of the average respective values of their 90% dependable year discharge (Year should be picked up from approved DPR used for project design) for lean, monsoon and other months as defined in the table.

For remaining 32 projects i.e. projects with less than 25 MW installed capacity, environment flow should be maintained based on the percentage of average values of discharge in lean, monsoon and other months based on 90% dependable year discharge series (year should be picked up from approved DPR used for project design) and following recommendations should be adopted:

- Lean Season (December to March): 20% of average discharge in lean season in 90% DY
- Monsoon/Peak Season (June to September): 30% of average discharge in monsoon/peak season in 90% DY
- Remaining 4 months (October, November, April land May): 25% of average discharge in these months in 90% DY

CIA&CCS- Beas Basin in HP Final Report: Chapter 8

Table 8.4: Environment Flow Release Recommendation

SI No.	Project	River (Affected Stretch)	Recommended	E-flow as % of a 90% DY	verage discharge in	Recommended E-flow cumec			
31 NO.	Project	River (Affected Stretch)	Lean Season	Peak Season	Other Months	Lean Season	Peak Season	Other Months	
1	Beas Satluj Link	Beas River (25 km)	20	15	15	18.99	64.72	25.74	
2	Parbati-III	Sainj River (13.7 Km)	20	15	15	1.51	8.46	2.83	
3	Allain Duhangan	Allain (9.2 Km)	20	15	15	0.42	2.43	0.85	
	_	Duhangan (5 Km)	20	15	20	0.15	0.96	0.4	
4	Larji	Beas River (5.65 Km)	20	15	15	11.42	64.06	21.45	
5	Uhl-I	Uhl River (40 Km)	20	15	15	0.44	2.37	1.11	
6	Malana-II	Malana Nalla (5.2 Km)	20	15	15	0.52	2.56	1.20	
7	Sainj	Sainj River (9 Km)	20	15	15	0.71	3.34	1.61	
8	Malana-I	Malana Nalla (2.32 Km)	20	15	15	0.49	3.32	1.24	
9	Uhl II	Tailrace of Uhl I	-	-	-	-	-	-	
10	Pong Dam	Beas	-	-	-	-	-	-	
11	Parbati-II	Parbati River (5.28 Km)	20	15	15	2.99	16.3	3.79	
		Jigrai Nalla (0.8 Km)	20	30	25	0.2	1.16	0.54	
		Jiva Nalla (8.2 Km)	20	30	25	1.19	6.2	2.53	
		Hurla Nalla (12 Km)	20	30	25	0.57	3.12	1.28	
12	Lambadug	Lambadug (6.3 Km)	20	15	15	0.25	1.28	0.6	
13	Uhl III*	Rana Khad	20	30	25				
		Neri Khad	20	30	25				
14	Nakhtan	Toss (4.4 Km)	25	20	20	0.93	5.24	1.99	
		Parbati (8.9 Km)	25	20	20	1.42	7.84	2.94	
15	Thana Plaun	Beas River (12.7 Km)	20	15	15	5.05	46.62	11.64	
16	Triveni Mahadev	Beas River (5.5 Km)	20	15	15	5.62	54.05	14.49	
		Binwa Khad (3.2 Km)	20	15	15	0.93	4.6	1.5	
17	Malana-III	Malana Nalla (3.35 Km)	20	15	15	0.31	2.02	0.94	
18	Dhaulasidh	Beas River (37 Km)	20	30	20	6.24	90.79	8.10	
19	Kanda Pattan	Beas River (8 Km)	20	30	25				

RS Envirolink Technologies Pvt. Ltd.

CHAPTER-9

CUMULATIVE IMPACT ASSESSMENT

9.1 INTRODUCTION

There is no universally accepted or adopted method for assessing cumulative impact of hydropower projects. Uncertainty in predicting effects and determining significance is imperative in this type of study which arises due to variations in natural systems, lack of information on historical data, knowledge or scientific agreement regarding cause-effect relationships, or the inability of predictive models to accurately represent the complex systems. The degree of uncertainty in addressing cumulative effects is greater than for conventional EIAs because of a longer time horizon and larger study area. Thus, the methods adopted and described in this write up were considered to deal with uncertainty. Precautionary principle is adopted on the conservative conclusions (i.e. assume that an effect is more rather than less adverse) were considered by compiling available data/ information with certain assumptions, data gaps and confidence in data quality and analysis to justify conclusions. However, paucity of long term baseline data and impact information generally limits the effectiveness of analysis.

The baseline data on various environmental parameters generated through field surveys as well compiled from secondary sources, the account of biodiversity for Beas basin was developed which is supplemented with expert knowledge of professionals working on different taxa and ecosystems, national and global database, published species records, researched information, etc. Information collected from all of the above sources was assessed for its adequacy and relevance and information gaps wherever observed were overcome by supplementing specific information through primary data collection efforts during the field visits undertaken during the study. Though lot of data was generated during field surveys however it was found insufficient to prepare an overall profile of the basin. Therefore, in order to overcome this limitation of field surveys as discussed above, for the preparation of baseline status of a large area like Beas basin extending over an area of 12591 sq km and considering the importance of biodiversity profile of the basin a comprehensive exercise was undertaken to collect, collate and complile available published data/ information sub-basin wise. This was essential as the coverage of Beas basin is quite large and diverse where altitudes vary from as low as 325m to more than 6600m with diverse ecosystems. As discussed already the biodiversity profile of the basin was assessed for each of the eleven sub-basins delineated for this purpose.

In order to understand broad eco-climatic conditions across the Beas basin, it was divided into four broad eco-zones and are shown in **Figure 9.1**. These are:

- i) Shivalik/ Lower Montane Zone (Zone-I) with elavations up to 800m characterised by Tropical to Sub-tropical forest,
- ii) Mid Hills/ Middle Montane Zone (Zone-II) with elevation ranging from 800 to 1600m characterised by Sub-tropical to Warm Temperate forests,
- iii) High Hill/ Temperate Zone (Zone-III) with elevations ranging between 1600 and 2900m and characterised by Cold/ Moist Temperate forests, and

iv) Cold Dry Zone (Zone-IV) with elevations above 2900m comprised of Sub-Alpine to Alpine areas where Sub-alpine areas extend from 2900m to 3500m while Alpine areas extend beyond 3500m.

In the lowermost zone i.e. Eco-zone I, there are 4 projects out of which one i.e. Pong Dam is already operational while 3 projects viz. Dhaulasidh, Triveni Mahadev and Thana Plaun HEPs are under investigation and in proposal stage.

In Eco-Zone II i.e. Middle Montane zone 15 projects are located under different stages of development. Six projects (Pandoh Dam/ Beas Sutlej Link, Larji, Baner-II, Sainj, Parbati and Parbati-III HEPs) are already operational while 2 (Uhl-III and Lower Uhl) are under construction. Rest of the 8 projects are under proposal stage.

In Eco-Zone III, 18 projects are located out of which 11 projects are already commissioned while 4 are under construction. Only 3 projects are in proposal stage.

In Eco-Zone IV, 8 projects are located out of which 5 are operational and rest of the 3 are in proposal stage.

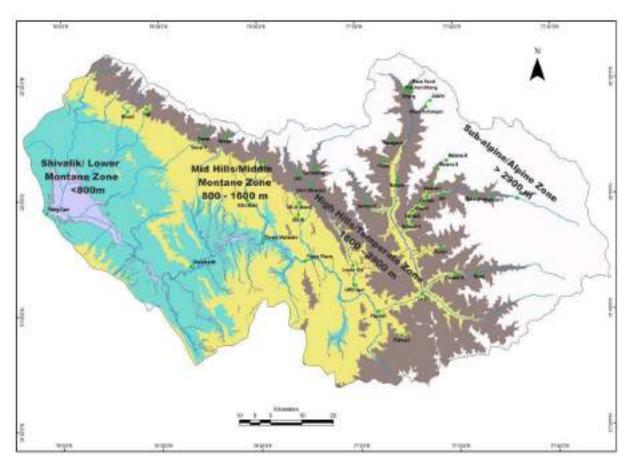
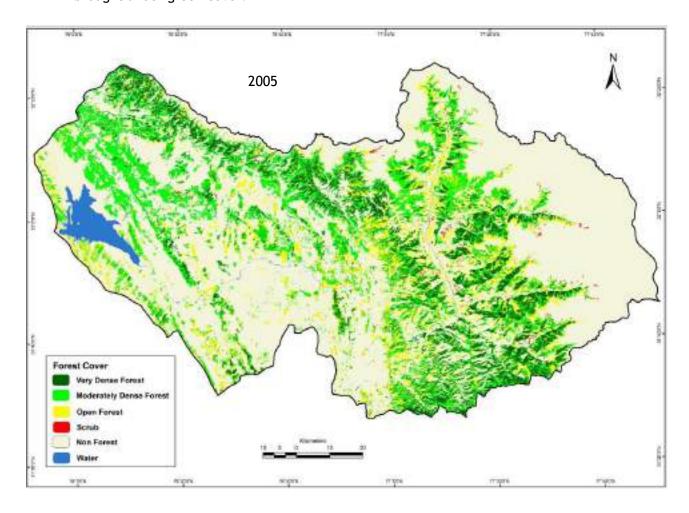


Figure 9.1: Broad Eco-zones identified in Beas basin

Now one by one different attributes of biodiversity of Beas basin is being discussed in the following sections.

9.2 FOREST COVER


An assessment of forest cover change was made in last decade. For this data was procured from Forest Survey of India for the years 2005 and 2015. Maps for the overall forest cover

change in the entire Beas basin were generated and the same have been given at **Figure 9.2**. The change in different forest cover classes from 2005 to 2015 has been compiled is given at **Table 9.1**.

Table 9.1: Temporal change in different forest cover classes in Beas basin

Class	2005		2015		Change	
Class	(ha)	(%)	(ha)	(%)	(ha)	(%)
Very Dense Forest	116490.84	9.25	117116.36	9.30	625.52	0.54
Moderately Dense Forest	222291.50	17.65	224020.68	17.79	1729.17	0.78
Open Forest	123421.75	9.80	125988.60	10.01	2566.85	2.08
Total Forest	462204.09	36.71	467125.63	37.10	4921.54	1.06
Scrub	2581.80	0.21	2142.98	0.17	-438.83	-17.00
Non Forest	794374.06	63.09	789891.35	62.73	-4482.71	-0.56
Total Geographic Area (ha)	1259159.96					

It can be seen from the map as well as tabulated data that total forest cover in the study area has marginally increased by about 49.22 sq km i.e. nearly 1% over a period of 10 years. The increase in forest cover is mainly in the open forest category where it increased by about 2.08% due to plantations and environmental awareness wherein non-forest areas have been brought under green cover.

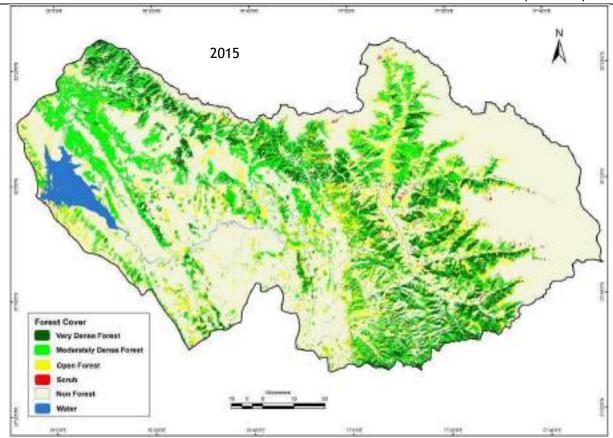


Figure 9.2: Map showing forest cover in the years 2005 and 2015 based upon FSI data

9.3 BIOLOGICAL RICHNESS

In order to understand the biodiversity profile of entire Beas basin Biological Richness map at the landscape level was generated using the maps procured as well as downloaded from Biological Information System portal (http://bis.iirs.gov.in) managed by Indian Institute of Remote Sensing (IIRS), Dehradun. It has been computed as a function of ecosystem uniqueness, species diversity, biodiversity value, terrain complexity, and Disturbance Index (NRSC, 2008). According to this index such areas depict the potential for harboring the maximum number of ecologically unique and important species which are then used in assigning conservation priorities to threatened, rare, endemic and taxonomically distinct species and to different types of habitats or landscape elements on the basis of the richness and significance of threatened species. As a part of this study, the biologically rich areas were spatially identified for the purpose of conservation and saving the existing gene pool from extinction. Similarly, disturbance index, which is a part of the ecosystem process and a function of the biological richness, was also generated.

Biological Richness map of the entire basin thus prepared is given at **Figure 9.3** and percent area under different categories is given in **Table 9.2**. More than 48% of the basin area is under Very High and High Richness Index category. These areas are mainly located in upper Beas catchment, Parbati, Sainj and Tirthan river catchments and higher elevations in catchments of Baner Khad, Neugal Khad, Binwa Khad, Uhl river which drain the southern slopes of Dhauladhar range.

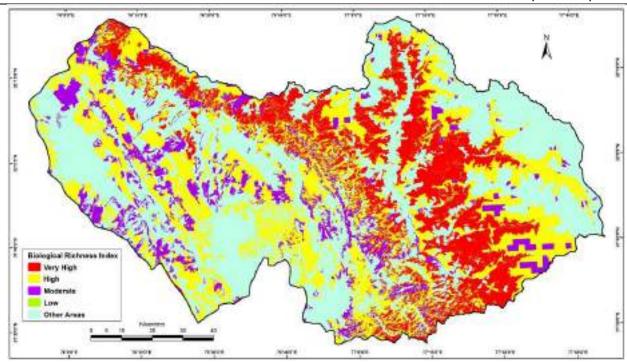


Figure 9.3: Biological Richness Index map of Beas basin

Table 9.2: Area under different Biological Richness Index categories in Beas basin

Biological Richness Index	Area (sq km)	(%)
Very High	2297.34	18.25
High	3750.09	29.78
Moderate	1228.42	9.76
Low	41.61	0.33
Other Areas (Water, Barren land, Snow, Glaciers, etc.)	5273.34	41.88
	12590.79	

In addition to Biological Richness Index Fragmentation Index map as well as Disturbance Index maps of the basin were also prepared to delineate areas with where landscape fragmentation has occurred over the years due to various developmental activities and urbanisation. Biotic disturbance attributes like proximity to roads and human settlements along with landscape parameters are combined to generate Disturbance Index. Fragmentaion Index and Disturbance Index maps prepared from the data downloaded from the portal http://bis.iirs.gov.in/ are given at Figures 9.4 & 9.5.

Looking at the Fragmentation Index map and **Table 9.2** it can be concluded that only about 2.39% of basin area is under category where landscape fragmentation is High while about 17.38% area is under Moderate category.

Disturbance Index map (Figure 9.5) and data given in th Table 9.2 shows that disburbance index of Very High and High accounts for 14.34% of basin area while more than 18% of basin is under Moderate disturbance category.

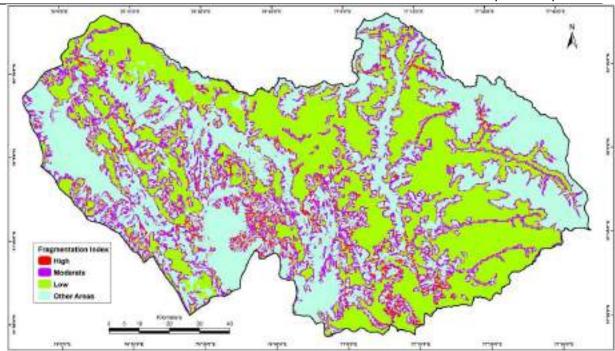


Figure 9.4: Fragmentation Index map of Beas basin

Table 9.3: Area under different categories of Fragmentation Index and Disturbance Index in Beas basin

Fragmentation Index	Area (sq km)	(%)	Disturbance Index	Area (sq km)	(%)
Very High	-	-	Very High	110.45	0.88
High	300.73	2.39	High	1705.37	13.54
Moderate	2188.88	17.38	Moderate	2314.58	18.38
Low	4832.84	38.38	Low	3188.05	25.32
Other Areas (Water, Barren land, Snow, Glaciers, etc.)	5268.33	41.84	Other Areas (Water, Barren land, Snow, Glaciers, etc.)	5272.34	41.87

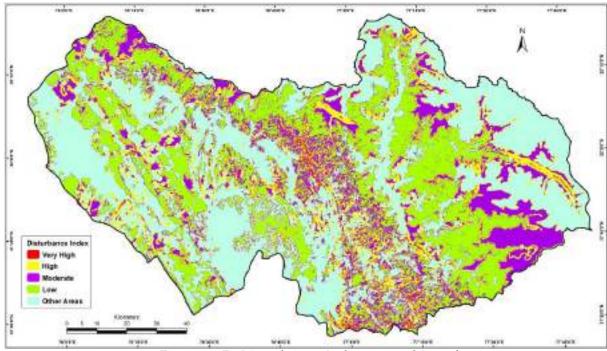


Figure 9.5: Disturbance Index map of Beas basin

Based upon the discussion above regarding Forest cover change, type of forest encountered Fragmentation Index and Disturbance Index categories in different sub-basins, along with ecological attrubutes of floral and faunal elements both terrstrial as well as aquatic, a sub-basin wise ecological assessment of all the above parameters has been made and is being discussed in the following paragraphs. Although most of the hydropower projects in the basin are either operational or are under construction whereas some more have been planned and are under investigation, current baseline scenario all the above shall help in evaluating the impact of already operational, under construction and planned projects which can then help in suggesting mitigations measures to be adopted.

9.4 SUB-BASIN-WISE IMPACT ASSESSMENT

Even though Eco-zones in the entire study area described above were defined broadly on the basis of altitudinal as well as major forest types occuring in the elevation band, however to in order to understand the biological profile of the study area with diverse terrain and elevation coupled with geographical attributes it was decided to make an impact assessment of operational, under construction and proposed hydropower projects vis-a-vis terrestrial and aquatic ecological values highlighting the overall biological profile of the particular sub-basin. The details of above mentioned attributes have already been described in Chapter 3 - Basin Charactersitics. This chapter essentially deals with assessment of impacts generated due to already operational projects, under construction projects and also also the projects in proposal stage along with total hydropower potential of each sub-basin and extent up to which it has already been harnessed or is being harnessed through under construction projects. In addition, the proposed projects have been assessed based upon the available resource and the impacts these may generate if implemented.

9.4.1 Beas I Sub-basin

Beas I Sub-basin is the northern-most sub-basin and constitutes the source of Beas river. It is comprised of the catchment area of Beas river up to its confluence with Duhangan Nala near Jagatsukh village with elevation ranging from 1671 m to about 6002 m. Four projects are located in this sub-basin viz. Seri Rawla, Beas Kund, Palchan Bhang, Bhang, Jobrie, Manalsu and Allain Duhangan of which only Beas Kund and Allain Duhangan are operational projects.

9.4.1.1 Forest Cover and Forest Types

Nearly one-fourth of the sub-basin is under forest cover (see Table 9.4). Though there has been an increase in forest cover in the sub-basin by about 2% from 2005 to 2015 but there has been substantial decrease in Very Dense forest category (20.45%) while area under other categories like Moderately Dense and Open forest has increased by 8.42%s and 2.05%, resectively. The area under scrub has more than doubled from about 58 ha to 129 ha.

Table 9.4: Temporal Forest cover change from 2005 to 2015 in Beas I sub-basin

Class	2005		2015		Change	
Class	(ha)	(%)	(ha)	(%)	(ha)	(%)
Very Dense Forest	2221.45	3.59	1767.16	2.86	-454.29	-20.45
Moderately Dense Forest	7531.17	12.18	8165.29	13.20	634.12	+8.42
Open Forest	5064.37	8.19	5168.2	8.36	103.83	+2.05

Class	2005		2015		Change		
Class	(ha)	(%)	(ha)	(%)	(ha)	(%)	
Total Forest	14816.99	23.95	15100.85	24.41	283.86	+1.92	
Scrub	57.86	0.09	132.21	0.21	74.35	+128.50	
Non Forest	46979.7	75.95	46613.13	75.36	-366.57	-0.78	
Total Geographic Area (ha)	61854.55						

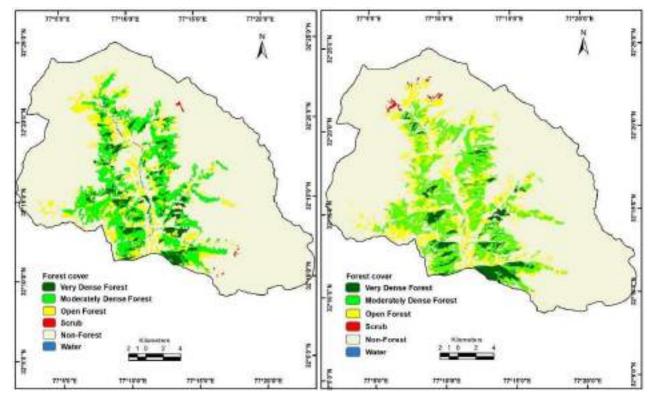


Figure 9.6: Forest cover map for the year 2005 and 2015 of Beas I Sub-basin

(Source: Indian State of Forest Report, 2005 and 2015, Forest Survey of India)

Forest type/ Vegetation map of the sub-basin (see Figure 9.7) shows that area at higher elevations are under snow and glaciers (more than 45%). The predominant vegetation type in the sub-basin is Moist alpine scrub and Semi-evergreen forest. The vegetation along the both the sides of Beas river valley are characterized by scrub forest. Higher up the slopes are covered by Semi-evergreen forest giving way to Moist alpine scrub further up on the higher elevations. These forests harbor rich biodiversity as indicated by large areas under Very High to High Biological Richness Index in these area (refer Figure 9.8 & Table 9.5). However, majority of the area is barren rocks or are under snow and glaciers.

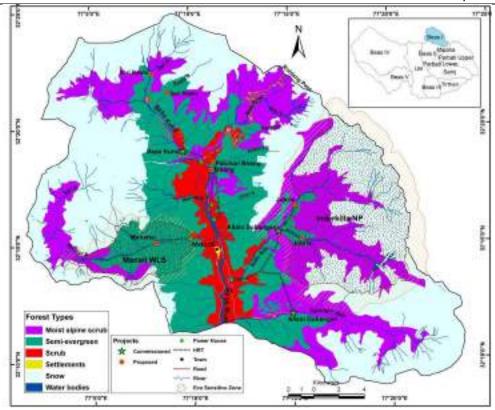


Figure 9.7: Forest type map of Beas-I sub-basin

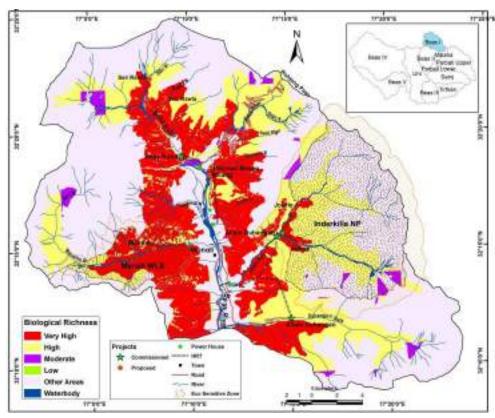


Figure 9.8: Biological Richness Index map of Beas-I sub-basin

Manali is the main urban settlement in the area. NH-21 passes through the sub-basin along the Beas river from Manali up to Rohtang Pass. Being on the main tourist route, settlements have come up mainly along the highway. Forests are in the form of Scrub in this tract all along the highway. Even then there is not much fragmentation of landscape in the sub-basin.

Fragmentation in general is low to moderate as shown in the **Table 9.6**. Disturbance due to anthropogenic activities also is restricted to lower valley areas and is reflected in Moderate to High Disturbance Index.

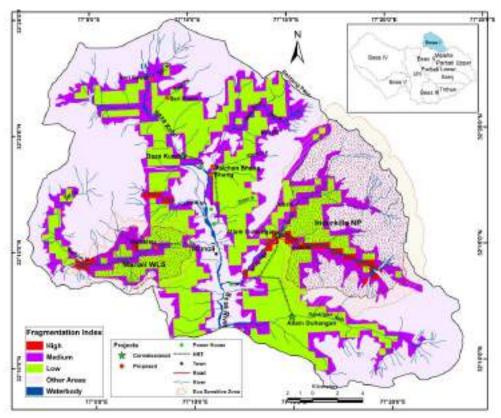


Figure 9.9: Fragmentation Index map of Beas-I sub-basin

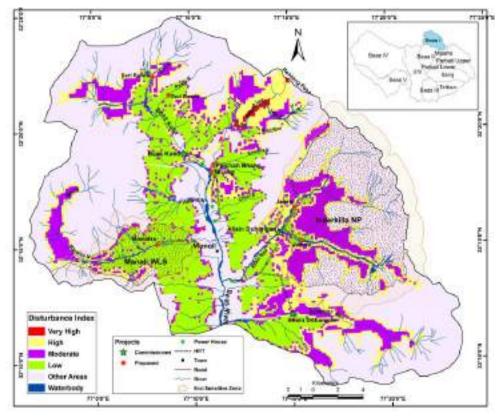


Figure 9.10: Disturbance Index map of Beas-I sub-basin

Table 9.5: Area under different Biological Richness Index categories in Beas I sub-basin

Biological Richness Index	Area (sq km)	(%)
Very High	132.77	21.47
High	148.12	23.95
Moderate	9.94	1.61
Low	1.73	0.28
Other Areas (Water, Barren land, Snow, Glaciers, etc.)	325.89	52.69
	618.45	

Table 9.6: Area under different categories of Fragmentation Index and Disturbance Index in Beas I sub-basin

Fragmentation Index	Area (sq km)	(%)	Disturbance Index	Area (sq km)	(%)
High	7.47	1.21	Very High	1.73	0.28
Moderate	115.57	18.69	High	91.43	14.78
Low	169.91	27.47	Moderate	84.87	13.72
Other Areas (Water, Barren land, Snow, Glaciers, etc.)	325.50	52.63	Low	114.78	18.56
			Other Areas (Water, Barren land, Snow, Glaciers, etc.)	325.64	52.65

9.4.1.2 Biodiversity Profile

During the present studies 96 species of flowering plants were recorded during field surveys conducted in the projects areas though according to cumulative list compiled from primary surveys and secondary sources 129 angiosperm species are reportedly found in the basin. According to Red Data Book of BSI, 4 RET species were encountered during sampling. i.e. Allium stracheyi in Vulnerable category was found in project area of Beas Kund HEP as well as Jobrie HEP and it has also been listed in Vulnerable category by FRLHT RET medicinal plants list. Eremurus himalaicus in Rare category and endemic to Western Himalaya was found in Jobrie HEP area where another RET species Dioscorea deltoidea in Vulnerable category was also found. Acer caesium in Vulnerable category were found in project areas of Bhang HEP. Aconitum heterophyllum an important medicinal plant listed as Endangered in IUCN Redlist also endemic to Western Himalaya was recorded from project areas of Bhang and Jobrie HEPs. Sinopodophyllum hexandrum listed as Endangered and Roscoea alpina as Vulnerable by FRLHT RET medicinal plants list were found in the project areas of Beas Kund and Jobrie HEPs. In Allain Duhangan HEP Gentiana kurroo an important medicinal plant listed as Critically Endangered in IUCN Redlist as well as in FRLHT RET medicinal plants list was found. Zanthoxylum armatum another important medicinal plant listed as Endangered in FRLHT RET list was found in project areas of Allain Duhangan, Palchan Bhang and Bhang project areas. Berberis aristata and Berberis jaeschkeana which are endemic to Western Himalaya were recorded from Allain Duhangan and Beas Kund HE project areas. Allain Duhangan and Beas Kund projects are already operational projects while Jobrie, Palchan Bhang and Bhang are is in proposal stage.

Thirty species of mammals are reported from this sub-basin out of which 9 are listed as RET in IUCN Redlist and 6 are Schedule-I species. Important species are Brown Bear (*Ursus arctos*), Otter (*Lutra lutra*), Blue Sheep (*Pseudois nayur*), Siberian Ibex (*Capra sibirica*), Himalayan

Tahr (Hemitragus jemlahicus), Serow (Capricornis sumatraensis), and Musk Deer (Moschus chrysogaster).

Avi-fauna of the sub-basin is comprised of 117 species which are reportedly found in this area with 7 Schedule-I species and 4 RET species in IUCN Redlist. White-backed Vulture is a Critically Endangered species while Cheer Pheasant and Western tragopan are in Vulnerable category and these two along with Monal pheasant are Schedule-I species as per WPA (1972). Water quality in general in this sub-basin is in Good category at most of the project areas. Biological water quality in the form of BMWP was in Good to Very Good category. Only at few sites near upstream of Manali town in Beas river after the after of Beas Kund Nala with Beas river near Bhang village where Total coliform population was quite high.

Fish fauna of the sub-basin is comprised of 11 species comprised mainly of Snow trout (Schizothorax richardsonii), Glyptothorax spp., Garra gotyla, Schistura rupecola and introduced trout species like Brown trout (Salmo trutta) and Rainbow trout (Oncorhynchus mykiss). The Beas river and its tributary streams in this sub-basin are characterised by steep gradient and step pools and most of the tributary streams are narrow with dense vegetation cover characteristic of Type A1 streams where recovery potential from any disturbance is high (Rosgen, 1994) as according to Rosgen classification of streams wherever the river bed slope is higher than 2%, the restoration of river is faster i.e. it is able to restore over a shorter distance while in case of gentle bed slope it takes more time and distance to recover its natural state.

As already mentioned there are two operational projects with total capacity of 201 MW and 3 projects with total capacity of 30 MW have been proposed. In additional 2 more projects (Seri Rawla and Manalsu HEPs) with total capacity of 34.9 MW have recently been adverstised but are yet to be allotted.

There are two Protected Areas in the sub-basin i.e. Manali Wildlife Sanctuary and Inderlilla National Park (final notification yet not been issued). Jobrie HE project is located within Inderkilla NP of which notification of intent to establish only was issued in July, 2010. Recently advertised project Manalsu (21.9 MW) is located within Manali Wildlife Sanctuary.

No fisheries activities are seen in this sub-basin.

Impact Assessment

This sub-basin is characterized by high altitudes going up to 6600m. As already discussed above 6 projects are located in this sub-basin with a total installed capacity of 265.9 MW Beas Kund, Palchan Bhang, Bhang, Jobrie and Allain Duhangan in cluding 2 recently advertised projects (seri Rawla and Manlasu HEPs). Of these 6 projects Beas Kund and Allain Duhangan are 2 operational projects with installed capacity of 9 MW and 192 MW, respectively. Therefore, out of total 265.9 MW of potential 201MW has already been harnessed. Three proposed projects viz. Palchan Bhang (9 MW), Bhang (9 MW) and Jobrie (12 MW) have been proposed with a total potential of 30MW excluding 2 recently advertised projects. As seen from the forest cover change map not much change in forest cover has happened in last 10 years even as 2 projects Beas Kund (operational since 2012) while Allain Duhangan HE project is operational since 2010.

Beas Kund project on Beas Kund Nala is comprised of trench weir only with a dewatered stretch of about 1.991 km of the Beas Kund Nala. Majority of immediate impact area i.e. area within 500m radius of the project which is about 3.12 sq km is characterized by non-forest landuse with only small part of HRT passing below open forests. However, in these forests Allium stracheyi a plant species in Vulnerable category of BSI Red Data Book was found Beas Kund HEP area during field surveys. Sinopodophyllum hexandrum listed as Endangered and Roscoea alpina as Vulnerable by FRLHT RET medicinal plants list were also found in the Beas Kund direct impact area. It is therefore advised to conservation plan for these species.

Allain Duhangan project harnesses the potential of Allain and Duhangan Nalas with power house located near confluence of Allain Nala with Beas river. Most of the project components like diversion structure and power house are located in open forest or non-forest land use while the 2 HRTs traverse below open as well as moderately dense forest cover. In Allain Duhangan HEP direct impact area of about 11.36 sq km, *Gentiana kurroo* an important medicinal plant listed as Critically Endangered in IUCN Redlist as well as in FRLHT RET medicinal plants list was recorded. It is understood that as the project is operational since 2010, the conservation plan for these species are already been implemented.

Palchan Bhang HE project in envisaged on Beas river (also known as Kothi Nala) immediately upstream of confluence of Beas Kund nala with Beas river near Palchan village. According to the data provided by Department of Energy, GoHP the levels of this project are conflicting with those of downstream proposed Bhang HE project. The trench weir of Palchan Bhang project is located at 2246m (river bed level at intake) while tail water level is 2035m where powerhouse is proposed on left bank of Beas river. The river bed level of trench weir of Bhang HEP is 2240m immediately downstream of Beas Kund Nala with Beas river. The tail water in its case is at 2104m with powerhouse proposed near Bhang village. Therefore, tail water evel of the two projects conflict with each other. It is understood Palchan Bhang project is being shelved for this reason. Both the projects envisage installed capacity of 9 MW each. In this scenario only Bhang project seems feasible. As the disrturbance along NH-21 leading to Rohtang Pass is already quite high it is all more advisable to forego such projects which may cause further damage to the fragile forest cover in the direct impact area. The project components of Bhang HE project are located along the NH-21 which consist of open water conductor system all along Beas river, desilting chamber located mid-way up to proposed powerhouse location near Bhang village. Penstock too is more than 2 km long. As the project is located highly disturbed area it may not be feasible to go ahead with this project which can generate only 9MW of power. It can help in preservation of free flowing stretch of about 3.85 km of Beas river.

Two projects Jobrie and Manalsu (a recently adverstised project and yet to be allotted) are located within Protected Areas i.e. part of Jobrie project lies within Inderkilla National Park while Manalsu project is entirely located within Manali Wildlife Sanctuary.

In addition, another recently advertised Seri Rawla project is in high altitude area characterized by Moist aline scrub and is very rich in biodiversity.

In view of the above Palchan Bhang, Bhang, Jobrie, Manalsu and Seri Rawla projects may not be taken up for implementation to preserve the temperate and moist alpine scrub forest of this sub-basin. As already 201 MW of power has already been harnessed by two projects out of total potential of 231 MW (excluding two recently adverstised projects), it would be prudent to forego the above-mentioned projects to preserve the biodiversity of the sub-basin and causing further degradation of this area which is subjected to heavy tourist traffic.

9.4.2 Beas II Sub-basin

Beas Sub-basin-II is comprised of catchment area of Beas river between the confluence point of Duhangan nala with river Beas near Jagatsukh village and confluence Point of Parbati River with river Beas near Bhuntar in Kullu district. The elevation varies from 1160 m to about 4900m.

9.4.2.1 Forest Cover and Forest Types

Table 9.7 and **Figure 9.11** show that area of Very dense forest increased marginally by 0.29% in 2015 from 2005 and moderately dense forest, open forest and scrub has reduced by 0.21%, 0.32% and 0.01%, respectively.

Table 9.7: Temporal Forest cover change from 2005 to 2015 in Beas II sub-basin

Class

Class

Change

Class	200!	2005 2015		Chan	ige	
Class	(ha)	(%)	(ha)	(%)	(ha)	(%)
Very Dense Forest	9933.97	12.44	10164.93	12.73	230.96	+2.32
Moderately Dense Forest	21652.61	27.12	21493.43	26.92	-159.18	-0.74
Open Forest	13846.11	17.34	13595.81	17.03	-250.30	-1.81
Total Forest	45432.69	56.90	45254.17	56.68	-178.52	-0.39
Scrub	210.26	0.26	200.61	0.25	-9.65	-4.59
Non Forest	34201.93	42.84	34390.10	43.07	188.17	+0.55
Total Geographic Area (ha)	79844.88					

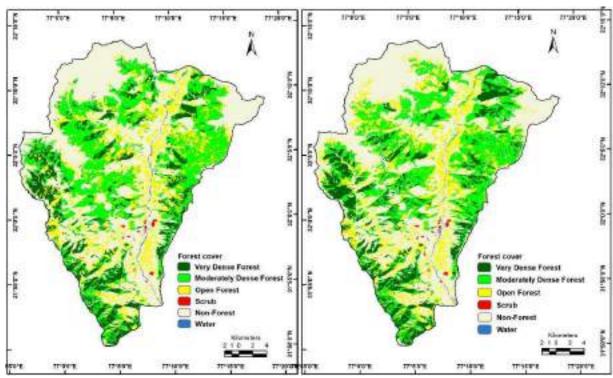


Figure 9.11: Forest cover map for the year 2005 and 2015 of Beas II Sub-basin

(Source: Indian State of Forest Report, 2005 and 2015, Forest Survey of India)

Forest type/ Vegetation map of the sub-basin (see Figure 9.12) shows that majority its area is under Semi-evergreen forests (more than 48%). The vegetation along the both the sides of Beas river valley are characterized by scrub forest which is about 22.81%. Next predominant vegetation type in the sub-basin is Moist alpine scrub.

The Semi-evergreen forests harbor rich biodiversity as indicated by 62.81% of sub-basin areas under Very High to High Biological Richness Index (refer Figure 9.13 & Table 9.8). Rest of the area is under snow and glaciers.

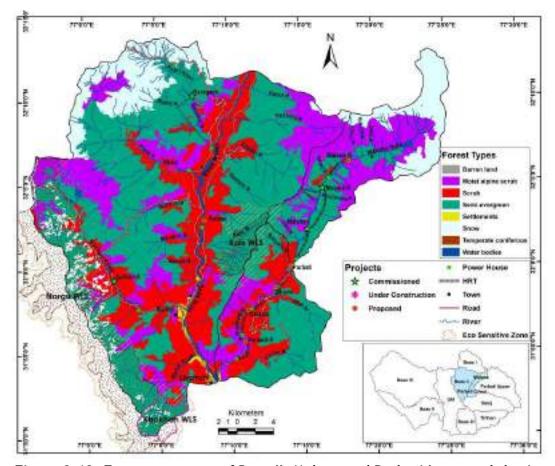


Figure 9.12: Forest type map of Beas-II, Malana and Parbati Lower sub-basins

Most of the forested landscape in the sub-basin is still in good condition as indicated by majority of its area is under low fragmentation index category (see Figure 9.14 and Table 9.9). This sub-basin also home to two wildlife sanctuaries i.e. Kais WLS on its eastern slopes and part of Nargu WLS comprised of mainly the catchment of Sarbari Khad.

In this sub-basin also NH-21 passes all through it along the Beas river. However the overall biotic disturbance is low to medrate as shown in **Figure 9.15 and Table 9.9**.

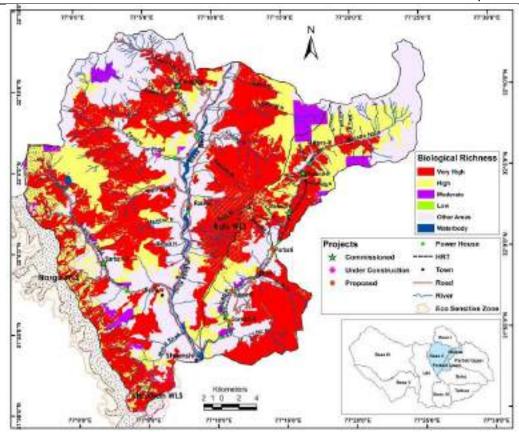


Figure 9.13: Biological Richness Index map of Beas-II, Malana and Parbati Lower sub-basins

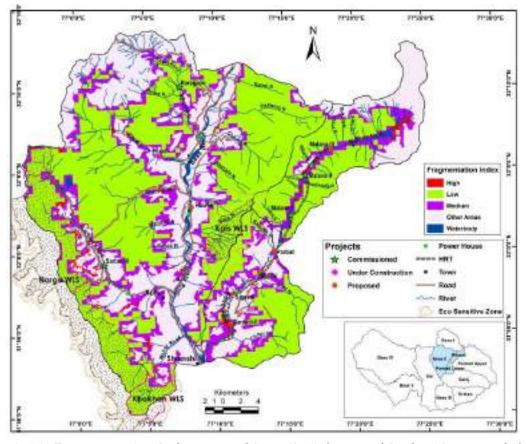


Figure 9.14: Fragmentation Index map of Beas-II, Malana and Parbati Lower sub-basins

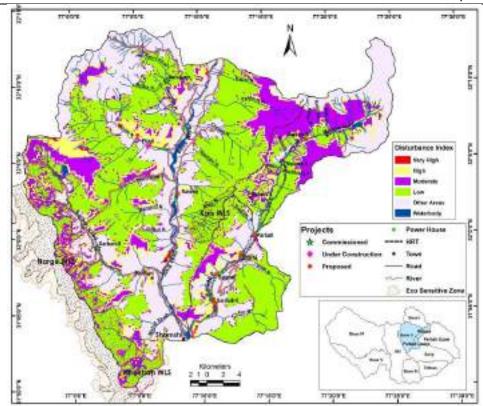


Figure 9.15: Disturbance Index map of Beas-II, Malana and Parbati Lower sub-basins

Table 9.8: Area under different Biological Richness Index categories in Beas II sub-basin

Biological Richness Index	Area (sq km)	(%)
Very High	348.42	43.64
High	153.05	19.17
Moderate	24.43	3.06
Low	1.81	0.23
Other Areas (Water, Barren		
land, Snow, Glaciers, etc.)	270.74	33.91
	798.45	

Table 9.9: Area under different categories of Fragmentation Index and Disturbance Index in Beas II sub-basin

Deas ii sub-basiii						
Fragmentation Index	Area (sq km)	(%)	Disturbance Index	Area (sq km)	(%)	
High	5.40	0.68	Very High	2.95	0.37	
Moderate	119.19	14.93	High	85.39	10.69	
Low	403.54	50.54	Moderate	116.97	14.65	
Other Areas (Water, Barren land, Snow, Glaciers, etc.)	270.33	33.86	Low	322.55	40.40	
			Other Areas (Water, Barren land, Snow, Glaciers, etc.)	270.59	33.89	

9.4.2.2 Biodiversity Profile

During the present studies 83 species of flowering plants were recorded during field surveys conducted in the projects areas though according to cumulative list compiled from primary surveys and secondary sources 111 angiosperm species are reportedly found in the basin. No

Final Report: Chapter 9

species according to Red Data Book of BSI was found during sampling. *Berberis aristata* listed as Endangered by FRLHT RET medicinal plants list was found in the project area of Sarbari-II HEP. *Berberis aristata*, *Berberis lycium*, *Celtis australis*, *Desmodium elegans*, *Rosa macrophylla* and *Spiraea canescens* which are endemic to Western Himalaya were recorded from Sarbari-II HE project area.

Thirty-three species of mammals are reported from this sub-basin out of which 7 are listed as RET in IUCN Redlist and 6 are Schedule-I species. Important species are Brown Bear (*Ursus arctos*), Otter (*Lutra lutra*), Blue Sheep (*Pseudois nayur*), Siberian Ibex (*Capra sibirica*), Himalayan Tahr (*Hemitragus jemlahicus*), Serow (*Capricornis sumatraensis*), and Musk Deer (*Moschus chrysogaster*).

Avi-fauna of the sub-basin is comprised of 123 species which are reportedly found in this sub-basin with 7 Schedule-I species as per WPA and 4 RET species in IUCN Redlist. White-backed Vulture is a Critically Endangered species while Cheer Pheasant and Western tragopan are in Vulnerable category and these two along with Monal pheasant are Schedule-I species as per WPA (1972).

The physico-chemical water quality in general in this sub-basin is in Good to Excellent category. Biological water quality in the form of BMWP was in Good category at all the project sites.

Fish fauna of the sub-basin is comprised of 22 species comprised mainly of Snow trout (Schizothorax richardsonii, S. plagiostomus), Glyptothorax brevipinnis, G. gracilis, G. indicus and G. telchitta, Amblyceps mangois, Botia dario and Garra gotyla and introduced trout species like Brown trout (Salmo trutta) and Rainbow trout (Oncorhynchus mykiss). The sub-basin is drained by tributaries of Beas river which are characterised by steep gradient and step pools and most of the tributary streams are narrow with dense vegetation cover characteristic of Type A1 streams where recovery potential from any disturbance is high (Rosgen, 1994).

There are two operational projects i.e. Baragaon and Sarbari-II HEPs with total capacity of 29.4 MW and 2 projects (Fozal and Raison HEPs) with total capacity of 27 MW have been proposed.

Sanjoin Nala and Fozal (Phozal) Nala are considered as important trout streams harboring good trout populations. Haripur Nala also known as Pakhanoj Nala is another tributary which harbours good trout population. Katrain in an important landing site for trouts.

Sanjoin Nala as well as Haripur Nala have been marked as streams for fish conservation and are in negative list for hydropower development by HP Fisheries Department.

Impact Assessment

Total hydropower potential of this sub-basin has been estimated as 56.9 MW of which 24 MW Baragaon HE project is already operational since 2016 while Sarbari-II project (5.4 MW) is operational since 2010. Fozal (9 MW) project is under construction while Raison (18 MW) is proposed project on Beas river.

The project area of Sarbari-II HEP is rich in floristic diversity as *Berberis aristata* listed as Endangered by FRLHT RET medicinal plants list was recorded from its project area. In addition, endemic species like *Berberis aristata*, *Berberis lycium*, *Celtis australis*, *Desmodium elegans*, *Rosa macrophylla* and *Spiraea canescens* were recorded from Sarbari-II HE project area. However, Sarbari-II HE project is already operational since 2010. This sub-basin is also rich in avi-fauna and mammalian wildlife and the entire left bank catchment of Sarbari Khad constitutes part of Nargu Wildlife Sanctuary. Baragaon HE project is located in the northern part of the sub-basin on Sanjoin and Bijara streams and became operational last year i.e. 2016. Fozal HEP is under construction and is the only project on Fozal Nala.

Fisheries activities are most prominent feature in this sub-basin. Sanjoin Nala and Haripur Nala (Pakhanoj Nala) have been put in negative list by HP Fisheries Department for fish conservation. Fozal, Sanjoin and Naggar areas are some of the most important trout fishing sites in the sub-basin. Therefore, no further hydropower project should be allowed in this sub-basin. Raison project which is proposed on the main Beas river should not be allowed to come up as main Bear river channel should be kept free flowing and no project be allowed on it.

Already more than 68% of hydropower potential has been harnessed therefore shelving of Raison project won't much affect the hydro potential in this sub-basin.

9.4.3 Malana Sub-basin

Malana sub-basin comprises of the catchment area of Malana nala, a right bank tributary of river Parbati. Malana nala is the largest tributary of Parbati river which originates from an unnamed glacier and travels a distance of about 25 km before joining river Parbati. The elevation varies from 1400 m to about 5700 m. Malana river is the right bank tributary of Parbati river, meets near village Jari.

9.4.3.1 Forest Cover

It can be seen from **Table 9.10** and **Figure 9.16** that Very Dense dense forest in the sub-basin has increased significantly by 55.59% in 2015 from 2005 which is resultant change from Moderately dense forest which reduced by 11.82%. However overall the forest cover has not changed very much in last one decade.

Class	2005		201	2015		nange
Class	(ha)	(%)	(ha)	(%)	(ha)	(%)
Very Dense Forest	502.66	3.18	782.10	4.95	279.44	55.59
Moderately Dense Forest	2977.69	18.84	2625.78	16.61	-351.90	-11.82
Open Forest	1669.40	10.56	1671.39	10.57	1.99	0.12
Total Forest	5149.74	32.57	5079.27	32.13	-70.47	-1.37
Scrub	9.93	0.06	0.00	0.00	-9.93	-100.00
Non-Forest	10649.24	67.36	10729.65	67.87	80.40	0.76
Total Geographic Area (ha)			1580	8.92	•	•

Table 9.10: Forest cover changes from 2005 to 2015

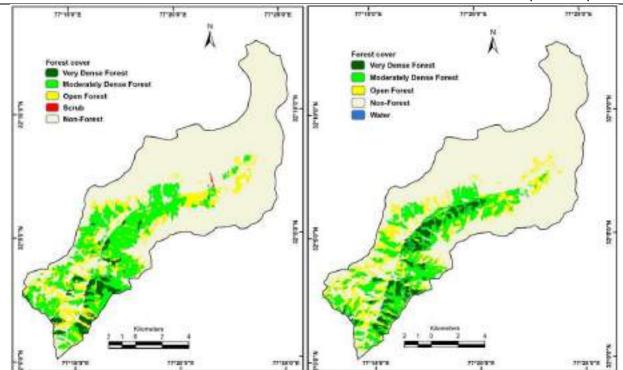


Figure 9.16: Forest cover map for the year 2005 and 2015 of Malana Sub-basin (Source: Indian State of Forest Report, 2005 and 2015, Forest Survey of India)

As seen from the forest type map of the sub-basin (**refer Figure 9.12**) more than 27% of the sub-basin is covered under snow and glaciers. However, the lower levation are covered with Semi-evergreen forest (29.24%) while higher reaches are under Mosit alpine scrub (38.84%).

As large part of the sub-basin is under good forest cover, more than 63% of sub-basin area is under Very High or High Biological richness category (see Table 9.11 and Figure 9.13). Fragmentation of the landscape in this sub-basin also is low and most of its landscape is intact. Disturbance due to human interference however is little more as compared to adjacent sub-basins (refer Figure 9.14 and Table 9.12).

Table 9.11: Area under different Biological Richness Index categories in Malana sub-basin

Biological Richness Index	Area (sq km)	(%)
Very High	39.90	25.24
High	60.13	38.04
Moderate	6.41	4.05
Low	0.34	0.22
Other Areas (Water, Barren land, Snow, Glaciers, etc.)	51.31	32.46
	158.09	100.00

Table 9.12: Area under different categories of Fragmentation Index and Disturbance Index in Malana sub-basin

Fragmentation Index	Area (sq km)	(%)	Disturbance Index	Area (sq km)	(%)	
High	2.81	1.78	Very High	0.02	0.01	
Moderate	24.20	15.31	High	24.22	15.32	
Low	79.93	50.56	Moderate	48.56	30.72	

Fragmentation Index	Area (sq km)	(%)	Disturbance Index	Area (sq km)	(%)
Other Areas (Water, Barren land, Snow, Glaciers, etc.)	51.14	32.35	Low	34.08	21.56
			Other Areas (Water, Barren land, Snow, Glaciers, etc.)	51.21	32.39

9.4.3.2 Biodiversity Profile

During the present studies 68 species of flowering plants were recorded during the field surveys conducted in the projects areas though according to cumulative list compiled from primary surveys and secondary sources 94 angiosperm species are reportedly found in the basin. According to Red Data Book of BSI, one RET species was encountered during sampling. i.e. *Acer caesium* in Vulnerable category was found in project areas of Malana II and Malana III HEPs. *Berberis aristata* and *Juniperus communis* listed in Endangered and Vulnerable categories, respectively by FRLHT RET medicinal plants list were recorded from project area of Malana III & Malana III. Six species endemic to Western Himalaya were found in the subbasin. *Acer caesium*, *Salix denticulata* and *Aesculus indica* were recorded from project areas of Malana III & Malana III.

Mammals in this sub-basin are represented by 31 species and out of which 8 are listed as RET in IUCN Redlist and 7 are Schedule-I species. Important species are Brown Bear (*Ursus arctos*), Otter (*Lutra lutra*), Blue Sheep (*Pseudois nayur*), Siberian ibex (*Capra sibirica*), Himalayan tahr (*Hemitragus jemlahicus*), Serow (*Capricornis sumatraensis*), and Musk deer (*Moschus chrysogaster*).

Avi-fauna of the sub-basin is comprised of 121 species which are reportedly found in this area with 7 Schedule-I species and 4 RET species in IUCN Redlist. White-backed Vulture is a Critically Endangered species while Cheer Pheasant and Western tragopan are in Vulnerable category and these two along with Monal pheasant are Schedule-I species as per WPA (1972).

Water quality in general in this sub-basin is in Good to Excellent category at all locations. Biological water quality in the form of BMWP was in Good category.

Fish fauna of the sub-basin is comprised of 17 species comprised mainly of Snow trout (Schizothorax richardsonii and S. plagiostomus), Amblyceps mangois (Endangered), Botia dario, Crossocheilus latius and Garra gotyla (all Vulnerable).

Malana river is not much known for fisheries activities.

Impact Assessment

There are 3 projects in the sub-basin with total installed capacity of 216 MW. Malana-I (86 MW) is operational since 2001 and Malana-II (100 MW) is operational since 2012. Malana-III (30 MW) is a proposed project. All three are located on Malana nala. Higher reaches of Malana catchment where Malana-II and Malana-III are located are rich in biodiversity with number of endemic and RET species. As Malana-I & Malana-II have already been implemented with total

capacity of 186 MW, there seems to be no need to develop Malana-III HE project located higher up in the catchment which is not only rich in biodiversity but also to keep upper stretch of Malana Nala free flowing.

9.4.4 Parbati Lower Sub-basin

Parbati Lower sub-basin comprises of the catchment area of Parbati river from its confluence with Malana nala till it meets river Beas near Bhuntar. The river flows for only about 18 km in the sub-basin. The river bed level varies from 1100 m to about 3700 m.

9.4.4.1 Forest Cover

Table 9.13 and Figure 9.17 show that the forest cover in this sub-basin has not change d since 2005. There has been a change of forest cover from Moderately dense category to Very Dense forest which increased by about 2.33% and an increase in Open forests category by 4.93%.

Class	2005		2015		Change	
Class	(ha)	(%)	(ha)	(%)	(ha)	(%)
Very Dense Forest	3110.35	22.70	3182.94	23.23	72.59	2.33
Moderately Dense Forest	2398.83	17.50	2225.92	16.24	-172.91	-7.21
Open Forest	2054.76	14.99	2156.02	15.73	101.26	4.93
Total Forest	7563.94	55.19	7564.88	55.20	0.94	0.01
Scrub	274.80	2.01	267.88	1.95	-6.92	-2.52
Non Forest	5866.05	42.80	5872.03	42.85	5.98	0.10
Total Geographic Area						
(ha)		137				

Table 9.13: Forest cover changes from 2005 to 2015

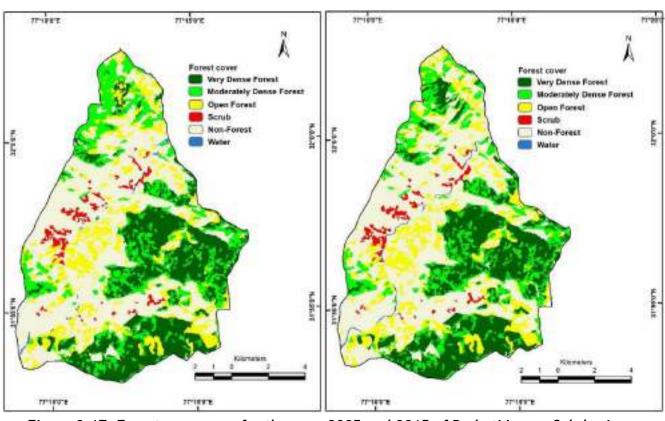


Figure 9.17: Forest cover map for the year 2005 and 2015 of Parbati Lower Sub-basin (Source: Indian State of Forest Report, 2005 and 2015, Forest Survey of India)

More than half of the sub-basin area is under Semi-evergreen forests and nearly one third of its area is under scrub (refer **Figure 9.12**). Moist alpine scrub is found at higher elevations.

Area under Very High and High Biological Richness Index is more than 64%. Fragmentation of landscape is low to moderate while disturbance also in moderate category in general (see Tables 9.14 and 9.15).

Table 9.14: Area under different Biological Richness Index categories in Parbati Lower sub-basin

Biological Richness Index	Area (sq km)	(%)
Very High	69.46	50.68
High	19.04	13.89
Moderate	1.60	1.17
Low	0.45	0.33
Other Areas (Water, Barren land, Snow, Glaciers, etc.)	46.50	33.93
	137.05	100.00

Table 9.15: Area under different categories of Fragmentation Index and Disturbance Index in Parbati Lower sub-basin

Fragmentation Index	Area (sq km)	(%)	Disturbance Index	Area (sq km)	(%)
High	1.34	0.98	Very High	1.20	0.88
Moderate	28.33	20.67	High	13.40	9.78
Low	60.92	44.45	Moderate	11.59	8.46
Other Areas (Water, Barren land, Snow, Glaciers, etc.)	46.47	33.91	Low	64.39	46.98
			Other Areas (Water, Barren land, Snow, Glaciers, etc.)	46.47	33.91

9.4.4.2 Biodiversity Profile

During the present studies 121 species of flowering plants were recorded during field surveys conducted in the projects areas though according to cumulative list compiled from primary surveys and secondary sources 125 angiosperm species are reportedly found in the sub-basin. According to Red Data Book of BSI, one RET species were encountered during sampling. i.e. *Acer caesium* in Vulnerable category was found in project area of Parbati HEP. *Ulmus wallichiana* listed as Vulnerable in IUCN Redlist was recorded from project area of Parbati HEP. Even though as many as 30 species under FRLHT RET medicinal plants list are reportedly found in this sub-basin no species was recorded from any of the project sites. From the sub-basin 3 IUCN Redlisted species and 12 endemic species are reported.

Thirty-two (32) species of mammals are reported from this sub-basin out of which 8 are listed as RET in IUCN Redlist and 8 are Schedule-I species. Important RET species are Leopard (*Panthera pardus*), Brown bear (*Ursus arctos*), Himalayan black Bear (*Ursus thibetanus*), Serow (*Capricornis sumatraensis*) and Musk Deer (*Moschus chrysogaster*).

Avi-fauna of the sub-basin is comprised of 123 species which are reportedly found in this area with 6 Schedule-I species and 4 RET species in IUCN Redlist. White-backed Vulture is a Critically Endangered species while Cheer Pheasant and Western tragopan are in Vulnerable category and these two along with Monal pheasant are Schedule-I species as per WPA (1972).

Physico-chemical water quality in general in most part of this sub-basin is in Medium category while Biological water quality in the form of BMWP was in Good to Very Good category at most of the sites.

Fish fauna of the sub-basin is comprised of 20 species comprised mainly of *Amblyceps mangois*, *Sperata aor*, *Botia dario*, *Crossocheilus latius*, *Garra gotyla*, *Labeo pangusia*, *Puntius chola*, *Schizothorax richardsonii* and *Systomus sarana*. Parbati river in this sub-basin is rich in fishes.

There are 4 projects with total capacity of 36.6 MW have been proposed on Parbati river i.e. Parbati (12 MW), Sharni (9.6 MW), Sarsadi (9.6 MW) and Sarsadi-II (9 MW).

There is no Protected Area in this sub-basin.

Impact Assessment

Four projects viz. Parbati (12 MW), Sharni (9.6 MW), Sarsadi (9.6 MW) and Sarsadi-II (9 MW) with total capacity of 40.20 MW are proposed in this sub-basin. Al these projects are planned on Parbati river in cascade. Total length of Parbati river in this sub-basin is little more than 15 km and the proposed 4 projects would affect more than 13 km of the river and only 2 km of river will be flowing freely. Parbati river would be flowing mostly in tunnels or as open channels and river will have decreased flow at all times even after release of e-flows. Parbati river as described above is rich in fish fauna and trout is known to migrate upstream in Parbati river and Kasol is an important trout fishing site upstream of these projects. The proposed projects would hamper its movement leading to dwindling of populations of trout and other fishes in the sub-basin. Therefore, in order to preserve the important habitat of fish the proposed 4 projects are not desirable as addition of only 40.20 MW of power cannot justify the loss of important fish habitat.

9.4.5 Parbati Upper Sub-basin

Parbati Upper sub-basin comprises of the catchment area of Parbati river from its origin at Pin Parbati Pass up to its confluence with Malana nala. Parbati river is the largest tributary of Beas river. It meets Beas river at its left bank near Shamshi village. The river originates from Pin Parbati Pass at an elevation of around 5400m. The elevation varies from 1400 m to about 6600 m. Parbati river is left bank tributary of Beas river which is joined first with Tosh river near Tosh Village and then confluences with Beas river near Bhuntar. Upstream of the confluence, Khirganga hot water spring is main tourist attraction in the area. This area is well connected with road network, nearest airport is Bhuntar.

9.4.5.1 Forest Cover and Forest Types

Parbati Upper is one of the most important sub-basins in the area. The forest cover has decreased in this sub-basin by about 2.71% in last decade (Table 9.16). Area under Very

Dense and Moderately Dense forest has decreased by 7.03% and 6.17%, respectively. Area of open forest has increased by 6.24%.

3						
Class	2005		2015		Change	
Class	(ha)	(%)	(ha)	(%)	(ha)	(%)
Very Dense Forest	5961.78	4.15	5542.77	3.86	-419.01	-7.03
Moderately Dense Forest	7519.14	5.23	7055.57	4.91	-463.57	-6.17
Open Forest	5772.46	4.02	6132.54	4.27	360.08	6.24
Total Forest	19253.38	13.39	18730.88	13.03	-522.50	-2.71
Scrub	247.07	0.17	218.99	0.15	-28.08	-11.37
Non Forest	124253.82	86.43	124804.40	86.82	550.58	0.44
Total Geographic Area	143754.27					
(ha)						

Table 9.16: Forest cover change from 2005 to 2015

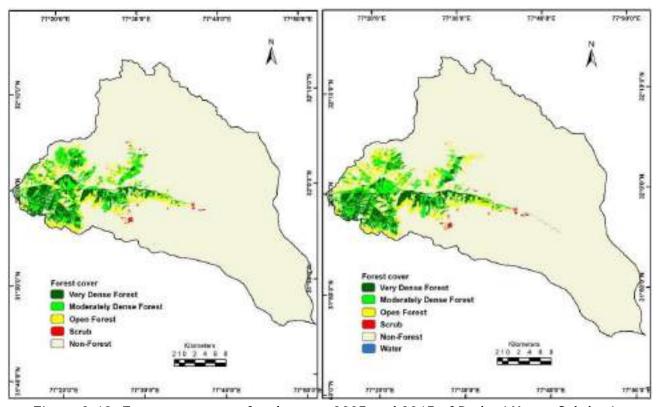


Figure 9.18: Forest cover map for the year 2005 and 2015 of Parbati Upper Sub-basin

(Source: Indian State of Forest Report, 2005 and 2015, Forest Survey of India)

As seen from the forest/vegetation types map of the sub-basin more than 61% of its area is either under snow or glaciers. More than 20% of its area is characterized by Mosit alpine scrub and lower areas are under Semi-evergreen forests (see Figure 9.19).

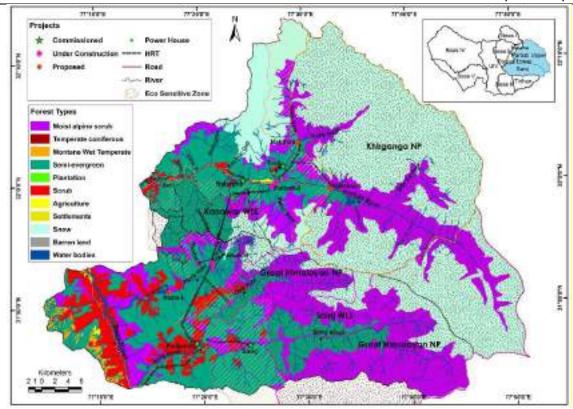


Figure 9.19: Forest type map of Parbati Upper and Sainj sub-basins

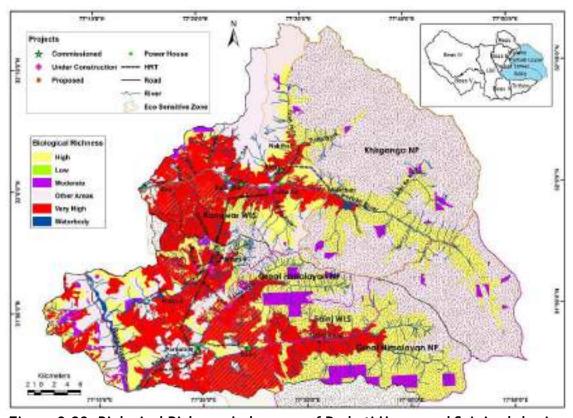


Figure 9.20: Biological Richness Index map of Parbati Upper and Sainj sub-basins

This sub-basin is one of the richest in biodiversity as most of its forested landscape is rich in Very High to High Biological Richness Index (refer Figure 9.20 and Table 9.17). However, some of its areas have been subjected to moderate landscape fragmentation as seen from

Figure 9.21 and Table 9.18. Nearly one third of its snow free landscape is under moderate human disturbance in the form of construction activities.

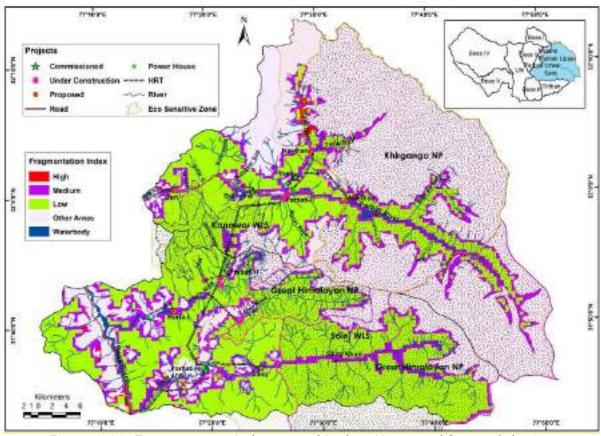


Figure 9.21: Fragmentation Index map of Parbati Upper and Sainj sub-basins

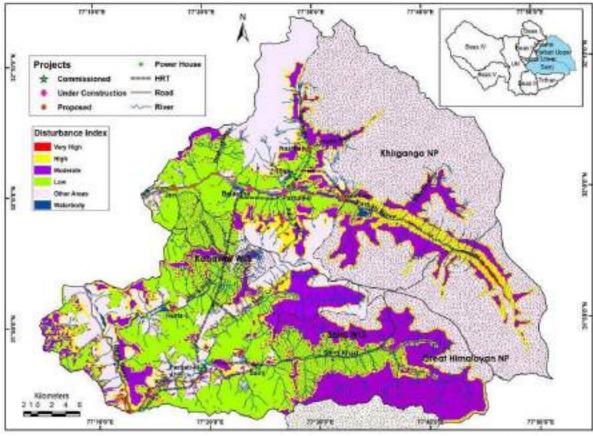


Figure 9.22: Disturbance Index map of Parbati Upper and Sainj sub-basins

Table 9.17: Area under different Biological Richness Index categories in Parbati Upper subbasin

Biological Richness Index	Area (sq km)	(%)
Very High	219.07	15.24
High	285.06	19.83
Moderate	21.92	1.52
Low	2.20	0.15
Other Areas (Water, Barren land, Snow, Glaciers, etc.)	909.29	63.25
	1437.54	100.00

Table 9.18: Area under different categories of Fragmentation Index and Disturbance Index in Parbati Upper sub-basin

Fragmentation Index	Area (sq km)	(%)	Disturbance Index	Area (sq km)	(%)
High	5.03	0.35	Very High	6.21	0.43
Moderate	159.12	11.07	High	162.77	11.32
Low	364.36	25.35	Moderate	156.18	10.86
Other Areas (Water, Barren land, Snow, Glaciers, etc.)	909.03	63.24	Low	203.35	14.15
			Other Areas (Water, Barren land, Snow, Glaciers, etc.)	909.02	63.23

9.4.5.2 Biodiversity Profile

During the present studies 149 species of flowering plants were recorded during field surveys conducted in the projects areas though according to cumulative list compiled from primary surveys and secondary sources 171 angiosperm species are reportedly found in the basin. According to Red Data Book of BSI, 3 RET species were recorded during sampling. i.e. Acer caesium in Vulnerable category was found in project area of Parbati II and Nakthan HEPs. Aconitum violaceum and Indigofera heterantha both in IUCN Vulnerable category were recorded from Nakthan HE Project area. Sinopodophyllum hexandrum, Polygonatum verticillatum, Dioscorea deltoidea and Zanthoxylum armatum listed as Endangered and Roscoea alpina as Vulnerable by FRLHT RET medicinal plants list were found in the project area of Nakthan HEP. There are as many as 16 Western Himalayan endemics found in this subbasin. Taxus wallichiana is of the most important medicinal plant found in this sub-basin.

Thirty-one (31) species of mammals are reported from this sub-basin out of which 9 are listed as RET in IUCN Redlist and 8 are Schedule-I species. Snow leopard (*Panthera uncia*) is found in this sub-basin only in the entire basin. Other important RET species are Leopard (*Panthera pardus*), Brown bear (*Ursus arctos*), Himalayan black Bear (*Ursus thibetanus*), Serow (*Capricornis sumatraensis*), Otter (*Lutra lutra*) and Musk Deer (*Moschus chrysogaster*)

Avi-fauna of the sub-basin is comprised of 120 species which are reportedly found in this area with 7 Schedule-I species and 4 RET species in IUCN Redlist. White-backed Vulture is a

Critically Endangered species while Cheer Pheasant and Western tragopan are in Vulnerable category and these two along with Monal pheasant are Schedule-I species as per WPA (1972).

Water quality in general in this sub-basin is in Medium to Good category. Biological water quality in the form of BMWP was in Very Good category at all locations.

Fish fauna of the sub-basin is comprised of 12 species. Important fish species are *Amblyceps mangois*, *Sperata aor*, *Botia dario*, *Crossocheilus latius*, *Garra gotyla*, *Labeo pangusia*, *Puntius chola*, *Schizothorax richardsonii* and *Systomus sarana*. Kasol in the sub-basin is one of most important fishery location in the sub-basin.

Most part of the sub-basin is under Protected Areas. While the entire upper catchment is under Khirganga national Park lower part is under Kanawar Wildlife Sanctuary. Both these Pas comprise a part of larger Great Himalayan Conservation Reserve.

Impact Assessment

In this sub-basin, there is one operational project i.e. Tosh HEP on Tosh Nala with a capacity of 10 MW. There are 2 under construction projects on Parbati river (Balarhga and Parbati II) with total capacity of 809 MW. Nakthan and Jari are the 2 projects proposed on Parbati river with a total capacity of 472 MW.

As described above this sub-basin is one of the richest in terms of biodiversity and large part of the sub-basin is under Protected Areas. Area immediately upstream of proposed Nakthan HEP comprised Khirganga National Park and Great Himalayan National Park. In addition, slopes on the left bank of Parbati river at lower elevations constitute part of Kanawar Wildlife Sanctuary. The sub-basin some of the important RET plant species and *Taxus wallichiana* is an important medicinal plant found in the sub-basin.

Already the under-construction project like Parbati-II HEP has lead to fragmentation of landscape and degradation of forests. The proposed Nakthan HE project is located within a 100m of the boundary of Khirganga National Park. Its entire catchment constitutes Khirganga National Park and is home to important wildlife and number of RET plant species. The construction of the proposed Nakthan HE project would lead to fragmentation of dense temperate forests which contain valuable plant resources. The fragile ecosystem of the area already under stress due to under-construction Parbati-II HE project would be severely affected due to construction of new roads and other project related construction activities like blasting, mining for construction material, and construction of other infrastructure and influx of workers in the otherwise pristine area. It is therefore recommended no more project should be taken up in this sub-basin as Tosh HEP is already operational and Parbati-II and Balargha projects are under construction. Abandoning of proposed Nakthan HE project would help in preservation of already under stress ecosystem.

Jari is another project proposed on Parbati river. Jari along with other 4 projects in cascade on Parbati river in Parbati Lower sub-basin would affect more than 17 km of Parbati river out of total 30 km stretch of Parbati river from Jari to lowermost Sarsadi-II project on Parbati river.

9.4.6 Sainj Sub-basin

Sainj sub-basin comprises mainly of the catchment area of Sainj river up to its confluence with Beas river near dam site of Larji HEP (**Figure 9.19**). This sub-basin also includes the catchment of Beas river from the confluence of Parbati river up to the confluence of sainj river including the catchment of Hurla nala and Sainj khad. Hurla nala which meets Beas river on its left bank near Hurla village. The elevation varies from 1100 m to about 5700 m.

9.4.6.1 Forest Cover & Forest Types

It can be seen from **Figure 9.23 and Table 9.19** that the forest cover in the sub-basin has decreased by about 1% in 2015 from 2005 wherein Very Dense, Moderately Dense and Open forest has decreased by 0.71%, 1.30% and 1.52%, respectively.

2005 2015 Change Class (%) (ha) (ha) (%) (ha) (%) 15.09 16607.40 Very Dense Forest 16726.18 14.98 -118.78 -0.71 Moderately Dense Forest 14212.93 12.82 14028.73 12.65 -184.20 -1.30 14802.62 -228.35 Open Forest 15030.97 13.56 13.35 -1.52 **Total Forest** 45970.08 41.46 45438.75 40.98 -531.33 -1.16 Scrub 753.02 0.68 754.80 0.68 1.78 0.24 57.86 64677.97 529.55 Non-Forest 64148.42 58.34 0.83 Total Geographic Area (ha) 110871.52

Table 9.19: Forest cover changes from 2005 to 2015

As seen from the forest/vegetation types map the forest cover is mainly in the form of Semievergreen and Moist alpine scrubs. Areas near the roadsides and villages has been converted into scrub (refer **Table 9.19**).

Like other sub-basins it is characterized by Very High and High Biological Richness (refer **Table 9.20**). The fragmentation of the landscape too is on low side. However due to human activities disturbance is moderate as compared to adjacent sub-basins (**Table 9.21**).

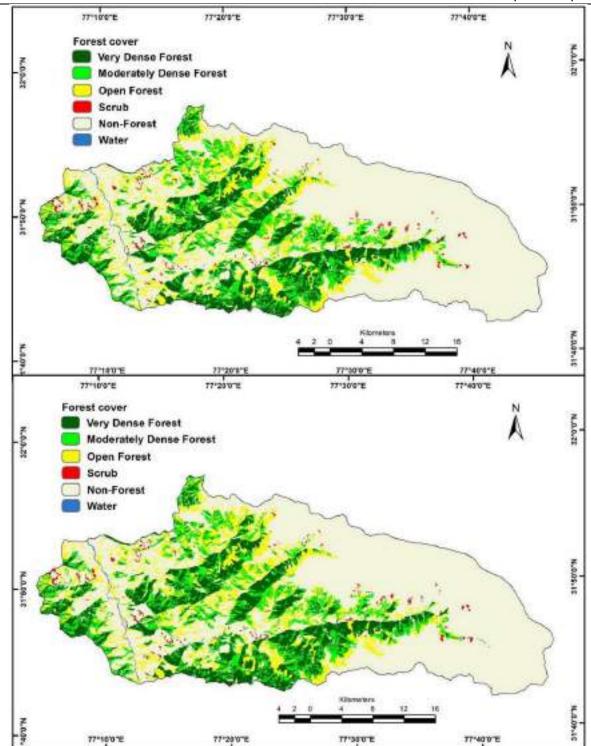


Figure 9.23: Forest cover map for the year 2005 and 2015 of Sainj sub-basin

(Source: Indian State of Forest Report, 2005 and 2015, Forest Survey of India)

Table 9.20: Area under different Biological Richness Index categories in Sainj sub-basin

Biological Richness Index	Area (sq km)	(%)
Very High	400.94	36.16
High	379.78	34.25
Moderate	69.63	6.28
Low	2.03	0.18
Other Areas (Water, Barren land, Snow, Glaciers, etc.)	256.33	23.12
	1108.71	100.00

Table 9.21: Area under different categories of Fragmentation Index and Disturbance Index in Sainj sub-basin

Fragmentation Index	Area (sq km)	(%)	Disturbance Index	Area (sq km)	(%)
High	4.10	0.37	Very High	4.97	0.45
Moderate	158.07	14.26	High	132.35	11.94
Low	690.55	62.28	Moderate	345.78	31.19
Other Areas (Water, Barren land, Snow, Glaciers, etc.)	255.98	23.09	Low	369.85	33.36
			Other Areas (Water, Barren land, Snow, Glaciers, etc.)	255.76	23.07

9.4.6.2 Biodiversity Profile

During the present studies 74 species of flowering plants were recorded during field surveys conducted in the projects areas though according to cumulative list compiled from primary surveys and secondary sources 101 angiosperm species are reportedly found in the sub-basin. No RET species according to BSI Red Data Book was found during field sampling in any of the project sites. *Zanthoxylum armatum* an important medicinal plant listed as Endangered in FRLHT RET list was found in project areas of Parbati III and Hurla-I HEPs. Three endemic species viz. *Aesculus indica*, *Berberis lycium* and *Celtis australis* are found in this sub-basin.

Thirty-three (33) species of mammals are reported from this sub-basin out of which 8 are listed as RET in IUCN Redlist and 8 more are Schedule-I species. Important species found in the sub-basin are Leopard (*Panthera pardus*), Black bear (*Ursus thibetanus*), Otter (*Lutra lutra*), Goral (*Naemorhedus goral*), Himalayan Tahr (*Hemitragus jemlahicus*), Serow (*Capricornis sumatraensis*), and Musk Deer (*Moschus chrysogaster*). All thses are listed in IUCN Redlist and are also listed as Schedule-I species as per WPA.

Avi-fauna of the sub-basin is comprised of 123 species which are reportedly found in this area with 7 Schedule-I species and 4 RET species in IUCN Redlist. White-backed Vulture (*Gyps bengalensis*) is a Critically Endangered species while Cheer Pheasant (*Catreus wallichii*) and Western tragopan (*Tragopan melanocephalus*) are in Vulnerable category and Himalayan griffon (*Gyps himalayaensis*) is in Near Threatened category. Cheer Pheasant (*Catreus wallichii*), Western tragopan (*Tragopan melanocephalus*), Monal pheasant (*Lophophorus impejanus*), Sparrow hawk (*Accipiter nisus*) and Indian peafowl (*Pavo cristatus*) are Schedule-I species as per WPA (1972).

Physico-chemical Water quality in general in this sub-basin is in Good category while at few sites it is in Medium category. Biological water quality in the form of macro-invertebrates was in poor condition.

Fish fauna of the sub-basin is comprised of 20 species. Important fishes found in the sub-basin are *Amblyceps mangois*, *Sperata aor*, *Botia dario*, *Crossocheilus latius*, *Garra gotyla*, *Labeo pangusia*, *Puntius chola*, *Schizothorax richardsonii* and *Systomus sarana*. Sainj river is one of the important trout fishing sites in the basin.

There are three Protected Areas in the sub-basin i.e. Sainj Wildlife Sanctuary, Great Himalayan National Park and Kanawar WLS.

Impact Assessment

In this sub-basin, there are 3 hydropower projects out of these 2 are already operational i.e. Parbati III (520 MW) and Sainj (100 MW). Only Hurla-I (9.40 MW) is proposed project on Hurla Nala.

Most of the sub-basin is under Protected Areas owing to rich biodiversity. With 2 projects already operational, it is not advisable to add another project in this sub-basin. Hurla Nla catchment is also known for frequent cloud bursts which can cause seriously damage the smaller projects like Hurla-I.

9.4.7 Tirthan Sub-basin

Tirthan sub-basin comprises of the catchment area of Tirthan river from its origin and up to its confluence with Sainj Khad near Larji village. It originates from unnamed glacier at an elevation of 4378m and travels a distance of about 50.7 km to join Sainj khad at its left bank. It is the biggest tributary of Sainj khad. The elevation varies from 1100 m to about 5200 m.

9.4.7.1 Forest Cover & Forest Types

It can be seen from **Figure 9.24** and **Table 9.22** area of very dense forest, moderately dense forest and open forest has increased by 0.16%, 0.04% and 0.02% respectivery in 2015 from 2005 and no change in scrub land area.

Class	2005		2015		Change	
Class	(ha)	(%)	(ha)	(%)	(ha)	(%)
Very Dense Forest	15996.97	23.34	15888.30	23.18	-108.66	-0.68
Moderately Dense Forest	14772.33	21.55	14743.00	21.51	-29.33	-0.20
Open Forest	7403.94	10.80	7389.31	10.78	-14.64	-0.20
Total Forest	38173.24	55.69	38020.61	55.47	-152.63	-0.40
Scrub	257.83	0.38	260.26	0.38	2.43	0.94
Non Forest	30115.00	30115.00 43.93 30265.20 44.15			150.20	0.50
Total Geographic Area (ha)						

Table 9.22: Forest cover changes from 2005 to 2015

More than half of Tirthan catchment is characterized by Semi-evergreen forest while higher at elevation Moist alpine scrub is predominant forest type (see Figure 9.25). However, scrub formation is found in Koti Gad catchment.

As seen from the Biological Richness map (**Figure 9.26**) and **Table 9.23** Tirthan sub-basin comprised of Tirthan river catchment is very rich in Biological diversity as neary 79% of its area is characterized by Very High and High Biological Richness Index (**Table 9.24**).

Fragmentation of the landscape is very low and disturbance due to anthropogenic activities also is quite low (Figures 9.27 & 9.28).

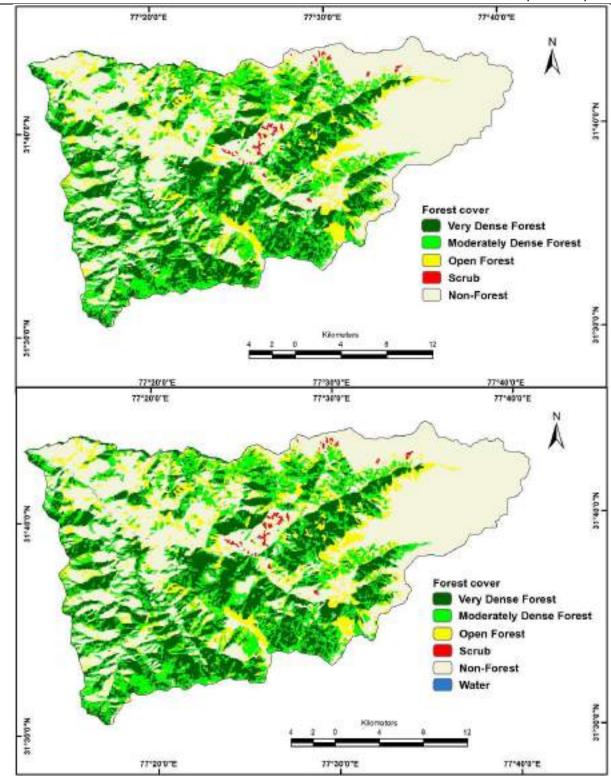


Figure 9.24: Forest cover map for the year 2005 and 2015 of Tirthan sub-basin (Source: Indian State of Forest Report, 2005 and 2015, Forest Survey of India)

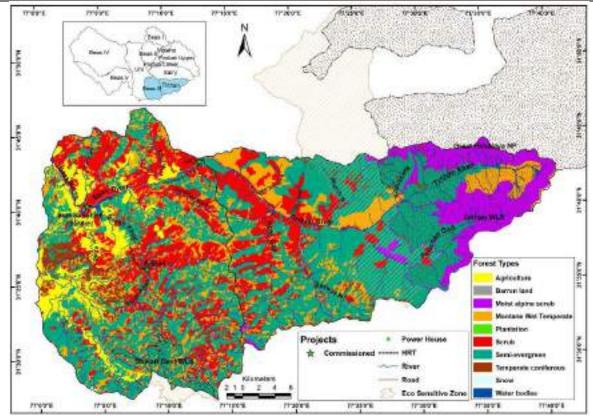


Figure 9.25: Forest type map of Tirthan and Beas III sub-basins

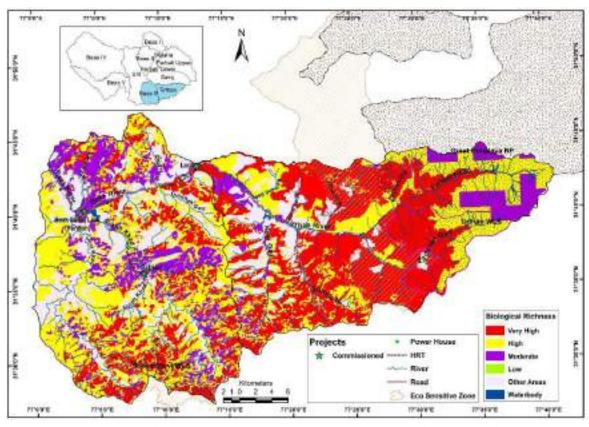


Figure 9.26: Biological Richness Index map of Tirthan and Beas III sub-basins

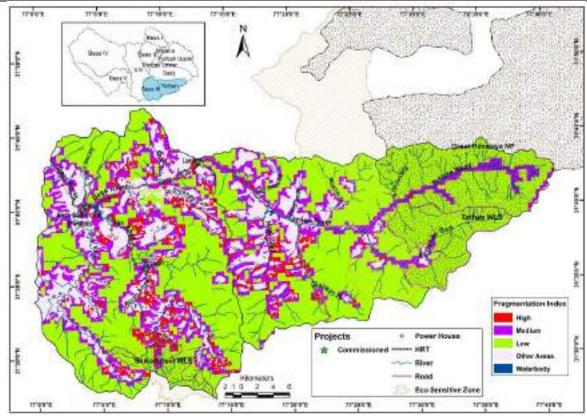


Figure 9.27: Fragmentation Index map of Tirthan and Beas III sub-basins

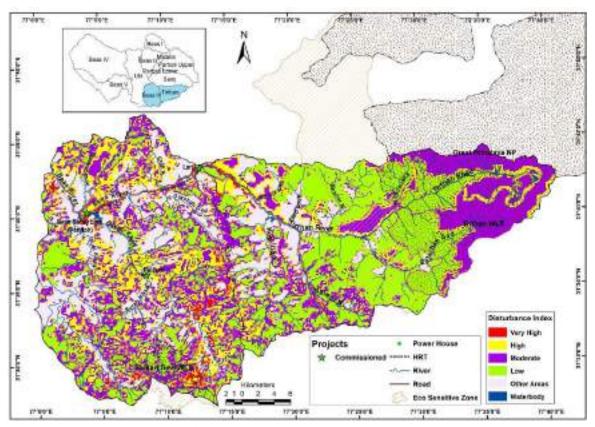


Figure 9.28: Disturbance Index map of Tirthan and Beas III sub-basins

Table 9.23: Area under different Biological Richness Index categories in Tirthan sub-basin

Biological Richness Index	Area (sq km)	(%)
Very High	338.66	49.41
High	201.90	29.45
Moderate	57.70	8.42
Low	2.03	0.30
Other Areas (Water, Barren land, Snow,	85.17	12.43
Glaciers, etc.)		
	685.46	100.00

Table 9.24: Area under different categories of Fragmentation Index and Disturbance Index in Tirthan sub-basin

Fragmentation Index	Area (sq km)	(%)	Disturbance Index	Area (sq km)	(%)
High	19.29	2.81	Very High	5.34	0.78
Moderate	107.83	15.73	High	92.30	13.47
Low	473.14	69.03	Moderate	203.26	29.65
Other Areas (Water, Barren land, Snow, Glaciers, etc.)	85.20	12.43	Low	299.38	43.68
			Other Areas (Water, Barren land, Snow, Glaciers, etc.)	85.19	12.43

9.4.7.2 Biodiversity Profile

In Tirthan sub-basin 108 species of flowering plants based upon a list compiled from different sources. According to Red Data Book of BSI, one RET species *Acer caesium* in Vulnerable category was found in the sub-basin. As many as 10 species listed in IUCN Redlist are reported from the sub-basin. *Aconitum violaceum* and *Indigofera heterantha* both in IUCN Vulnerable category reported from this area. *Sinopodophyllum hexandrum*, *Polygonatum verticillatum*, *Dioscorea deltoidea* and *Zanthoxylum armatum* listed as Endangered and *Roscoea alpina* as Vulnerable by FRLHT RET medicinal plants list were found in the sub-basin. There are as many as 33 FRLHT RET medicinal plant species found in this sub-basin. The sub-basin also harbours 7 Westerm Himalayan endemics.

Thirty-three (33) species of mammals are reported from this sub-basin out of which 8 are listed as RET in IUCN Redlist and 8 more are Schedule-I species. Important species found in the sub-basin are Leopard (*Panthera pardus*), Black bear (*Ursus thibetanus*), Otter (*Lutra lutra*), Goral (*Naemorhedus goral*), Himalayan Tahr (*Hemitragus jemlahicus*), Serow (*Capricornis sumatraensis*), and Musk Deer (*Moschus chrysogaster*). All thses are listed in IUCN Redlist and are also listed as Schedule-I species as per WPA.

Avi-fauna of the sub-basin is comprised of 123 species which are reportedly found in this area with 6 Schedule-I species and 4 RET species in IUCN Redlist. White-backed Vulture (*Gyps bengalensis*) is a Critically Endangered species while Cheer Pheasant (*Catreus wallichii*) and Western tragopan (*Tragopan melanocephalus*) are in Vulnerable category and Himalayan griffon (*Gyps himalayaensis*) is in Near Threatened category. Cheer pheasant (*Catreus wallichii*), Western tragopan (*Tragopan melanocephalus*), Monal pheasant (*Lophophorus*)

impejanus), Sparrow hawk (*Accipiter nisus*) and Indian peafowl (*Pavo cristatus*) are Schedule-I species as per WPA (1972).

Water quality in general in this sub-basin is in Good category. Similarly, Biological water quality was also in Good category.

Fish fauna of the sub-basin is comprised of 18 species comprised mainly of Snow trout (*Schizothorax richardsonii*), *Glyptothorax* spp., *Garra gotyla*, *Schistura rupecola*. Snow trout is predominant fish of Tirthan river and its tributaries. It is famous for trout fishing.

Tirthan river has been marked as No Go area for hydropower development by the state Fisheries Development for fish conservation and therefore no project has been planned in the sub-basin.

Impact Assessment

No project has been planned in this sub-basin on Tirthan river in order to preserve the pristine ecosystem as well the fish habitats. In future to projects should therefore be envisaged in this sub-basin.

9.4.8 Beas III Sub-basin

Beas Sub-basin-III is comprised of catchment area of Beas river between the confluence point of Tirthan River with river Beas and upstream of Uhl River near Ghamun village. The elevation varies from 800 m to about 3400 m.

9.4.8.1 Forest Cover & Forest Types

It is evident from Table below that area of Very dense forest, moderately dense forest and scrub has reduced by 0.15%, 0.13% and 0.03% respectivery in 2015 from 2005 and open forest has increased by 0.18% (**Table 9.25**).

2015 2005 Change Class (%<u>)</u> (ha) (%) (ha) (ha) (%) Very Dense Forest 13103.07 18.62 13205.75 18.77 102.67 0.78 26.69 Moderately Dense Forest 18691.74 26.56 18783.35 91.60 0.49 **Open Forest** 10430.90 14.82 10310.18 14.65 -120.73-1.16 **Total Forest** 42225.72 60.01 42299.27 60.11 73.55 0.17 6.32 0.01 26.75 0.04 20.43 323.17 Scrub Non-Forest 28132.62 39.98 28038.63 39.85 -93.98 -0.33 Total Geographic Area 70364.66 (ha)

Table 9.25: Forest cover changes from 2005 to 2015

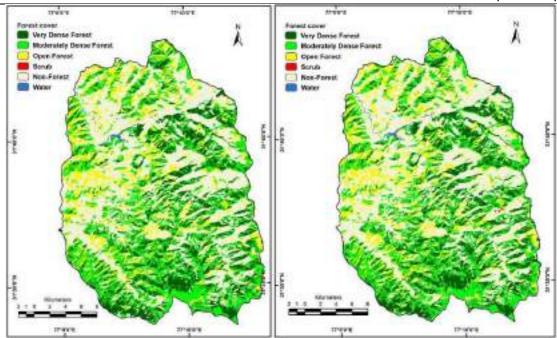


Figure 9.29: Forest cover map for the year 2005 and 2015 of Beas III Sub-basin (Source: Indian State of Forest Report, 2005 and 2015, Forest Survey of India)

The predominant forest type in the sub-basin is Semi-evergreen. Montane wet temperate forest is next dominant forest iin the area. Agriculture is one of the main land use in the sub-basin covering about 13% of its area (see Figure 9.25).

More than 57.17% area is under Very High and High Biological Richness Index (Figure 9.26 & Table 9.26). There is moderate landscape fragmentation in the sub-basin due to agricultutural activities and disturbance too is Moderate to High (Figures 9.27 & 9.28 and Table 9.26).

Table 9.26: Area under different Biological Richness Index categories in Beas III sub-basin

Biological Richness Index	Area (sq km)	(%)
Very High	123.28	17.52
High	282.76	40.19
Moderate	118.58	16.85
Low	3.16	0.45
Other Areas (Water, Barren land, etc.)	175.86	24.99
	703.65	100.00

Table 9.27: Area under different categories of Fragmentation Index and Disturbance Index in Beas III sub-basin

Fragmentation Index	Area (sq km)	(%)	Disturbance Index	Area (sq km)	(%)
High	49.43	7.03	Very High	20.12	2.86
Moderate	142.15	20.20	High	164.80	23.42
Low	336.65	47.84	Moderate	211.87	30.11
Other Areas (Water, Barren land, etc.)	175.42	24.93	Low	130.76	18.58
			Other Areas (Water, Barren land, etc.)	176.10	25.03

9.4.8.2 Biodiversity Profile

During the present studies 104 species of flowering plants were recorded during field surveys conducted in the projects areas though according to cumulative list compiled from primary surveys and secondary sources 133 angiosperm species are reportedly found in the basin.

Final Report: Chapter 9

No RET species according to BSI Red Data Book was found during field sampling in any of the project sites. *Zanthoxylum armatum* an important medicinal plant listed as Endangered in FRLHT RET list was found in project areas of Patikari HEP. Three endemic species viz. *Alnus nitida*, *Desmodium elegans* and *Celtis australis* are found in this sub-basin.

Thirty-one (31) species of mammals are reported from this sub-basin out of which 8 are listed as RET in IUCN Redlist and 5 more are Schedule-I species. Important species found in the sub-basin are Leopard (*Panthera pardus*), Black bear (*Ursus thibetanus*), Otter (*Lutra lutra*), Goral (*Naemorhedus goral*), Himalayan tahr (*Hemitragus jemlahicus*), Serow (*Capricornis sumatraensis*), and Musk Deer (*Moschus chrysogaster*). All thses are listed in IUCN Redlist and are also listed as Schedule-I species as per WPA.

Avi-fauna of the sub-basin is comprised of 136 species which are reportedly found in this area with 7 Schedule-I species and 7 RET species in IUCN Redlist. White-backed Vulture (*Gyps bengalensis*) is a Critically Endangered species while Cheer Pheasant (*Catreus wallichii*) and Western tragopan (*Tragopan melanocephalus*) are in Vulnerable category and Himalayan griffon (*Gyps himalayaensis*) is in Near Threatened category. Cheer Pheasant (*Catreus wallichii*), Western tragopan (*Tragopan melanocephalus*), Monal pheasant (*Lophophorus impejanus*), Sparrow hawk (*Accipiter nisus*) and Indian peafowl (*Pavo cristatus*) are Schedule-I species as per WPA (1972).

Physico-chemical water quality in general in this sub-basin is in Good category. Biological water quality in the form of macro-invertebrates was in Good category with some sites in poor condition.

Fish fauna of the sub-basin is comprised of 22 species. Important fishes found in the sub-basin are Amblyceps mangois, Sperata aor, Botia dario, Crossocheilus latius, Garra gotyla, Labeo pangusia, Puntius chola, Schizothorax richardsonii and Systomus sarana. Sainj river is one of the important trout fishing sites in the basin.

Jeuni Khad and Bakhli Khad two streams in this sub-basin have been earmarked for fish conservation by HP Fisheries Department.

Impact Assessment

In this sub-basin, there are 3 hydropower projects all of which are operational i.e. Pandoh (990 MW), Larji (126 MW) and Patikari (16 MW). While Pandoh and Larji projects are located on main Beas river Patikari is located on Bakhli Khad.

The construction of Pandoh dam to divert water of Beas to Sutlej has already halted the migration of Mahseer upstream. Prior to these projects Mahseer used to migrate to Bakhli Khad however due to damning of Beas river has blocked the upstream migration of Mahseer and not much of Mahseer is found in Bakhli Khad. Larji project on Beas river also has affected the

upstream movement of trout even though there is a fish ladder in the project to facilitate the movement of trout.

Bakhli Khad and Jeuni Khad in this sub-basin has been included in the negative list of streams by HP State Fisheries Department for fish conservation. Therefore, no new projects have been planned on Bakhli Khad or Jeuni Khad in this sub-basin.

9.4.9 Uhl Sub-basin

Uhl sub-basin comprises of the catchment area of tributaries of Beas river i.e. Uhl river and Rana Khad on its right bank and Suketi Khad and Arnodi Khad on its left bank. It also includes intermediate catchment of Beas river from downstream of Pandoh Dam up to its confluence with Rana Khad in Mandi district. The elevation varies from 650 m to about 5200 m. Uhl river is the right bank tributary of Beas river which meets near Mandi town.

9.4.9.1 Forest Cover & Forest Types

Forest cover change from 2005 to 2015 is given in **Figure 9.30** and **Table 9.28** shows there has been an increase in forest cover in the sub-basin from 2005 by about 2.94%. The decrease in Very Dense forest has lead to increase in area under Moderately dense forest cover. The scrub has decreased by 27% in 2015 from 2005.

Table 9.28: Forest cover changes from 2005 to 2015

Class	2005		2015		Change	
Class	(ha)	(%)	(ha)	(%)	(ha)	(%)
Very Dense Forest	16822.86	9.83	16335.01	9.54	-487.85	-2.90
Moderately Dense	28778.78	16.81	30428.97	17.77	1650.19	5.73
Forest	20//0./0	10.01	30420.97	17.77	1030.19	3.73
Open Forest	23064.20	13.47	23743.04	13.87	678.84	2.94
Total Forest	68665.85	40.10	70507.03	41.18	1841.18	2.68
Scrub	247.98	0.14	180.98	0.11	-67.00	-27.02
Non-Forest	102309.52	59.75	100535.34	58.72	-1774.18	-1.73
Total Geographic	474222 25					
Area (ha)		171223.35				

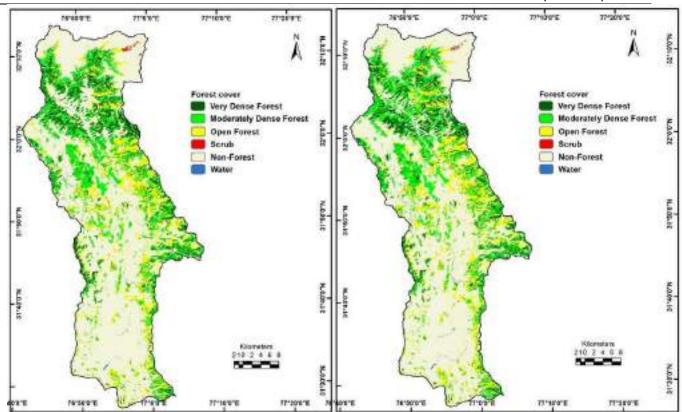


Figure 9.30: Forest cover map for the year 2005 and 2015 of Uhl Sub-basin (Source: Indian State of Forest Report, 2005 and 2015, Forest Survey of India)

Agriculture is the major land use in this sub-basin (**Figure 9.31**) covering 32% of its area. Among forests Semi-evergreen forest is the main type followed by Montane wet temperate forest.

As compared to other Beas sub-basins area under Very High and High Biological Richness Index is less than 50% (Figure 9.32 and Table 9.29) and disturbance also is low to moderate in this sub-basin (Figure 9.32 & 8.34 and Table 9.29).

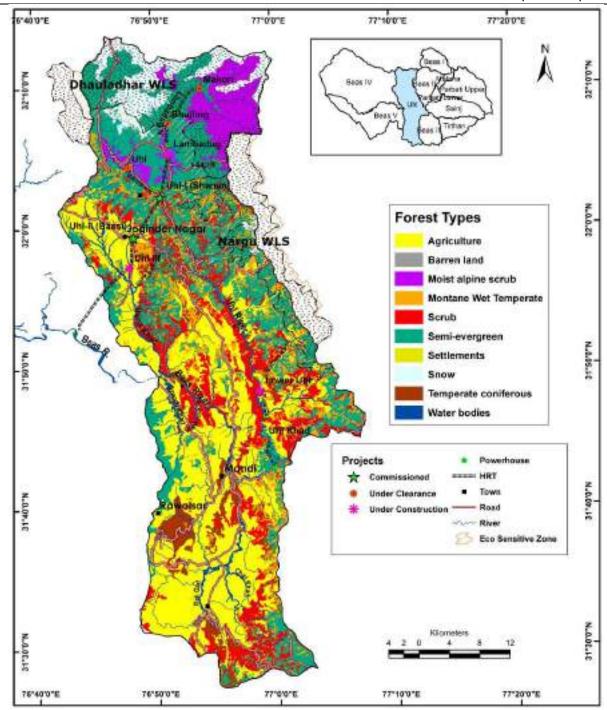


Figure 9.31: Forest type map of Uhl sub-basin

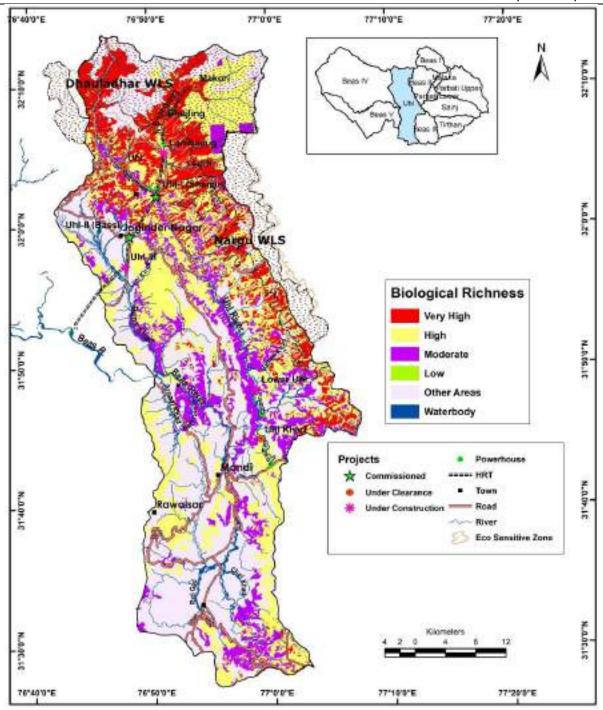


Figure 9.32: Biological Richness Index map of Uhl sub-basin

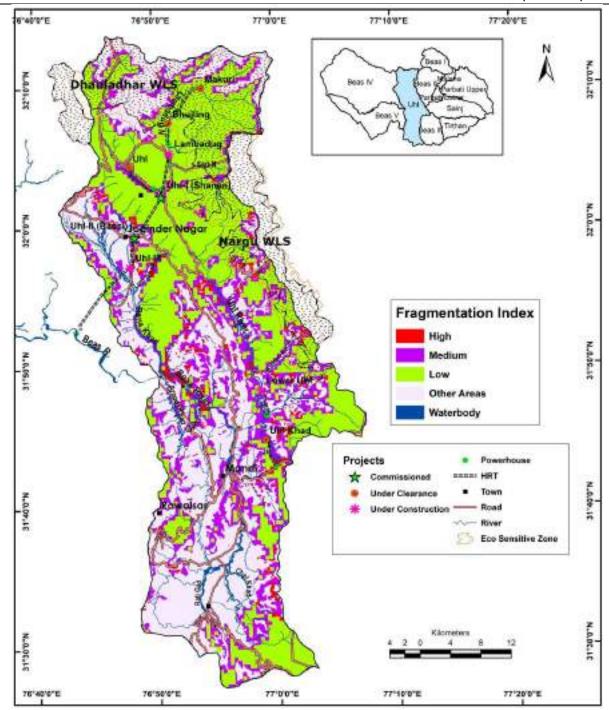


Figure 9.33: Fragmentation Index map of Uhl sub-basin

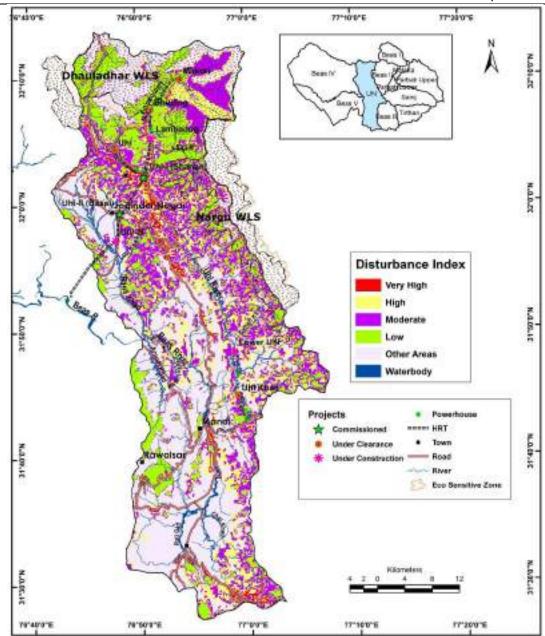


Figure 9.34: Disturbance Index map of Uhl sub-basin

Table 9.29: Area under different Biological Richness Index categories in Uhl sub-basin

Biological Richness Index	Area (sq km)	(%)
Very High	243.33	14.21
High	561.60	32.80
Moderate	223.94	13.08
Low	5.80	0.34
Other Areas (Water, Barren land, Snow, Glaciers, etc.)	677.56	39.57
	1712.23	100.00

Table 9.30: Area under different categories of Fragmentation Index and Disturbance Index in Uhl sub-basin

Fragmentation Index	Area (sq km)	(%)	Disturbance Index	Area (sq km)	(%)
High	47.20	2.76	Very High	35.89	2.10
Moderate	309.80	18.09	High	317.12	18.52
Low	678.78	39.64	Moderate	388.38	22.68

Fragmentation Index	Area (sq km)	(%)	Disturbance Index	Area (sq km)	(%)
Other Areas (Water, Barren land, Snow, Glaciers, etc.)	676.45	39.51	Low	293.52	17.14
	47.20	2.76	Other Areas (Water, Barren land, Snow, Glaciers, etc.)	677.32	39.56

9.4.9.2 **Biodiversity Profile**

During the present studies 107 species of flowering plants were recorded during field surveys conducted in the projects areas though according to cumulative list compiled from primary surveys and secondary sources 143 angiosperm species are reportedly found in the sub-basin.

No RET species according to BSI Red Data Book was found during field sampling in any of the project sites. Zanthoxylum armatum an important medicinal plant listed as Endangered in FRLHT RET list was found in project areas of Uhl I and Lower Uhl HEPs.

Thirty-five (35) species of mammals are reported from this sub-basin out of which 8 are listed as RET in IUCN Redlist and 8 more are Schedule-I species. Important species found in the subbasin are Leopard (Panthera pardus), Black bear (Ursus thibetanus), Otter (Lutra lutra), Goral (Naemorhedus goral), Himalayan Tahr (Hemitragus jemlahicus), Serow (Capricornis sumatraensis), and Musk Deer (Moschus chrysogaster). All thses are listed in IUCN Redlist and are also listed as Schedule-I species as per WPA.

Avi-fauna of the sub-basin is comprised of 137 species which are reportedly found in this area with 7 Schedule-I species and 7 RET species in IUCN Redlist. White-backed Vulture (Gyps bengalensis) is a Critically Endangered species while Cheer Pheasant (Catreus wallichii) and Western tragopan (Tragopan melanocephalus) are in Vulnerable category and Himalayan griffon (Gyps himalayaensis) is in Near Threatened category. Cheer Pheasant (Catreus wallichii), Western tragopan (Tragopan melanocephalus), Monal pheasant (Lophophorus impejanus), Sparrow hawk (Accipiter nisus) and Indian peafowl (Pavo cristatus) are Schedule-I species as per WPA (1972).

Water quality in general in this sub-basin is in Good category while water quality in Excellent category was found in projects areas of Lambadug and Uhl-I HEPs. Biological water quality in the form of BMWP was in Good category.

Fish fauna of the sub-basin is comprised of 24 species. Fish composition is dominated by Snow trout (Schizothorax richardsonii) followed by Glyptothorax spp., Garra gotyla, Schistura rupecola.

Uhl sub-basin is most important sub-basin where trout fishing is undertaken extensively. The trout fishing sites near villages like Kamand and Tikkar on Uhl river in the lower reaches, Tikkan, Lachkhandi and Barot near the confluence of Lambadug and Uhl river are most suitable sites for trout fishing. There is Trout fish farm near the Barot reservoir. Rana Khad is one of potential mahseer breeding and fishing site while its tributary in upper reaches Sukhad khad is important trout breeding site. Arnodi Khad, a left bank tributary also is a potential trout breeding site.

Rana Khad, Arnodi Khad and Uhl river have been put in negative list for hydel projects for fish conservation by HP Fisheries Department.

There are 3 Wildlife Sanctuaries parts of which are located in the sub-basin viz. Dhauladhar Wildlife Sanctuary, Nargu WLS and Khokan WLS. These sanctuaries cover most part of upper regions of Uhl sub-basin.

Impact Assessment

In all there are 9 hydropower projects in Uhl sub-basin. Two of them have been operational for very long time i.e. Uhl-I (Shanon) 110 MW, Uhl-II (Bassi) 66 MW. Uhl-III (100 MW), Lower Uhl (13 MW) and Lambadug (25 MW) are the 3 under construction projects. Uhl (14 MW) and Uhl Khad (14 MW) are the 2 proposed projects while recently 2 more projects Bhujling (20 MW) and Makori (20.80 MW) have been advertised and allotted by the government.

More than 95% (314 MW) of the total power potential (328 MW) of Uhl river sub-basin has already been harnessed through 5 projects. Uhl Khad has also been proposed and in addition two more projects have recently been advertised for allotment. Uhl Khad will divert water of Uhl river and drain into Beas river instead of Uhl river which will result in decreased flow in 6.40 km stretch of Uhl river up to its confluence with Beas river.

Entire Uhl river has been included in negative list for hydropower projects to conserve fish by HP State Fisheries Department. Even after the implementation of 5 projects it offers habitat for trout fisheries, breeding and spawning. Kamand, Tikkar, Tikkan, Lachkhandi and Barot on Uhl have been identified as trout fisheries sites. Tikkan one one of potential breeding site of trout on Uhl river. There is a fish farm on Barot reservoir before the confluence of Lambadug with Uhl river.

On Rana Khad another tributary in the sub-basin there potential breeding sites of mahseer and trout at Rana Khad and Sukhad Khad, respectively. Rana Khad is already a mahseer fisheries site. Arnodi Khad another left bank tributary has potential trout breeding site at Kotli and entire stream like Uhl river has been included in negative list of streams for hydropower development for the conservation of fish.

In view of the further development of more hydropower projects might affect the important trout and mahseer habitats.

Recently allotted 2 projects viz. Bhujling and Makori are located within Dhauladhar Wildlife Sanctuary, therefore these may not be allowed.

9.4.10 Beas IV Sub-basin

Beas IV sub-basin comprises of the right bank catchment area of Beas river from the confluence of Rana Khad and Arnodi Khad with river Beas up to Pong Dam. The elevation varies from 400 m to about 4900 m.

9.4.10.1 Forest Cover & Forest Types

The forest cover in this sub-basin increased by 2.54% in 2015 estimate (**Figure 9.35 and Table 9.31**). However Open forest cover too has increased by 8%. The scrub has decreased significantly by about 93% in the sub-basin.

			•			
Class	2005		2015		Change	
Class	(ha)	(%)	(ha)	(%)	(ha)	(%)
Very Dense Forest	28237.75	7.75	29650.14	8.13	1412.39	5.00
Moderately Dense Forest	90891.40	24.93	91263.25	25.04	371.85	0.41
Open Forest	22449.18	6.16	24263.77	6.66	1814.59	8.08
Total Forest	141578.33	38.84	145177.15	39.83	3598.83	2.54
Scrub	493.71	0.14	34.47	0.01	-459.23	-93.02
Non Forest	222447.92	61.02	219308.32	60.16	-3139.59	-1.41
Total Geographic Area (ha)	364519.95					

Table 9.31: Forest cover changes from 2005 to 2015

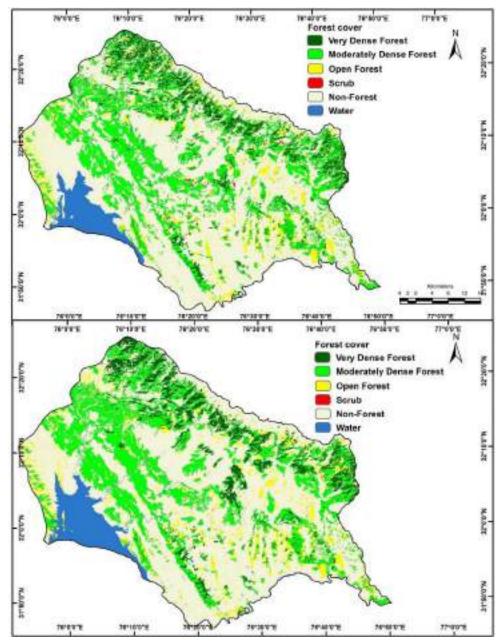


Figure 9.35: Forest cover map for the year 2005 and 2015 of Beas IV Sub-basin

(Source: Indian State of Forest Report, 2005 and 2015, Forest Survey of India)

In this sub-basin too agriculture is the predominant land use which is about 32% of sub-basin area (**Figure 9.36**). Semi-evergreen forest in the main forest type and scrub forest is next major land use.

Biological Richness is under High category along with Moderate category (**Figure 9.37 & Table 9.32**). Fragmentation of landscape too is moderate while disturbance is moderate to high (**Figures 9.38 & 8.39** and **Table 9.32**).

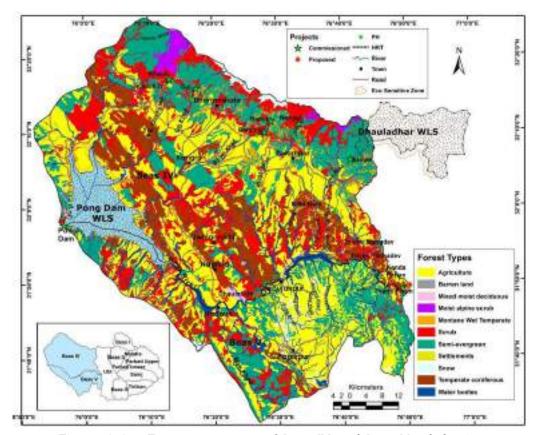


Figure 9.36: Forest type map of Beas IV and Beas V sub-basins

Table 9.32: Area under different Biological Richness Index categories in Beas IV sub-basin

Biological Richness Index	Area (sq km)	(%)
Very High	123.28	17.52
High	282.76	40.19
Moderate	118.58	16.85
Low	3.16	0.45
Other Areas (Water, Barren land, Snow, Glaciers, etc.)	175.86	24.99
	703.65	100.00

Table 9.33: Area under different categories of Fragmentation Index and Disturbance Index in Beas IV sub-basin

Fragmentation Index	Area (sq km)	(%)	Disturbance Index	Area (sq km)	(%)
High	49.43	7.03	Very High	20.12	2.86
Moderate	142.15	20.20	High	164.80	23.42
Low	336.65	47.84	Moderate	211.87	30.11
Other Areas (Water, Barren	175.42	24.93	Low	130.76	18.58

Fragmentation Index	Area (sq km)	(%)	Disturbance Index	Area (sq km)	(%)
land, etc.)					
			Other Areas (Water, Barren land, etc.)	176.10	25.03

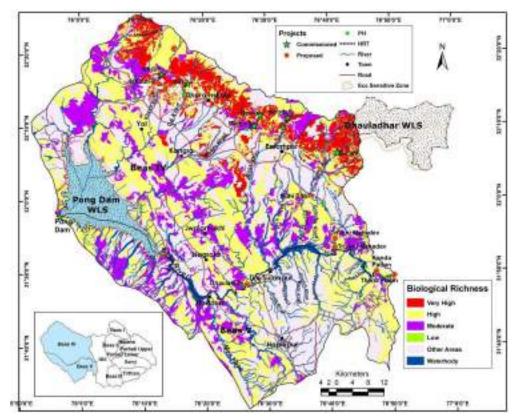


Figure 9.37: Biological Richness Index map of Beas IV and Beas V sub-basins

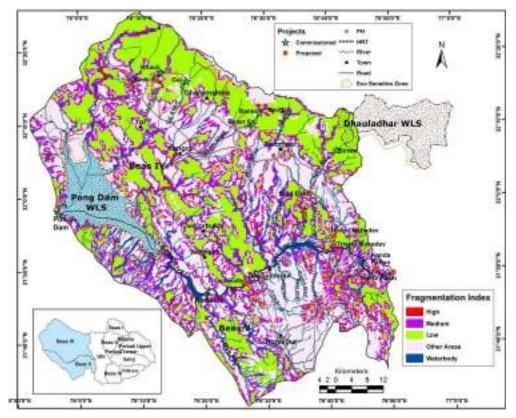


Figure 9.38: Fragmentation Index map of Beas IV and Beas V sub-basins

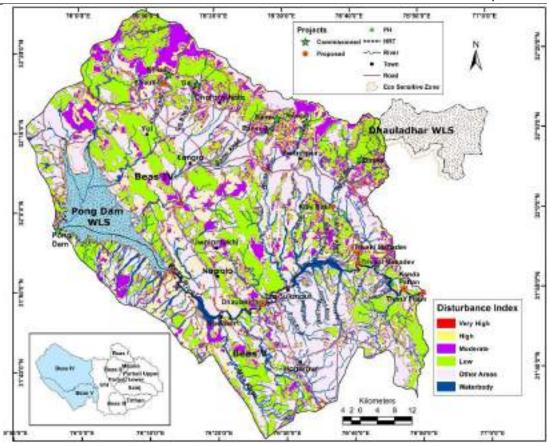


Figure 9.39: Disturbance Index map of Beas IV and Beas V sub-basins

9.4.10.2 Biodiversity Profile

During the present studies 146 species of flowering plants were recorded during field surveys conducted in the projects areas though according to cumulative list compiled from primary surveys and secondary sources 154 angiosperm species are reportedly found in the basin.

No RET species according to BSI Red Data Book was found during field sampling in any of the project sites. *Indigofera heterantha* a Vulnerable as per IUCN Redlist was found in the project area of Neugal HEP.

Berberis aristata (EN) and Zathoxylum armatum (EN) the two important FRLHT RET medicinal plants list were found in project areas of Neugal Khad, Baner and Binwa HE projects.

Thirty-six (36) species of mammals are reported from this sub-basin out of which 8 are listed as RET in IUCN Redlist and 7 are Schedule-I species. Important species are Leopard (*Panthera pardus*), Otter (*Lutra lutra*), Goral (*Naemorhedus goral*), Striped hyaena (*Hyaena hyaena*), and Royle's vole (*Alticola roylei*). All these are listed in IUCN Redlist and are also listed as Schedule-I species as per WPA

Avi-fauna of the sub-basin is comprised of 418 species which are reportedly found in this area with 5 Schedule-I species and 21 RET species in IUCN Redlist. These are listed in **Table 9.34**). Pong dam lake is the most important birding site in the basin. It receives large populations of winter fowls for wintering.

Table 9.34: RET bird species reported from Beas IV sub-basin

Name	Species name	IUCN Status	WPA Schedule-I
Cinereous vulture	Aegypius monachus	NT	
Imperial Eagle	Aquila heliaca	VU	
Steppe Eagle	Aquila nipalensis	EN	
Common Pochard	Aythya ferina	VU	
Ferruginous Pochard	Aythya nyroca	NT	
Curlew Sandpiper	Calidris ferruginea	NT	
Cheer Pheasant	Catreus wallichii	VU	I
Pallid Harrier	Circus macrourus	NT	
White-backed Vulture	Gyps bengalensis	CR	
Himalayan Griffon	Gyps himalayensis	NT	
Long-billed Griffon	Gyps indicus	CR	
Black tailed Godwit	Limosa limosa	NT	
Monal Pheasant	Lophophorus impejanus		I
Painted Stork	Mycteria leucocephala	NT	
Egyptian Vulture	Neophron percnopterus	EN	
Eurasian Curlew	Numenius arquata	NT	
Osprey	Pandion haliaetus		I
Alexandrine Parakeet	Psittacula eupatria	NT	
Red-headed vulture	Sarcogyps calvus	CR	
Indian Tern	Sterna aurantia	NT	
Western Tragopan	Tragopan melanocephalus	VU	I
River Lapwing	Vanellus duvaucelii	NT	
Northern Lapwing	Vanellus venellus	NT	

Water quality in general in this sub-basin is in Good category. Biological water quality in the form of BMWP also is in Good category.

Fish fauna of the sub-basin is comprised of 57 species. Mahseer, catla, carps, mrigal, rohu, and Singhara are main fish species found in the reservoir of Pong dam and its tributaries and is dominated by catfishes.

Beas IV sub-basin is the most important sub-basin in terms of fisheries which is mainly due to Pong dam lake. Most of its tributary streams like Dehar Khad, Gaj Khad, Baner Khad, Neugal Khad and Binwa Khad are in negative list of streams for hydropower development for fish conservation by HP Fisheries Department.

There are three fish farms in the sub-basin i.e. in Pong Dam, Kangra and Chobbu at Palampur. Important mahseer fishing sites are located at Dehar Khad confluence with Pong reservoir, Kuru, Neugal Khad, Binwa Khad and Sari Marog. Binwa Khad is one of the potential mahseer breeding site. Khauli and Poon Nala are the potential trout breeding sites in the sub-basin.

Impact Assessment

There is one big project Pong Dam (396 MW) in the sub-basin which is operational since 1978. In addition, there are 6 more operational projects which are on the tributaries draining into Pong dam reservoir or Beas river. These are Gaj, Khauli, Baner, Baner-II, Neugal, and Binwa

projects with combined capacity of 61.50 MW and are since 2012, 2007, 1996, 2015, 2013 and 1984, respectively.

Kilhi Bahl (7.50 MW) is a proposed project while recently Khauli-II (6 MW) has been recently advertised for allotment.

It may be noted that since 2005 the forest cover in th sub-basin has incread by 2.54%. There has not been much degradation of the landscape also. After the commissioning of Pong Dam, the population of migratory birds has increased manifold due to the formation large water body i.e. Pong Dam reservoir and due to these reasons only it has been declared as Pong Dam Wildlife Sanctuary and listed as Ramsar site. It is most preferable habitat for water fowl for wintering.

Not only it has lead to increase in bird populations it has also given a boost to fisheries and source of income for locals. As discussed above even tributaries of Beas draining into the reservoir provide suitable habitat not only for mahseer fisheries but for trout fisheries also. There are 3 mahseer fish farms in this sub-basin. One is located near the confluence of Dehar Khad with Pong reservoir, second one is in Kangra and the third one is at Chobbu near Palampur. Kuru, Harsi Patan- Nadaun, Neugal Khad, Sari Marog, Binwa Khad and Rana Khad are the imporatant identified mahseer fishing sites. Binwa Khad and Rana Khad are potential breeding sites of mahseer. Khauli Nala, upper reaches of Binwa Khad near Poon Nala confluence and Sukhad Khad in upper catchment of Rana Khad are the potential trout breeding sites.

Owing its rich fisheries Dehar Khad, Gaj Khad, Baner Khad, Neugal Khad and Binwa Khad have been included in the negative list of streams for hydropower development for fish conservation by HP Fisheries Department.

Even as 6 projects are already operational on these tributaries, no more projects should be taken up for implementation to preserve the important trout and mahseer habitats. Kilhi Bahl is one such project proposed on Binwa Khad and another recently advertised Khauli-II project may not be alloted. It is therefore recommended to maintain the status quo and no more projects in this sub-basin.

9.4.11 Beas V Sub-basin

Beas V sub-basin comprises of the left bank catchment area of Beas river from the confluence of Rana Khad and Arnodi Khad with river Beas up to Pong Dam. The elevation varies from 380 m to about 2040 m.

9.4.11.1 Forest Cover & Forest Types

In this sub-basin also the forest cover has increased slightly by 1.64%. Very Dense and Moderately Dense forest have registered an increase of 2.76 and 2.59%, respectively (**Figure 9.40** and **Table 9.35**).

Table 9.35: Forest cover changes from 2005 to 2015

Class	2005		2015		Change		
Ciass	(ha)	(%)	(ha)	(%)	(ha)	(%)	
Very Dense Forest	3908.22	2.46	4015.95	2.53	107.72	2.76	
Moderately Dense Forest	12922.63	8.13	13256.80	8.34	334.17	2.59	
Open Forest	16676.15	10.49	16783.65	10.56	107.50	0.64	
Total Forest	33506.99	21.08	34056.39	21.42	549.40	1.64	
Scrub	23.62	0.01	66.97	0.04	43.35	183.52	
Non-Forest	125436.40	78.91	124843.65	78.53	-592.75	-0.47	
Total Geographic Area (ha)							

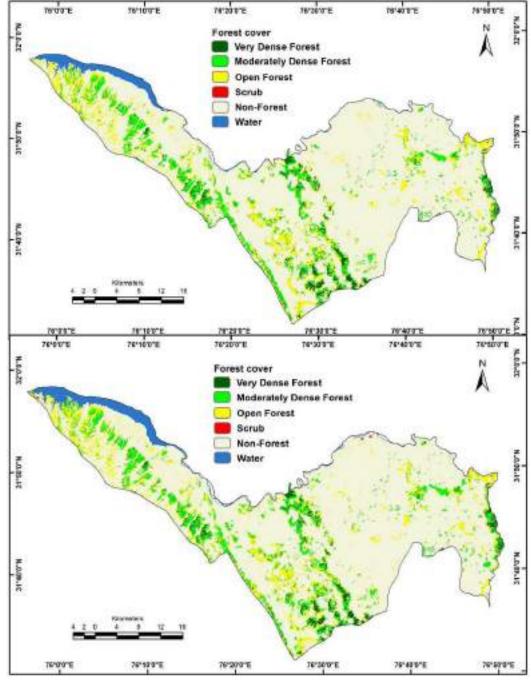


Figure 9.40: Forest cover map for the year 2005 and 2015 of Beas V Sub-basin (Source: Indian State of Forest Report, 2005 and 2015, Forest Survey of India)

As seen from the forest/vegetation types map agriculture is main land use in the sub-absin comprising nearly 45% of its area (Figure 9.36).

The forest cover is mainly comprised of Semi-evergreen forest covering 27.46% of the subbasin and as much as 12.27% is under scrub.

Biological Richness Index map indicates that 4019% of its area is under High richness category (refer **Table 9.36**). The fragmentation of landscape is in Moderate category (**Table 9.37**).

Table 9.36: Area under different Biological Richness Index categories in Beas V sub-basin

Biological Richness Index	Area (sq km)	(%)
Very High	123.28	17.52
High	282.76	40.19
Moderate	118.58	16.85
Low	3.16	0.45
Other Areas (Water, Barren land, etc.)	175.86	24.99
	703.65	100.00

Table 9.37: Area under different categories of Fragmentation Index and Disturbance Index in Beas V sub-basin

Fragmentation Index	Area (sq km)	(%)	Disturbance Index	Area (sq km)	(%)
High	49.43	7.03	Very High	20.12	2.86
Moderate	142.15	20.20	High	164.80	23.42
Low	336.65	47.84	Moderate	211.87	30.11
Other Areas (Water, Barren land, etc.)	175.42	24.93	Low	130.76	18.58
			Other Areas (Water, Barren land etc.)	176.10	25.03

9.4.11.2 Biodiversity Profile

During the present studies 101 species of flowering plants were recorded during field surveys conducted in the projects areas though according to cumulative list compiled from primary surveys and secondary sources 105 angiosperm species are reportedly found in the basin.

No RET species according to BSI Red Data Book was found during field sampling in any of the project sites. Only one species under IUCN Redlist is found in this sub-basin.

Thirty-three (33) species of mammals are reported from this sub-basin out of which 5 are listed as RET in IUCN Redlist and 4 are Schedule-I species. Important species are Leopard (*Panthera pardus*), Otter (*Lutra lutra*), Goral (*Naemorhedus goral*), Striped hyaena (*Hyaena hyaena*), and Royle's vole (*Alticola roylei*). All these are listed in IUCN Redlist and are also listed as Schedule-I species as per WPA.

Avi-fauna of the sub-basin is comprised of 145 species which are reportedly found in this area with one Schedule-I species and 3 RET species in IUCN Redlist.

Water quality in general in this sub-basin is in Good category. Biological water quality in the form of BMWP was in Good category.

Fish fauna of the sub-basin is comprised of 41 species Mahseer, catla, carps, mrigal, rohu, and Singhara are main fish species found.

Impact Assessment

There is no operational project in this sub-basin however 3 projects are proposed on Beas river with total capacity of 353 MW. These are Triveni Mahadev (96 MW), Thana Plaun (191 MW) and Dhaulasidh (66 MW).

Beas river in the sub-basin in general is quite wide with its width varying between 250m and 1000m at different places. Beas river flows with a gentle gradient in the sub-basin traversing about 120 km from El. 510m to El. 410m. People living in this area/ stretch are dependent upon Beas river for drinking and irrigation.

This part of the river constitutes important mahseer habitat as mahseer breeds and spawns in its tributaries on the left bank as well as right bank. Right bank tributaries are Man Khad and Gasoti Khad along with Kunah Khad. Both these tributaries are in the negative list of HP Fisheries Department for hydropower project owing to their fisheries potential.

The proposed 3 projects would affect about 52 km of Beas river mainly due to formation of reservoirs. Dhaulasidh HEP alone would affect about 20 km of Beas river with total submergence area of about 320 ha and reservoir would also enter tributaries like Neugal Khad (2 km) and Pung Khad (4 km). The project has already been granted Environmental Clearance by MoEF&CC. Triveni Mahadev and Thana Plaun HEPs would have reservoirs of about 10 and 16 km. There will be a free-flowing stretch of Beas river varying from 12 to 25 km between these proposed projects. While Dhaulasidh HEP has obtained Environmental Clearance in 2013 as well as Stage-I Forest Clearance recommended in 2012, Thana Plaun and Triveni Mahadev HEPs till date have obtained Scoping Clearance only.

The proposed projects will have to make arrangement for movement of mahseer in Beas river and into its tributaries for breeding and spawning as these would restrict the free movement of mahseer which will affect fisheries potential of Beas river in this stretch and fisheries is one of the income generating activity for the local population even though the proposed reservoir would help in fish production which however mainly would comprise mainly of commercial carps and exotic fish species.

9.5 IMPACT OF CASCADE DEVELOPMENT

When hydropower projects were planned in different river basins during last 10-15 years, the focus of planners were on maximum utilization of available hydropower potential in each river basin. This resulted in projects being conceived in cascade with Full Reservoir Level (FRL) of downstream projects almost matching with that of Tail Water Level (TWL) of upstream projects in several cases. Expert Appraisal Committee (EAC) for River Valley and Hydropower Projects has always been insisting on the importance of free-flowing river

stretches between adjacent projects with a view to provide natural conditions to river for recovery.

To review the present status of availability of free-flowing river stretches in Beas basin, critical stretches have been identified where projects have been planned in cascade and longitudinal profiles prepared. These are:

- 1. Main Beas River (10 Projects)
- 2. Parbati River (8 projects)
- 3. Malana Nala (3 projects)
- 4. Uhl River (4 Projects)

In addition, there are projects in cascade on Baner Khad (2 projects) and projects on tributaries.

9.5.1 Longitudinal Profile of Beas River

Main Beas River has nine planned hydropower projects, viz.;

- Beas Kund SHEP (9 MW)
- Bhang HEP (9 MW)
- Raison SHEP (18 MW)
- Larji HEP (126 MW)
- Beas Satluj Link HEP (990 MW)
- Thana Plaun HEP (191 MW)
- Kanda Pattan (40 MW)
- Triveni Mahadev HEP (96 MW)
- Dhaulasidh HEP (66 MW)
- Pong Dam HEP (396 MW)

Total length of Beas river in Himachal Pradesh is about 274 Km from origin. It flows free for 8.77 Km in upper reaches up to the tip of reservoir of upper most project i.e. Beas Kund SHEP. There are ten projects viz. Beas Kund, Bhang, Raison, Larji, Beas Satluj Link, Thana Plaun, Kanda Pattan, Triveni Mahadev, Dhaulasidh and Pong Dam together will affect about 260.06 Km of the river stretch. Out of this about 86.06 Km will be in reservoirs, 36.96 Km in tunnels and 137.04 km free flowing stretch that can be seen from L-section given at **Figure 9.41**.

9.5.2 Longitudinal Profile of Parbati River

Parbati river is a left bank tributary of Beas River and has eight planned hydropower projects viz.

- 1. Nakhtan HEP (460 MW)
- 2. Parbati II HEP (800 MW)
- 3. Balargha SHEP (9 MW)
- 4. Jari SHEP (12 MW)
- 5. Parbati SHEP (12 MW)
- 6. Sharni SHEP (9.60 MW)

- 7. Sarsadi SHEP (9.60 MW)
- 8. Sarsadi II SHEP (9 MW)

Total length of Parbati river is 77.90 Km from origin to its confluence with Beas river. It flows free for 27.50 Km in upper reaches up to the tip of reservoir of upper most project i.e. Nakhtan HEP. There are eight projects viz. Nakhtan, Parabti II, Balargha, Jari, Parbati, Sharni, Sarsadi and Sarsadi II together will affect about 46.58 Km of the river stretch. Out of this 3.64 Km will be in reservoirs, 24.38 Km in tunnels and 18.56 km free flowing stretch that can be seen from L-section given at **Figure 9.42**.

9.5.3 Longitudinal Profile of Malana Nala

Malana Nala is a tributary of Parbati River and has three planned hydropower projects on main river viz.

- 1. Malana III HEP (30 MW)
- 2. Malana II HEP (100 MW)
- 3. Malana I HEP (86 MW)

Out of about 25.52 Km long river stretch of Malana nala from origin to its confluence with Parbati river, these projects will use about 11.86 Km of river stretch. It flows free for 11.16 Km in upper reaches up to the tip of reservoir of upper most proposed project i.e. Malana III HEP. Free flowing river stretch in adjacent projects can be seen from L-section of Malana Nala given at Figure 9.43.

9.5.4 Longitudinal Profile of Uhl River

Uhl River is a tributary of Beas River and has four planned hydropower projects viz.

- 1. Uhl SHEP (14 MW)
- 2. Uhl I (Shanon) HEP (110 MW)
- 3. Lower Uhl SHEP (13 MW)
- 4. Uhl Khad SHEP (14 MW)

Total length of Uhl river is 82.50 Km from origin to its confluence with Beas river. It flows free for 20.50 Km in upper reaches up to the tip of reservoir of upper most project i.e. Uhl SHEP. From FRL tip of upper most project i.e. Uhl SHEP on Uhl River upto the tip of the reservoir of Uhl Khad SHEP, these projects will use about 55.60 Km of river stretch. Major free stretch of 38.84 Km is between Uhl I and Lower Uhl HEPs. L-section of Uhl River is given at Figure 9.44.

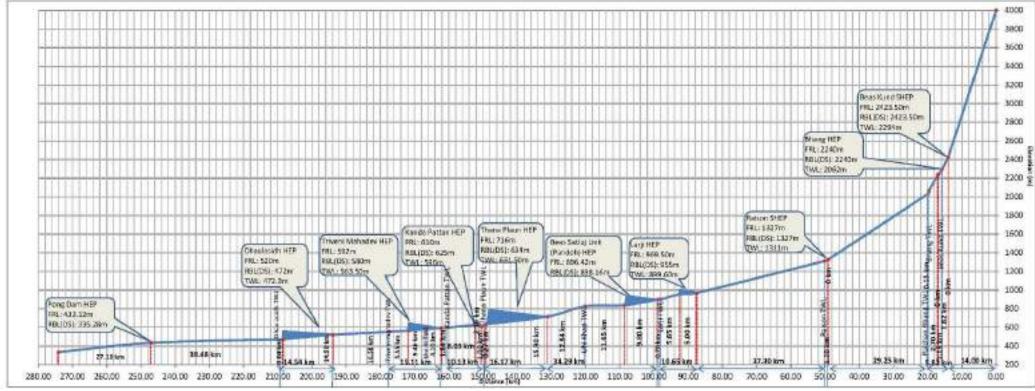


Figure 9.41: Longitudinal Profile of Beas River

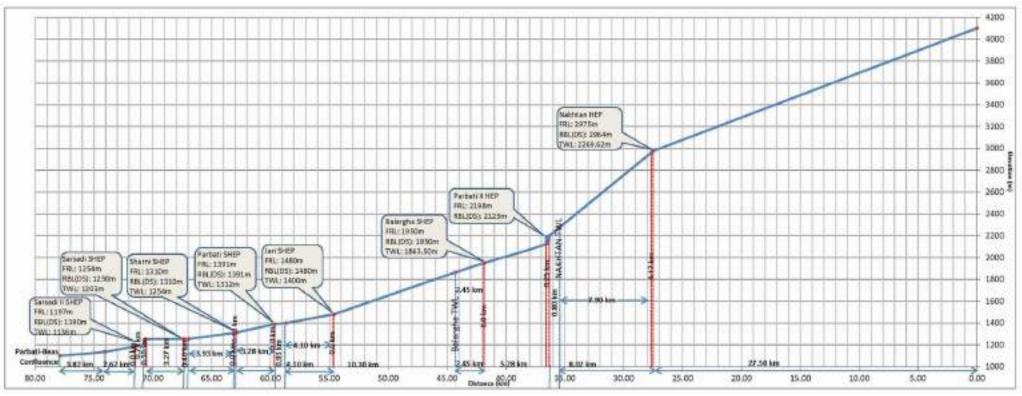


Figure 9.42: Longitudinal Profile of Parbati River

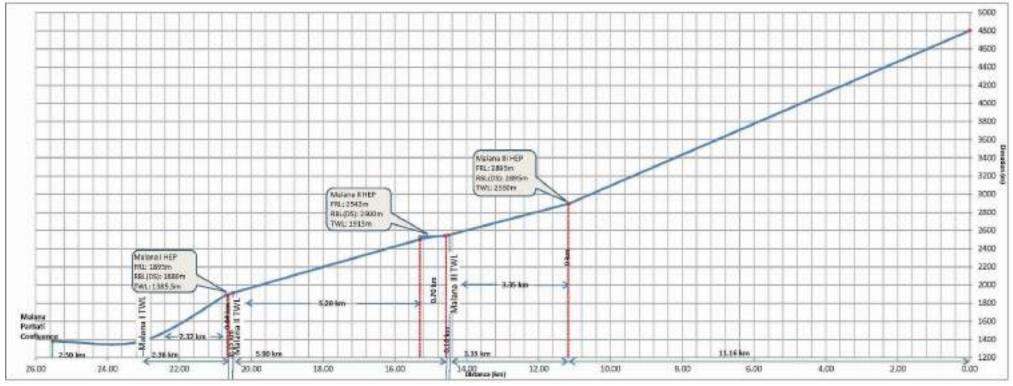


Figure 9.43: Longitudinal Profile of Malana Nala

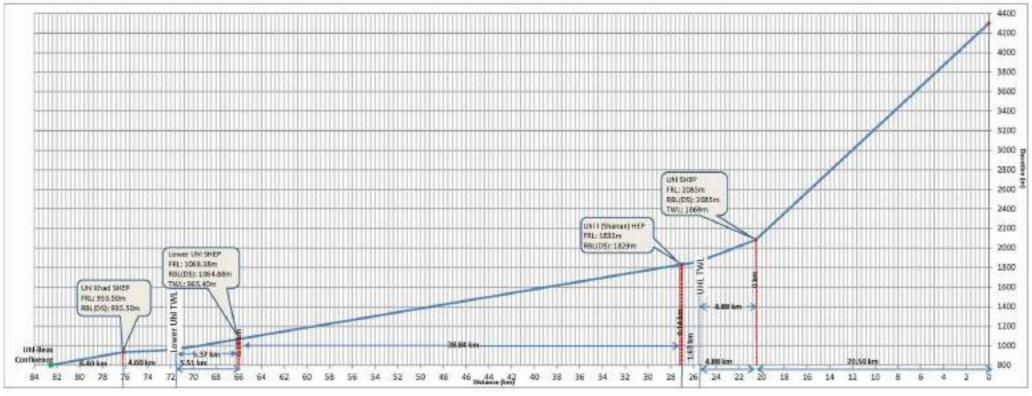


Figure 9.44: Longitudinal Profile of Uhl River

It can be seen from the data on free-flowing stretch and affected river stretch downstream of diversion structure given in **Table 9.38** that Parbati river is most affected by the cascade of projects where at places there is hardly any free flowing stetch between two projects. Moreover, large part of flow of Parbati is being diverted to other basin due to construction of Parbati II HE project where all the diverted water does not come back to Parbati river rather it gets added to the fow of Sainj river, a different basin.

Table 9.38: Summary of length of affected river stretch and free-flowing between cascade of two projects on Beas river and its tributaries

			River L	Present free stretch	River		
S. No.	Name of Project	Capacity (MW)	Reservoir reach	Intermediate reach	Total	between TWL of u/s project and FRL of the d/s project in km	Length likely to be affected (m)/MW
BEAS RIVER							
1	Beas Kund	9	0	1.82	1.82	14.00 (Length from source to upstream of Beas Kund)	202.22
2	Bhang	9	0	2.70	2.70	1.15	300.00
3	Raison	18	0	1.10	1.10	29.25	61.11
4	Larji	126	5	5.65	10.65	37.30	84.52
5	Beas Sutlej Link (Pandoh)	990	9.80	-	9.80	0.70	9.90
6	Thana Plaun	191	18.00	0.27	18.27	10.74	95.65
7	Kanda Pattan	40	2.10	8.03	10.13	1.00	253.25
8	Triveni Mahadev	96	9.56	5.55	15.11	1.84	157.40
9	Dhaulasidh	66	14.50	0.04	14.54	16.58	220.30
10	Pong Dam	396	27.10	-	27.10	38.48	68.43
	TOTAL	1941	86.06	25.16	111.22	Total River Length = 151.04	
PARBATI RIVER							
	Nakhtan	460	0.12	7.90	8.02	27.50 (Length from source to upstream of Nakthan FRL)	17.43
	Parbati-II	800	0.25	0	0.25	0.8	Inter basin transfer
	Balargha	9	0	2.45	2.45	5.28	272.22
	Jari	12	0	4.10	4.10	10.30	341.67
	Parbati	12	0	3.28	3.28	0.93	273.33
	Sharni	9.6	0	3.93	3.93	0.12	409.38
	Sarsadi	9.6	3.27	0.10	3.37	0.40	351.04
	Sarsadi-II	9	0	2.62	2.62	0.73	291.11
						3.82 (From TWL of Sarsadi-II up to confluence with Beas river)	
	TOTAL	1321.2	3.64	24.38	28.02	77.90	
UHL RIVER							
	Uhl	14	0	4.88	4.88	20.50 (Length from source to upstream of Uhl)	348.57
	Uhl-I	110	0.14	0	0.14	1.63	1.27
	(Shanan)	110	•••		<u> </u>		
		13	0.14	5.37	5.51	38.84	423.85
	(Shanan)			5.37 6.40 10.25	5.51 6.40 10.53	38.84 4.60 82.5	423.85 457.14

			River L	ength Affected	(km)	Present free stretch	River
S. No.	Name of Project	Capacity (MW)	Reservoir reach	Intermediate reach	Total	between TWL of u/s project and FRL of the d/s project in km	Length likely to be affected (m)/MW
NALA							
	Malana-III	30	0	3.35	3.35	11.16 (Length from source to upstream of Malana-III FRL)	111.67
	Malana-II	100	0.7	5.2	5.90	0.10	59.00
	Malana-I	86	0.04	2.32	2.36	0.15	27.44
						2.5 (From TWL of Malana- I up to confluence with Parbati river)	
	TOTAL	216	0.74	10.87	11 61	25 52	

Final Report: Chapter 9

CHAPTER-10

CONCLUSIONS & RECOMMENDATIONS

10.1 INTRODUCTION

Previous chapter has discussed the cumulative impacts in Beas basin keeping in view the baseline setting in the region. This chapter deals with specific recommendations for sustainable and optimal ways for hydropower development in the basin. Recommendations are based upon the impacts evaluated and probable scenarios on biodiversity values, riverine ecosystem, riparian habitats, and environmental flow requirements.

Beas Basin in Himachal Pradesh has 4877.70 MW of power potential (for > 5 MW projects), distributed among 51 hydropower projects spread throughout the basin. Out of these 51 projects, 22 projects are commissioned (total installed capacity 2820.90 MW), 5 are under construction (total installed capacity 947 MW), 20 are at various stages of investigations (total installed capacity 1028.90 MW) and 4 are yet to be allotted. Out of proposed 24 projects, many of which are under different stages of survey and investigation, only 4 projects have installed capacity of more than 50 MW i.e. requiring environment clearance as category "A" projects; two are with installed capacity greater than 25 MW but less than 50 MW i.e. environment clearance is applicable under category "B" and remaining 18 projects are less than 25 MW of installed capacity i.e. environment clearance is not applicable.

As can be seen from above text, large part of basin's hydropower potential has already been exploited and more than 50 percent projects are commissioned/under construction. No modification of such projects is suggested; however, environment flow assessment is carried out uniformly for all the projects, irrespective of their status of implementation, and therefore to ensure continuity of flow in the river, recommendations are made for all the projects. For remaining 24 projects, which are under survey & investigations/yet to be allotted critical assessment is made for their impacts keeping in view the sensitivity of their location and cumulative impacts, and recommendations are made accordingly.

10.2 SUSTAINABLE AND OPTIMAL WAYS OF HYDROPOWER DEVELOPMENT

10.2.1 Preclusion of projects

Following Projects were recommended for dropping in the draft report:

S. No.	Name of Project	Capacity (MW)	Developer	Status
1	Jobrie	12	Green Infra Limited	Under S&I
2	Manalsu	21.9		Yet to be allotted
3	Bujling	20	Sai Engineering Foundation	Recently Allotted
4	Makori	20.8	Sai Engineering Foundation	Recently Allotted
5	Palchan Bhang	9	Palchan Bhang Power Pvt. Ltd.	Under S&I
6	Bhang	9	Bhang Hydel Power L.L.P.	Under S&I
7	Seri Rawla	7		Yet to be allotted
8	Raison	18	Himachal Pradesh State Electricity Board	Under S&I

S. No.	Name of Project	Capacity (MW)	Developer	Status
9	Parbati	12	Manimahesh Power Private Ltd.	Under S&I
10	Sarsadi	9.6	Himshakti Power Pvt. Ltd.	Under S&I
11	Sharni	9.6	Sharni Hydro Power Pvt. Ltd.	Under S&I
12	Sarsadi-II	9	Aroma Colonisers Pvt. Ltd.	Under S&I
Total		157.9		

Jobrie (12 MW), Manalsu (21.9 MW), Bhujling (20 MW) and Makori (20.8 MW) HEPs

These four projects are located within the protected areas. Jobrie lies within Inderkilla National Park, Manalsu in Manali Wildlife Sanctuary, Buijang and Makori are located within Dhauladhar Wildlife Sanctuary.

Palchan Bhang (9 MW) and Bhang (9 MW) HEPs

Trench weir Palchan Bhang HE project, is located at 2246m (river bed level at intake on Beas River) while tail water level is 2035m and the trench weir of immediate downstream project on Beas River Bhang HEP is 2240m with tail water at 2104m. Due to conflicts in level only one project is possible. However, both are recommended for dropping keeping in view the disturbance along NH-21 leading to Rohtang Pass, which is already quite high. Any construction on that stretch will further damage the fragile forest cover in the direct impact area as the project components of Bhang HE project are located along the NH-21. The project is located highly disturbed area and dropping will avoid further damage and help in preservation of free flowing stretch of about 3.85 km of Beas river.

Seri Rawla (7 MW) HEP

Project is located in high altitude area at an elevation of about 3000m characterized by Moist alpine scrub and the area is very rich in biodiversity.

Raison HEP (18 MW)

Raison project which is proposed on the main Beas river, upstream of Kullu, should be dropped as the construction along the already crowded National Highway between Kullu and Manali is not desirable. Projects are already operational on tributaries and one project is under construction on Fozal Nalla. The stretch along with tributaries has several trout fisihing sites. Dropping this stretch will keep the main Beas river free for tourism and further degradation of already crowded stretch.

Parbati (12 MW), Sharni (9.6 MW), Sarsadi (9.6 MW) and Sarsadi-II (9 MW)

Four projects viz. Parbati (12 MW), Sharni (9.6 MW), Sarsadi (9.6 MW) and Sarsadi-II (9 MW) with total capacity of 40.20 MW are proposed on Parbati river in cascade. Total length of Parbati river from confluence of Malana Nala to confluence with Beas is little more than 15 km, out which 13 Km will be affected by these four projects. Parbati river is rich in fish fauna and trout is known to migrate upstream in Parbati river; Kasol is an important trout fishing site upstream of these projects. Development of this stretch would hamper trout's movement leading to dwindling of populations of trout and other fishes. Further these projects are located along already stressed narrow Manikaran road. Construction phase will severely affect this stretch.

10.2.2 Recommendations made for Nakhtan HEP (460 MW) in draft report

The proposed Nakthan HE project is located on the boundary of Khirganga National Park. Draft notification declaring ESZ of Great Himalayan National Park Conservation Area (Khirganga National Park is a part) was issued on 25th July 2016; the matter was discussed in Expert Committee Meeting held on 27th February 2017 where it was recommended for finalization subject to certain corrections in coordinates. The project certainly falls within the ESZ as it is just touching the boundary of the National Park, ESZ is about 1.8 Km wide on this part of the park. Entire catchment of Nakthan constitutes Khirganga National Park and is home to important wildlife and number of RET plant species. The construction of the proposed Nakthan HE project would lead to fragmentation of dense temperate forests which contain valuable plant resources. The fragile ecosystem of the area already under stress due to underconstruction Parbati-II HE project would be severely affected due to construction of new roads and other project related construction activities like blasting, mining for construction material, and construction of other infrastructure and influx of workers in the otherwise pristine area.

At present the matter related to diversion of Tosh Nalla for Nakthan is sub-judice and EAC has taken a note of it during the discussion in 91st meeting held on 8-9th February 2016. EAC deferred the appraisal till the time the matter is settled in court.

It is therefore recommended, that whenever, the project is considered by EAC for appraisal after court order; it is to ensure that all the project components and pondage, up to the tip of submergence should be well outside the ESZ of Great Himalayan National Park Conservation Area (Khirganga is a part of this). A wildlife management plan should be prepared and approved by Chief Wildlife Warden for the construction of the project ensuring enough safeguard to protect the wildlife in the region.

10.3 ENVIRONMENTAL FLOW RELEASE RECOMMENDATIONS

There are 51 hydro projects in the Beas river basin; for carrying out hydro-dynamic simulation modelling, projects with 25 MW or more installed capacity have been considered, which are 19 projects in number. Out of these 19 projects, 10 are already commissioned, 3 are under construction, 5 are under different stages of survey & investigations, one is yet to be allotted. Recommendations for 19 projects is given at **Table 10.1** below.

CIA&CCS- Beas Basin in HP

Table 10.1: Environment Flow Release Recommendations for Projects with Installed Capacity > 25 MW

CLN	D	B: (A.65 1.61 1.)	Recommended E-f	low as % of average	discharge in 90% DY	Recommended E-flow cumec		
SI No.	No. Project	River (Affected Stretch)	Lean Season	Peak Season	Other Months		Peak Season	Other Months
1	Beas Satluj Link	Beas River (25 km)	20	15	15	18.99	64.72	25.74
2	Parbati-III	Sainj River (13.7 Km)	20	15	15	1.51	8.46	2.83
3	Allain Duhangan	Allain (9.2 Km)	20	15	15	0.42	2.43	0.85
		Duhangan (5 Km)	20	15	20	0.15	0.96	0.4
4	Larji	Beas River (5.65 Km)	20	15	15	11.42	64.06	21.45
5	Uhl-I	Uhl River (40 Km)	20	15	15	0.44	2.37	1.11
6	Malana-II	Malana Nalla (5.2 Km)	20	15	15	0.52	2.56	1.2
7	Sainj	Sainj River (9 Km)	20	15	15	0.71	3.34	1.61
8	Malana-I	Malana Nalla (2.32 Km)	20	15	15	0.49	3.32	1.24
9	Uhl II	Tailrace of Uhl I	-	-	-	-	-	-
10	Pong Dam	Beas	-	-	-	-	-	-
11	Parbati-II	Parbati River (5.28 Km)	20	15	15	2.99	16.3	3.79
		Jigrai Nalla (0.8 Km)	20	30	25	0.2	1.16	0.54
		Jiva Nalla (8.2 Km)	20	30	25	1.19	6.2	2.53
		Hurla Nalla (12 Km)	20	30	25	0.57	3.12	1.28
12	Lambadug	Lambadug (6.3 Km)	20	15	15	0.25	1.28	0.6
13	Uhl III*	Rana Khad	20	30	25			
		Neri Khad	20	30	25			
14	Nakhtan	Toss (4.4 Km)	25	20	20	0.93	5.24	1.99
		Parbati (8.9 Km)	25	20	20	1.42	7.84	2.94
15	Thana Plaun	Beas River (12.7 Km)	20	15	15	5.05	46.62	11.64
16	Triveni Mahadev	Beas River (5.5 Km)	20	15	15	5.62	54.05	14.49
		Binwa Khad (3.2 Km)	20	15	15	0.93	4.6	1.5
17	Malana-III	Malana Nalla (3.35 Km)	20	15	15	0.31	2.02	0.94
18	Dhaulasidh	Beas River (37 Km)	20	30	20	6.24	90.79	8.1
19	Kanda Pattan	Beas River (8 Km)	20	30	25			

RS Envirolink Technologies Pvt. Ltd.

For the remaining 32 projects, i.e. projects with less than 25 MW installed capacity, irrespective of their stage of implementation environment flow release recommendations shall be 20% in lean season, 30% in peak season and 25% in other months.

Calculations for environment flow release in lean season should be based on average of 4-6 leanest months discharge in 90% dependable year. Calculations for environment flow release in peak season should be based on average peak season discharge for 4 months in 90% dependable year i.e. June to September. Calculations for environment flow release remaining 2-4 months (non peak and non lean period) should be based on average discharge in 90% dependable year in remaining months.

10.4 REVIEW OF DRAFT REPORT AND FINALIZATION OF RECOMMENDATIONS BY EAC

After reviewing the draft report, as discussed in 4th EAC meeting held on April 12, 2017, sub-committee of EAC made a visit to Beas basin during April 12-14, 2018. Sub-committee visited Parbati valley, Beas river up to Solang valley including Allain and Duhangan tributaries, Sainj valley and Tirthan valley. Detailed discussions were held during the visit based on the observations made by the Sub-committee members and following major issues were flagged:

- 1) Protected areas in the basin with status of declaration of ESZ along with marking on the map
- 2) Environment flow assessment for all the projects
- 3) Justification for projects recommended to be dropped

10.4.1 Outcome of 13th EAC meeting

Post visit, the basin study report was discussed in detail during the 13th EAC meeting held on April 27, 2018. Outcome of the meeting as recorded in the minutes of meeting is summarized below. Copy of the MoM is enclosed as **Annexure X** of **Volume II** of the report.

- 1. EAC accepted the recommendation of dropping four projects falling in protected areas viz. Jobrie, Manalsu, Bujiling and Makori.
- 2. Regarding the level conflicts between two proposed projects, viz. Palchan Bhang and Bhang HEPs, and recommendation dropping of both the projects, EAC suggested that as due to conflicts in level only one project is possible. therefore, state government may take a decision on which project to proceed with and sort out the matter with private developers.
- 3. EAC accepted the recommendation of dropping of Seri Rawala.
- 4. Regarding dropping of Raison HEP (18 MW), EAC flagged the matter for discussion with State Government.
- 5. Regarding dropping of four projects, namely, Parbati (12 MW), Sharni (9.6 MW), Sarsadi (9.6 MW) and Sarsadi-II (9 MW) with total capacity of 40.20 MW proposed on Parbati river in cascade, EAC deliberated the issue in detail and flagged it for further discussion.

6. EAC agreed to recommendations made on Nakhtan HEP regarding its consideration only after the legal issues are settled for diversion of Tosh Nalla and also to keep the project components outside the Eco-sensitive Zone.

7. EAC concluded that MoEF&CC will discuss the report with state government of Himachal Pradesh and thereafter the final report will be discussed in EAC again for final appraisal and recommendation.

10.4.2 Outcome of 15th EAC meeting

After receiving the output of Beas basin study and minutes of 13th EAC meeting, Directorate of Energy, Government of Himachal Pradesh had requested to attend the EAC meeting for submissions of their comments on the recommendations of Beas River Basin Study on behalf of state of Himachal Pradesh. Officials of the Directorate of Energy, Govt. of H.P attended the 15th EAC meeting and inter-alia, made a detailed presentation on the recommendation of the study report. EAC deliberated on all the issues in detail. Outcome of the meeting as recorded in the minutes of meeting is summarized below. Copy of the MoM is enclosed as **Annexure XI** of **Volume II** of the report.

- 1. Dropping of Jobrie HEP (12 MW) as it falls in Protected Area GoHP requested not to drop the project on the ground that some of project components falls in Inderkilla Wildlife Sanctuary. Govt. of H.P. requested time to redefine the project so that no component would fall within the protected area. EAC asked the H.P. Govt. representative to revise the project proposal so that it would completely fall outside the protected area and also the ESZ boundary and bring a certificate from Chief Wildlife Warden that all the components of the revised project are located outside the protected area and ESZ.
- 2. Dropping of Manalsu HEP (21.9 MW) as it falls in Protected area Govt. of H.P. confirmed that the project shall not be allotted.
- 3. Dropping of Bujling HEP (20 MW) as it falls in Protected Area GoHP requested not to drop the project on the ground that some of project components fall in Dhauladhar Wildlife Sanctuary. Govt. of H.P. requested time to redefine the project so that no component would fall within the protected area. EAC asked the H.P. Govt. representative to revise the project proposal so that it would completely fall outside the protected area and also the ESZ boundary and bring a certificate from Chief Wildlife Warden that all components of the revised project are located outside the protected area and ESZ.
- 4. Dropping of Makori HEP (20.8 MW) as it falls in Protected Area GoHP confirmed that the project shall be cancelled.
- 5. Dropping of Palchan Bhang HEP (9 MW) and Bhang HEP (9 MW) due to level conflicts Govt. of H.P clarified that these two are parallel schemes, one on Kothi Khad, a tributary of river Beas and another on Beas river and there are no level conflicts between these two schemes. EAC recommended that both the schemes can be developed, as they are independent schemes. Govt. of H.P was requested to submit a location map showing the layouts of both the projects components and levels.

CIA&CCS- Beas Basin in HP Final Report: Chapter 10

6. Dropping of Seri Rawla (7 MW) due to high altitude and biodiversity richness - Govt. of H.P submitted that the project may be allowed with stringent conditions to conserve the Biodiversity, and ensured that all the necessary measures shall be adopted in designing of the project, during construction of the project and also after commissioning. EAC deliberated the concerns in detail and concluded that as the project is in vicinity of Rohtang tunnel portal, Small HEP can be taken up, with adequate precautions to minimize adverse impacts on biodiversity.

- 7. Dropping of Raison HEP (18 MW) due to richness of trout fish and proximity to fishing sites Govt. of H.P. submitted that this project is proposed to be developed as a model project by using the head attained by the meandering of Beas river stretch at Raison. The technology to be adopted for the construction of this HEP with flexible weir option will have the least impacts in comparison to what has been anticipated in the report. The concept and proposal of the project have already been appreciated by the experts. EAC deliberated on the issue in detail and considering the new technology, recommended this project for development.
- 8. Dropping of four projects on Parbati River viz. Parbati HEP (12 MW), Sharni HEP (9.6 MW), Sarasadi HEP (9.60 MW) & Sarasadi-II HEP (9 MW) in cascade to ensure free flowing Parbati river stretch, which is rich in fish fauna and trout is known to migrate upstream in Parbati river along this stretch from Beas. Govt. of H.P. has submitted that they will redefine the projects to ensure the minimum free flowing river stretch is maintained between projects in cascade and shall also ensure fish movement by provisions of well-designed fish ladders. Further Sharni HEP (9.6 MW) and Sarasadi HEP (9.6 MW) are proposed to be dropped. It was also submitted that project construction will be taken up in phased manner. EAC recommended that Govt. of H.P. may redefine these projects by ensuring minimum 1 km of free flowing river stretch between FRL and TWL of projects in cascade. E-flows have to be provided as per the norms and the impact on the river should be minimum.
- 9. Flagging of Nakhtan HEP (460 MW as the proposed project falls within the ESZ boundary of Great Himalayan National Park Conservation Area (Khirganga National Park is a part) and also the matter related to diversion of Tosh Nalla for Nakthan HEP is sub-judice. Govt. of H.P., requested that the recommendations on above two aspects may be left for the stage of individual EC of this project. EAC noted the concerns raised and concluded that it is a legal requirement to keep the project components outside the ESZ. Further, the court order with respect to diversion of Tosh Nalla will be binding on project developer. Therefore, once the matters are resolved, a fresh look will be taken at the project at that point of time.
- 10. Environment Flow Release Recommendations With respect to environment flow release recommendations of all the projects viz., operational, under construction and proposed as made in Beas river basin study report; GoHP has submitted that project specific e-flow release with respect to 8 operational projects and 3 under construction projects should not be considered. These Hydro Electric Projects are bound by GoHP Notification dated 09.09.2005 regarding release of e-flow which states that "threshold value of not less than 15% of the minimum inflow observed in lean season to the main river water body whose water is being harnessed by the project" shall be the quantum of minimum flow of water to be

released and maintained immediately downstream of the diversion structure of existing and upcoming hydel projects. The same has also been incorporated in the respective agreements executed for these HEPs and accordingly the e-flow is being maintained and monitored through Himachal Pradesh State Pollution Control Board.

However, few developers like Bhakra Beas Management Board, Punjab State Power Corp. Ltd., etc. were not following the notification and have moved the Hon'ble NGT. Now as per 9th August, 2017 orders of Hon'ble NGT, all theses HEPs have been directed to maintain e-flow @ 15-20% of the average lean seasons flow of a particular river. GoHP requested that let the e-flow release be as per NGT order rather than as per the basin study report because implementation of recommendation of basin study report on operational and under construction project would be a challenge for the state and developers can again take the legal recourse.

EAC noted the issue and asked Govt. of H.P. to make a comparative statement within 2 months for all under construction and operational projects about the e-flow and energy generation under all the three scenarios viz. present release, release as per NGT order and release as per basin study report. The matter will be again deliberated in EAC on receipt of this information.

- 11. E-flow release recommendation of 3 proposed projects viz. Thana Plaun (191 MW), Triveni Mahadev (96 MW) and Malana-III (30 MW) HEPs has been accepted by the state government.
- 12. E-flow release recommendation with respect to Dhaulasidh HEP (66 MW), may require revision as the 90% dependable year as per the approved DPR and as taken in Beas river basin study appears to be different. EAC opined that the results be re-examined and submitted.
- 13. GoHP also requested that e-flow release requirement with respect to Nakhtan HEP should not be fixed at this stage because based on court order and ESZ boundary resolution, project components will undergo certain changes. Based on final project components, a fresh e-flow requirement study will be undertaken and presented along with the EIA report at the time of environment clearance. EAC agreed with the submission.
- 14. EAC concluded that the Beas RBS shall be deliberated after receiving the requisite information from Govt. of H.P. after two months.

10.4.3 Outcome of 19th EAC meeting

Further to the discussion in 15th meeting, the Directorate of Energy, Government of Himachal Pradesh responded vide their letter dated 23.10.2018 and made presentation in 19th EAC meeting. Outcome of the meeting as recorded in the minutes of meeting is summarized below. Copy of the MoM is enclosed as **Annexure XII** of **Volume II** of the report.

1. Revision of layout of Jobrie HEP (12 MW) to ensure all components are outside the ESZ of Inderkilla WLS - GoHP submitted that Jobri Nalla is falling within the wildlife sanctuary and therefore they are not diverting the water of Jobri Nalla, whereas another diversion of the project in on Allan Nalla, which is outside the protected area and therefore, they should be

allowed to utilize the water of Allan Nalla for developing an HEP with reduced capacity of 6 MW. As up to 2 MW projects are permitted in the Eco-Sensitive Zone, GoHP may be allowed to develop an HEP of 2 MW in ESZ of Inderkilla WLS on Jobrie Nalla. EAC accepted the GoHP request with regard to Jobrie HEP.

- 2. Dropping of Manalsu HEP (21.9 MW) as it falls in Manali WLS The project was dropped as it falls in Manali WLS; and the recommendation was accepted by EAC as well as GoHP. However, a prospective developer has represented that the major project features viz., the powerhouse, forebay, penstock, switchyard and transmission lines will be located outside the sanctuary area. It involves an intake in a deep gorge and an underground tunnel of 2.5 km which will be excavated from one end that is out of the WLS boundary. No adit is proposed in between the tunneling excavation, ensuring no interference with the Sanctuary. However, the representation is silent on the locations of the dam/ barrage/diversion structure and the intake structure to HRT. EAC noted that as per the basin study report, the diversion structure, intake structure, etc. were falling within the Manali Wildlife Sanctuary. After detailed deliberation, it has been decided that let the State Govt. shall submit the details of the locations of the project features of the Manalsu HEP vis-a-vis the boundary of the Manali WLS for further consideration of the EAC.
- 3. Revision of layout of Bujling HEP (20 MW) to ensure all components are outside the ESZ of Dhualadhar WLS GoHP was asked to re-plan the project to ensure that revised project should be completely outside the protected area as well as proposed eco-sensitive zone. GoHP has requested more time, as the ESZ of Dhauladhar Wildlife Sanctuary has not been finalized as yet. EAC accepted the request and observed that basin study should record that all the components of revised Bujling project should be outside the protected area as well as ESZ.
- 4. Dropping of Makori HEP (20.8 MW) GoHP confirmed that the allotment of project will be cancelled.
- 5. Submission of a clear layout of Palchan Bhang HEP (9 MW) and Bhang HEP (9 MW) by GoHP GoHP presented a map, however, it was not very clear and therefore EAC asked the GoHP to submit a clear location map produced by GIS showing contours in the region for inclusion in the basin study report.
- 6. Revision of configuration of four projects on Parbati River viz. Parbati HEP (12 MW), Sharni HEP (9.6 MW), Sarsadi HEP (9.60 MW) & Sarsadi-II HEP (9 MW) to ensure free flowing river stretch in trout rich river stretch GoHP presented that they have revised the project configurations and now only two projects are being planned on this stretch to ensure adequate free stretch between these two projects.
- 7. Flagging of Nakhtan HEP (460 MW as the proposed project falls within the ESZ boundary of Great Himalayan National Park Conservation Area (Khirganga National Park is a part) and also the matter related to diversion of Tosh Nalla for Nakthan HEP is sub-judice GoHP submitted that an out of court settlement is being done with the developer of Tosh project under which Nakhtan HEPs Tosh diversion will be dropped altogether. Instead, capacity of the existing projects on Tosh will be increased as follows: Tosh I HEP from 10 MW to 20 MW Tosh II HEP

from 5 MW to 25 MW Tosh III HEP from 5 MW to 25 MW EAC asked the GoHP to provide the details of revised capacities of projects along with agreement on Tosh projects so that they can be included in the basin study report.

- 8. Kanda Pattan HEP GoHP submitted that a new project has been conceived in Beas basin and it was earlier not covered in the study. This falls between Thana Plaun HEP and Triveni Mahadev HEP and will have an installed capacity of about 40 MW. EAC asked the GoHP to provide the details so that they can be appropriately included in the basin study report.
- 9. Environment Flow Release Recommendations EAC noted that regarding environment flow recommendations, GoHP was asked to submit the energy calculation and tariff loss for existing/under construction projects where environment flow has been recommended to be increased from the present releases. GoHP has submitted calculations for 4 operational projects only and remaining data is yet to be submitted. EAC noted that data submitted is not legible and incomplete and therefore asked GoHP to provide full detail as requested for all the projects which are under construction and under operation.
- 10. Recommendations of e-flows release of Dhaulasidh HEP As directed by EAC, revised e-flow assessment for Dhaulasidh HEP was carried out. The recommendation made earlier was reviewed and 90% DY is not found to be different in basin study from that of EIA study/DPR of Dhaulasidh HEP. Difference was in seasons, how they were considered in EIA study and in basin study; therefore, data was re-examined to re-represent the seasons as

Monsoon - June to September Lean Season - November to April Other Months - May and October

This has resulted in slight change in the recommendation and the revised e-flows recommendation for Dhaulasidh HEP are:

Monsoon (June to September) - 30% (90.80 cumec)

Lean Season (November to April) - 20% (6.24 cumec)

Other Months (May and October) - 20% (8.30 cumec)

Being a dam toe powerhouse based project, e-flows can be released from the turbines as long as continuity of release can be maintained. EAC accepted the revised e-flow recommendation for Dhaulasidh HEP.

10.4.4 Outcome of 20th EAC meeting

Further to discussion in 19th EAC meeting, GoHP made another presentation in 20th EAC meeting on the pending issues. Outcome of the meeting as recorded in the minutes of meeting is summarized below. Copy of the MoM is enclosed as **Annexure XIII** of **Volume II** of the report.

1. Revision of layout of Jobrie HEP (12 MW) to ensure all components are outside the ESZ of Inderkilla WLS - Govt. of Himachal Pradesh (GoHP) again confirmed that as recommended by EAC, the HEPs will be developed as per the applicable norms and restrictions of project development in protected areas and Eco-sensitive Zones.

CIA&CCS- Beas Basin in HP Final Report: Chapter 10

2. Dropping of Manalsu HEP (21.9 MW) as it falls in Manali WLS - Government of Himachal Pradesh submitted that diversion structure as well as part of tunnel falls within the Manali WLS while the rest of the components including powerhouse is outside the WLS. The project envisages a drop type trench weir structure in the protected area, thus involves minimum construction in the protected area. GoHP further submitted that it will be ensured that while executing the construction of intake structure, utmost care will be exercised to avoid any infringement to wildlife, etc. under any circumstances.

EAC deliberated that generally during the basin studies, consideration of overall impact of development of HEPs in the entire basin is taken and, projects falling in protected areas are out rightly dropped and therefore, Manalsu HEP was also recommended to be dropped and the recommendation was accepted by EAC & Govt. of H.P. It was further discussed that while the project is considered on the request of the state government, the project will also require wildlife clearance. It has been opined that let the matter be discussed in the State Board of Wildlife whether the portion of the project coming in the WLS be permissible activities and accordingly Wildlife Clearance be obtained from the Standing Committee on National Board of Wildlife. Accordingly, it has been opined that let the project be placed before the NBWL for its viability.

- 3. Revision of layout of Bujling HEP (20 MW) GoHP has submitted that they have accepted the recommendation that all the components of revised Bujling project should be outside the protected area as well as ESZ and it will be finalized after the final notification of ESZ of Dhauladhar WLS is notified.
- 4. Dropping of Makori HEP (20.8 MW) GoHP agreed with the recommendation of the report and confirmed that the allotment of project will be cancelled.
- 5. Submission of a clear layout of Palchan Bhang HEP (9 MW) and Bhang HEP (9 MW) by GoHP GoHP has submitted the map as required for inclusion in the basin study report.
- 6. Revision of configuration of four projects on Parbati River viz. Parbati HEP (12 MW), Sharni HEP (9.6 MW), Sarsadi HEP (9.60 MW) & Sarsadi-II HEP (9 MW) to ensure free flowing river stretch in trout rich river stretch GoHP presented that they have revised the project configurations and now only two projects are being planned on this stretch to ensure adequate free stretch between these two projects. As per the revised schemes, HEP I is 15 MW with a trench weir across Parbati river at around 600 m downstream of confluence of Baladi Nallah with Parbati river at Elevation of 1365 m and powerhouse on right bank at elevation of 1273 m. HEP II will be 20 MW with a diversion barrage across Parbati river downstream of HPPWD RCC bridge at elevation of 1245 m where the good rock is available on right bank. Powerhouse at elevation of 1135 m on right bank opposite to the village Jachani. This arrangement will ensure a minimum of 1 km of free flowing river stretch between FRL and TWL of projects in cascade. Once, all the information is provided for both the projects, the e-flow, etc. will be recalculated again and included in the River Basin Study.
- 7. Revision of project configurations on Tosh Nalla and revision of Nakhtan HEP (460 MW) GoHP submitted that Tosh Nalla will have independent schemes as: 3 Tosh I HEP (20 MW), presently

10 MW from 2280 m to 2480 m. Tosh II HEP (25 MW), new project from 2490 m to 2690 m. Tosh III HEP (32 MW), new project from 2700 m to 2960 m. EAC discussed the matter and concluded that there is no objection to development of such schemes as long as at least 1 km free flow river stretch is available between FRL and TWL of projects in cascade and the projects on Tosh as well as on Parbati remain outside the ESZ of Khirganga National Park.

- 8. Kanda Pattan HEP GoHP submitted that a new project, Kanda Patan HEP has been conceived in Beas basin which was not included in the study. The scheme will maintain the required riparian distance of about 1 to 1.5 km from TWL of upstream project and FRL of downstream project. The diversion site is proposed at around 600 m upstream of Neri bridge on Dharampur-Jogindernagar Road and powerhouse on the right bank at around 11 km downstream of the diversion site. EAC discussed the matter and concluded that the scheme can be considered in the basin study as long as the minimum of 1 km distance of free flow stretch is ensured from FRL of downstream project and TWL of upstream project.
- 9. Environment Flow Release Recommendations Based on the observation of EAC, GoHP has now worked out energy loss calculations due to implementation of environment flow recommendations by existing and under construction projects. GoHP has also submitted that some of the older projects do not comply even to the state government norms and are also not complying with NGT's order applicable to all rivers in the country for release of minimum environment flow by HEPs. GoHP requested EAC not to recommend environment flow as assessed in the basin study report for existing and under construction projects and they should be allowed to continue to follow the state government/NGT guidelines, which are comparable.

EAC deliberated the matter in detailed and concluded that environment flow in basin study has been worked out taking basin as a whole and irrespective of the fact whether there exists a project or a project is under construction or a project is proposed in future. It is based on scientific study and such recommendation should remain independent of the legal issues involved in implementation. Therefore, environment flow recommendation as per basin study should be applicable to all projects irrespective of their status of implementation. If GoHP finds it difficult to implement, GoHP can approach NGT or central government and deal with the matter separately.

10. EAC finally concluded all the discussions on Beas River Basin study and directed the Consultant to update/finalize the basin study report, keeping in view the matter discussed and recorded in various EAC meetings.

10.5 CONCLUSIONS

Beas basin study has been updated, incorporating all the discussions and recommendations made by EAC and the additional data submitted by Government of Himachal Pradesh. The final set of recommendations are:

1. Jobrie HEP (12 MW) will be developed as two independent projects - one with diversion on Allan Nalla, and will be of 6 MW installed capacity and another with diversion on Jobrie nalla and will be of 2 MW installed capacity. All the components including pondage for both the

projects will be outside the boundary of Inderkilla WLS and its Eco-sensitive Zone (ESZ) with the exception of 2 MW project on Jobrie Nalla, which can be developed in ESZ only if permitted by the ESZ notification.

- 2. Manalsu HEP (21.9 MW) falling within Manali WLS will undergo Wildlife Clearance as per Wildlife Protection Act. Based on the assessment by the State Board of Wildlife that whether the portion of the project coming in the WLS is a permissible activities and accordingly, Wildlife Clearance should be obtained from the Standing Committee on National Board of Wildlife.
- 3. Bujling HEP (20 MW) Location of Bujiling HEP will be changed/project component revised to ensure that all the components including pondage will be outside the boundary of Dhauladhar WLS as well as ESZ of Dhauladhar WLS as and when it is notified.
- 4. Makori HEP (20.8 MW) Project is recommended for dropping and therefore the allotment of project will be cancelled.
- 5. Palchan Bhang HEP (9 MW), Bhang HEP (9 MW), Seri Rawla (7 MW), Raison (18 MW) will be developed as planned.
- 6. Four projects on Parbati River viz. Parbati HEP (12 MW), Sharni HEP (9.6 MW), Sarsadi HEP (9.60 MW) & Sarsadi-II HEP (9 MW) are dropped. The stretch of Parbati river from the confluence of Malana Nalla with Parbati up to confluence of Parbati river with Beas river, will have only two projects HEP I (15 MW) and HEP II (20 MW). These projects will be so located to ensure that a minimum of 1 Km of river stretch will flow free between FRL and TWL of projects in cascade. As the both the projects are less than 25 MW installed capacity, environment flow release will be maintained as 20% in lean season, 30% in peak season and 25% in remaining months. Percentage calculations will be made based on the 90% dependable year discharge data used for the project design/power potential calculation in DPR.
- 7. Nakhtan HEP (460 MW) will be re-designed with diversion on Parbati river only. Tip of the submergence of revised Nakhtan HEP will be outside the Eco-Sensitive Zone of Khirganga National Park.
- 8. Installed capacity of present Tosh HEP will be increased from 10 MW to 20 MW and it will be termed as Tosh I HEP. Upstream of Tosh I HEP, Tosh II HEP and Tosh III HEP can be developed, however, it is to be ensured that:
 - a. TWL of Tosh II HEP will be at least 1 Km upstream of FRL of Tosh I HEP and
 - b. TWL of Tosh III HEP will be at least 1 Km upstream of FRL of Tosh II HEP and
 - c. FRL of Tosh III HEP will be outside the ESZ of Khirganga National Park and
 - d. All three projects will follow environment flow release norms i.e. 20% in lean season, 30% in peak season and 25% in remaining months. Percentage calculations will be made based on the 90% dependable year discharge data used for the project design/power potential calculation in DPR.

CIA&CCS- Beas Basin in HP Final Report: Chapter 10

9. Kanda Pattan HEP will be developed on Beas river between Thana Plaun HEP and Triveni Mahadev HEP, however it is to be ensured that:

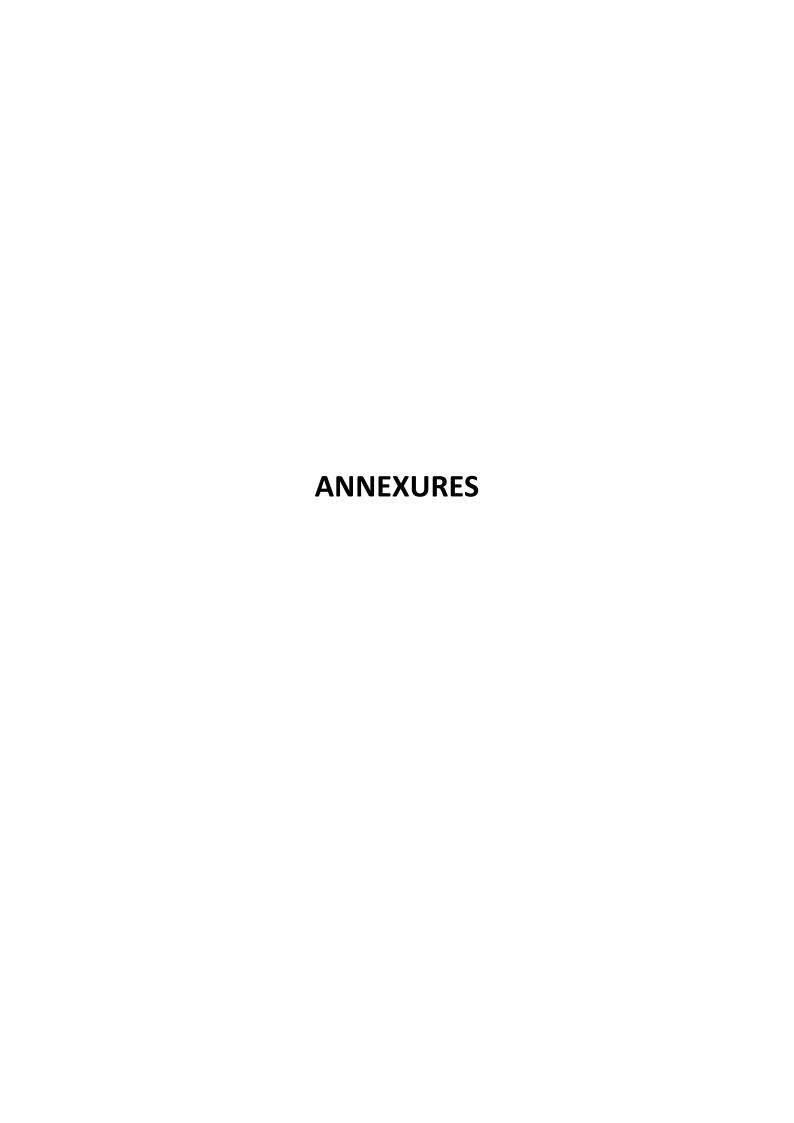
- a. FRL of Kanda Pattan on Beas river will be at least 1 Km downstream of TWL of Thana Plaun HEP and
- b. TWL of Kanda Pattan on Beas Rvier will be at least 1 Km upstream of FRL of Triveni Mahadev HEP and
- c. the project will follow environment flow release norms i.e. 20% in lean season, 30% in peak season and 25% in remaining months. Percentage calculations will be made based on the 90% dependable year discharge data used for the project design/power potential calculation in DPR.

10. Environment Flow Release Recommendations

Environment flow release recommendations will be implemented for all the projects i.e. operational projects, under construction projects and projects being planned/designed or are under survey & investigation stage.

E-flow is recommended for 19 projects in **Table 10.1** and shall be adopted. For remaining projects, i.e. projects with less than 25 MW installed capacity, irrespective of their stage of implementation environment flow release recommendations shall be 20% in lean season, 30% in peak season and 25% in other months.

Calculations for environment flow release in lean season should be based on average of 4-6 leanest months discharge in 90% dependable year. Calculations for environment flow release in peak season should be based on average peak season discharge for 4 months in 90% dependable year i.e. June to September. Calculations for environment flow release remaining 2-4 months (non-peak and non-lean period) should be based on average discharge in 90% dependable year in remaining months.


- Adoni, A.D., Joshi, G., Gosh, K., Chaurasia, S.K., Vashya, A.K., Yadav Manoj and Verma H. G. (1985); Workbook on limnology. Pratibha Publishers C-10, Gour Nagar, Sagar-470003, India.
- Ali, S. and Ripley, S.D. (1983). Handbook of the birds of India and Pakistan. Oxford (Delhi and New York).
- Annual Flow Estimations (2016) Pong Da lake Sanctuary 2015-16. (Report Edited, Compiled & got uploaded on HPFD Web site by A R M Reddy IFS, CCF(WL), office of PCCF (WL) HP) http://hpforest.nic.in/files/Annual%20Water%20Fowl%20Estimation.pdf pp. 1-15..
- APHA (1992). Standard methods for the examination of water and wastewater, 18th ed. Washington DC: American Public Health Association.
- Arya, V., Bhardwaj, A. and Sharma, V. (2011). Pharmacology of some Antioxidant Plants from District Kangra Himachal Pradesh A Review. *International Journal of Current Pharmaceutical Research*. Vol 3(2): pp 26-31.
- Battish, S.K. (1992). Fresh Water Zooplankton of India. Oxford and IBH Publishing Co. Pvt. New Delhi.
- Bharadwaj, M. and Uniyal, V. P. (2009). Assessment of Butterflies in a Monatane Temperate Forest of Allain-Duhaingan Catchment in Kullu, Himachal Pradesh, India- Proposed Hydroelectric Project Site. *Indian Forester*. Vol 135(10): 1357-1366.
- Birdlife International, 2017. Country profile: India. Available from http://www.birdlife.org/datazone/countryindia.
- Champion H.G., Seth S.K., (1968). A revised survey of the forest types of India. Govt. of India Press, Nasik.
- Chandel, S. Kumar, V., Sharma, B. P., And Patiyal, R. (2013). Butterfly Fauna of Shivalik Hills Areas of Kangra and Hamirpur Districts of Himachal Pradesh in India. *Life Science Journal*. Vol 55: pp 25-38.
- Chandel, S., Kumar, V., Sharma, B. P. and Patiyal, R. (2014). Bird Diversity of Dhauladhar Nature Park-Gopalpur, District Kangra, Himachal Pradesh. International Journal of Plant, Animal and Environmental Sciences. Vol 4 (2): pp. 236-244.
- Conservation Assessment and Management Plan (CAMP) Workshops Report (2003). Medicinal Plant species of conservation concern identified for Himachal Pradesh (HP). http://envis.frlht.org- ENVIS Centre on Conservation of Medicinal Plants, FRLHT, Shimla.
- Conservation Assessment and Management Plan (CAMP) Workshops Report (1998), Freshwater Fishes of India, Hosted by National Bureau of Fish Genetic Resources (ICAR), Lucknow 22-26 September 1997. Edited by Sanjay Molur and Sally Walker. Published by Zoo Outreach Organisation.
- Curits, J. T., (1959). The vegetation of Wisconsin. Univ. Wisconsin Press, Madison.
- Curtis, J. T. and McIntosh R. P.,(1950). The interre-lations of certain analytic and synthetic photosocio-logical characters. Ecology. Vol. 31: pp.434-455.
- Dogra, K. S., Sood, S. K., Dobhal, P. K. and Kumar, S. (2009). Comparison of Understorey Vegetation in Exotic and Indigenous Tree Plantations in Shivalik Hills of N. W. Indian Himalayas (Himachal Pradesh). *Journal of Ecology and The Natural Environment*. Vol. 1(5): pp. 130-136.
- Editor-Director (2009). Faunal Diversity of Pong Daln and its Catch,nent Area, Wetland Ecosystem. (Published by the Director, Zoo. Surv. India, Kolkata) Series, 1: pp. 1-138.

- Edmondson, W.T. (1959). Freshwater Biology. John Wiley & Sons, New York.
- Gaston, A. J., Garson P. J. and Pandey, S. (1993). Birds recorded in the Great Himalayan National Park, Himachal Pradesh, India. *Forktail*. Vol 9: pp 45-57.
- Grimmett, R., Inskipp, C. and Inskipp, T. (1998). *Birds of the Indian Subcontinent*. London: Oxford University Press. 384p.
- Grimmett, R., Inskipp, C. and Inskipp, T. (2011). Birds of the Indian Subcontinent. London: Oxford University Press. 528p.
- <u>http://avibase.bsc-eoc.org/avibase.jsp</u>. Avibase -a database system for managing and organizing taxonomic concepts
- <u>http://www.algaebase.org/</u> AlgaeBase is a Global Species Database of information on all groups of algae.
- <u>http://www.fishbase.org</u> Fishbase: A Global Information System on Fishes.
- http://www.nethan-valley.co.uk/insectgroups.doc
- http://www.theplantlist.org. International Plant Names Index
- Hustedt, F. (1943). Neue und wenig bekannte Diatomeen. Ber. Deutsch. *Bot. ges.* Vol. 61: pp 271-290.
- Hustedt, F. and Jensen, N.G. (1985). *The Pennate Diatoms*. Koeltz Scientific Books, Koenigstein. Pp. 918.
- Indian State of Forest Report (2015). Forest Survey of India, Minsistry of Environment and Forest Govt. of India, Dehradun.
- International Union for Conservation of Nature (IUCN) Red List of Threatened Species 2015. http://www.iucnredlist.org/apps/redlist/search.
- Islam, M. Z. & Rahmani, A. R. 2004. *Important Bird Areas in India: Priority sites for conservation*. Indian Bird Conservation Network: Bombay Natural History Society and BirdLife International (UK). Pp. xviii + 1133.
- Kaur, I., Sharma, S. and Lal. S., (2011). Ethnobotanical survey of Medicinal plants used for Different diseases in Mandi district, Himachal Pradesh, *International Journal of research of Pharmacy and Chemistry*, 1(4).
- Koundal, A., Kundai, S. and Sharma, I. (2013). Dimorphic characteristics of hill stream fish from the different tributaries of River Beas (H.P), India. *Journal of Sustainable Environmental Research*, Vol 2 (2): pp. 1-11.
- Krammer, K. (2003). Diatoms of Europe. Volume 4: Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella. 530 pp. A.R.G. Gantner Verlag K.G.
- Kumar N. and Choyal R., (2013). Traditional health cure practices used for respiratory disorders by the rural people of Hamirpur district of Himachal Pradesh, *Life Sciences Leaflets*, Vol. 4: pp. 41-50.
- Kumar, N. and Choyal, R. (2012). Ethnobotanical notes on some plants used for the Treatment of Leucorrhoea and other Gynecological Problems In Hamirpur District Of Himachal Pradesh. *Indian Journal of Fundamental and Applied Life Sciences*. Vol. 2 (4): pp.126-133.
- Kumar, N. and Choyal, R. (2012). Traditional Use of Some Plants of Hamirpur District of Himachal Pradesh for the Treatment of Jaundice, Hepatitis and Other Liver Disorders. *International Journal of Theoretical & Applied Sciences*, Vol. 4(2): pp. 201-205.
- Kumar, N., Kumar, M. and Sharma, B. (2014). Leafy drugs from Tehsil Joginder Nagar, District Mandi, Himachal Pradesh, India. *Research in Pharmacy*. Vol. 4(5): pp. 01-10.

- Kumar, R. and Kumar, S. (2012). Biodiversity and Interdependence Study of the Pong Wetland Bird Sanctuary. *International Journal of Geology, Earth and Environmental Sciences*. Vol. 2 (1): pp. 97-100.
- Kumar, S. and Kumar, P. (2014). Medicinal Plant Diversity in Tungal Valley of District Mandi, Himachal Pradesh (India). *Proceedings of the National Conference on 'Advances in Basic & Applied Sciences' (ABAS-2014). Asian J. of Adv. Basic Sci.*: Vol. 2(3): pp. 103-108.
- Kumar, S., Chand, G. and Sankhyan, P. (2013). Herbal Folk Remedies for Curing Various Ailments in Lug Valley of District Kullu, Himachal Pradesh (N.W. Himalaya). International *Journal of Ayurvedic and Herbal Medicine*. Vol. 3 (5): pp. 1308-1314.
- Kumari, A., Sangta, R. P. and Chawla, A. (2013). Diversity, Distribution Pattern and Threat Status of Pteridophytic Flora in Shikari Devi Wildlife Sanctuary, Himachal Pradesh, India. J Biodivers Manage Forestry. Vol 2(4): pp. 1-7.
- Lakra, W. S., Sarkar, U. K., Gopalkrishnan, A. and Kathirvelpandian, A. (2010), Threatened Freshwater Fishes of India. Published by National Bureau of Fish Genetic Resources (ICAR), Lucknow. 25 pp.
- Magurran, A. E. (2004). Measuring Biological Diversity. Oxford: Blackwell Science.
- Mishra, P.R. and Nadda, R.K. (2014). Water Resource Pollution and Impacts on the local livelihood: A case study of Beas River in Kullu District, India. Future of Food: Journal on Food, Agriculture and Society. Vol. 2 (1): pp 61-75.
- Misra, R. (1968). Ecology Work Book. Oxford & IBH Publication, New Delhi.
- Murari, J., Thakur, L. and Banyal, H.S., (2015). Satus of Pisces, Amphibia and Reptilia in Prashar area of Mandi District 9Himachal Pradesh), India. *Asian Journal of Biological and Life Sciences*. Vol 4 (2): pp. 150-155.
- Nautiyal, P. and Nautiyal, R. (2002). Altitudinal variations in the relative abundance of epilithic diatoms in some glacier and spring-fed Himalayan tributaries of Ganga (Ganges) river system in the Garhwal region. In *Proceeding of the 15th International Diatom Symposium, Tokyo, eds. J. John*, Perth: ARG Gantner Verlag K.G. pp: 143-151.
- Nautiyal, R. and Nautiyal, P. (1999). Altitudinal variations in the pennate diatom flora of the Alaknanda-Ganga river system in the Himalayan stretch of Garhwal region. Pages 85-100, In: *Proceedings of Fourteenth International Diatom Symposium* (S. Mayama, M. Idei and I. Koizumi, eds.), Koeltz Scientific Books, Koenigstein.
- Nayar M.P. and Sastry A.R.K. (1987). *Red Data Book of Indian Plants*. Botanical Survey of India, Calcutta. Vol.I.
- Nayar M.P. and Sastry A.R.K. (1988). *Red Data Book of Indian Plants*. Botanical Survey of India, Calcutta. Vol.II.
- Nayar M.P. and Sastry A.R.K. (1990). *Red Data Book of Indian Plants*. Botanical Survey of India, Calcutta. Vol.III.
- Pandey, S. (2008). Linking Eco-Development And Biodiversity Conservation at the Great Himalayan National Park, India: Lessons Learned. *Biodiversity Conservation*. http://greathimalayannationalpark.com/wp-content/uploads/2012/09/Linking-Ecodevelopment-and-Biod-conservation-at-the-GHNP.pdf
- Pandey, S. and Wells, M.P. (1997). Ecodevelopment planning at India's Great Himalayan National Park for biodiversity conservation and participatory rural development. Biodiversity Conservation. Vol. 6(9): pp. 1277-1292.
- Pant, S. and Samant, S. (2012). Diversity and regeneration status of tree species in Khokhan Wildlife Sanctuary, north-western Himalaya. *Tropical Ecology*. Vol. 53(6): pp. 317-331.

- Pennak, R. W. (1953). Freshwater Invertebrates of United States (2nd edition). John Willey & Sons, New York.
- Prater, S.H. (1980). *The Book of Indian animals*. Third ed. *Bombay Natural History Society*. Bombay, 428 p.
- Rana Man, S. & Samant S. S. (2011). Diversity, indigenous uses and conservation status of medicinal plants in Manali Wildlife Sanctuary, North Western Himalaya. Indian Journal of Traditional Knowlwdge. Vol. 10 (3): pp. 439-459.
- Rana, M. S. & Samant, S. S. (2009). Threat Categorisation And Conservation Prioritisation Of Floristic Diversity In The Indian Himalayan Region: A state of art approach from Manali Wildlife Sanctuary. *Journal for Nature Conservation*. Vol. 18: pp 159-168.
- Randhawa, S. Pong Wetland, H.P. State Centre on Climate Change Under the Aegis of State Council For Science, Technology & Environment, Shimla, H.P.
- Reimer, C.W. (1962). Some aspects of the diatom flora of Cabin Creek Raised Bog, Randolph Co., Indiana. Proceedings of the Indiana Academy of Science Vol. 71: pp. 305-319.
- Research Report (1999). An ecological study of the conservation of biodiversity and biotic pressures in the Great Himalayan National Park Conservation Area an ecodevelopment approach. Forestry Research Education and Extension Project Great Himalayan National Park (FREEP GHNP), Final Project Report, Wildlife Institute of India, Dehradun. Vol. 1-6.
- Rodgers, W.A. and Panwar, H.S. (1988). Planning a Wildlife Protected Area Network in India. Vol. 1 and 2. A report prepared for the Department of Environment, Forests and Wildlife, Government of India at the Wildlife Institute of India, Dehradun, 608p.
- Rodgers, W.A., Panwar, H.S., & Mathur, V.B. (2002). Wildlife Protected Areas in India: a Review. Wildlife Institute of India, Dehradun.
- Saikia, U., Sharma, D.k. and Sharma, R. M. (2007). Checklist of the Reptilian Fauna of Himachal Pradesh, India. *Newsletter of The South Asian Reptile Network*. Vol 8: pp. 6-9.
- Saikia, U., Thakur, M. L. Bawri, M. and Bhattacherjee, P.C. (2011). An inventory of the Chiropteran fauna of Himachal Pradesh, North-western India with some ecological observations. Journal of Threatened *Taxa*. Vol. 3(4): pp. 1637-1655.
- Samant, S. S., Pant, S., Man Singh, Manohar Lal, Singh, A., Sharma and Bhandari S. (2007). Medicinal plants in Himachal Pradesh, north western Himalaya, India. *International Journal of Biodiversity Science and Management*. Vol 3: pp. 234-251.
- Sharma A, Santvan V. K., Sharma P. and Chandel S. (2014). Studies on Traditional Knowledge of Ethnomedicinal Plants in Jawalamukhi, Himachal Pradesh, India. *International Research Journal of Biological Sciences*. Vol 3 (10): pp 6-12.
- Sharma P., Agnihotry A., Sharma, P. P. and Sharma, L. (2013). Wild edibles of Murari Devi and surrounding areas in Mandi district of Himachal Pradesh, India. *International Journal of Biodiversity and Conservation*. Vol. 5(9): pp 592-604.
- Sharma, I. (2009). Diversity and Status of Fish Fauna of the River Drainage Systems of Himachal Pradesh in Western Himalaya, India. *Biosystematica*. Vol 3 (1): pp. 5-13.
- Sharma, I. and Dhanze, R. (2010). Evaluation of Macrobenthic fauna in Hill stream environment of Western Himalaya, India. *Journal of Threatened Taxa*. Vol 4(9): pp 2875-2882.
- Sharma, I. and Dhanze, R. (2010). Length-weight relationship of *Schizothorax richardsonii* (Gray) from Indus (Beas River System, H.P.) India. *Rec. zool. Surv. India* Vol. 111 (Part-1): pp. 63-70.

- Sharma, I. and Mehta, H.S. (2010). Studies on Snow Trout Schizothorax rishardsonii (Gray) in river Beas and its tributaries (Himachal Pradesh), India . Rec. zool. Surv. India, Occ. Paper No., 323: pp. 1-69. (Published by the Director, Zool. Surv. India, Kolkata).
- Sharma, N. K. and Gusain, O.P. (2015). A Survey of Riparian Vegetation of River Manuni in Western Himalayan Region of India. *International Journal of Current Research in Biosciences and Plant Biology*. Vol 2 (5): pp. 141-147.
- Sharma, P., Pooja Pati and Agnihotry, A., (2013). Ethnobotanical and Ethnomedicinal Uses of Floristic Diversity in Murari Devi and Surrounding Areas of Mandi District in Himachal Pradesh, India. *Pakistan Journal of Biological Sciences*. Vol. 16 (10): pp. 451-468.
- Sharma, P., Samant, S.S., Lal, M. and Sharma, A. (2014). Diversity, Indigenous Uses, Threat Categorization and Conservation Prioritization of Medicinal Plants: A Case Study from Himachal Pradesh, India. *J Biodivers Endanger Species*. Vol. 2 (4): pp. 1-6.
- Sharma, S. and Walia, Y. K. Assessment of River Beas Water Quality during Summer Season in Himachal Pradesh, India. *Biological Forum An International Journal*. Vol 8 (1): pp. 363-371.
- Sharma, S. and Walia, Y.K. (2016). Water Quality Assessment of River Beas during Winter Season in Himachal Pradesh, India. *Current World Environment*. Vol 11 (1): pp. 194-203.
- Sharma, U. D., Kumar, S. Sharma, K. and Datt, S. (2015). Diversity of Medicinal Flora of Lower Shiwalik Hills of the Western Himalaya, India. *International Journal of Advanced Research*. Vol. 3 (10): pp. 905-910.
- Shubra, R. (2000). Pong Wetland. H.P. State Centre On Climate Change Under The Aegis Of State Council For Science, Technology & Environment B-34, Sda Complex, Kasumpti, Shimla-9, H.P.
- Singh, J. Thakur, M. L. and Banyal, H. S. (2015). Status of Pisces, Amphibia and Reptilia in Prashar area of Mandi District (Himachal Pradesh), India. *Asian Journal of Biological and Life Sciences*. Vol 4(2): pp 150-155.
- Singh, S.K. and Rawat, G.S. (1999). Floral Diversity and Vegetation Structure in Great Himalayan National Park, Western Himalaya. http://greathimalayannationalpark.com/wp-content/uploads/2012/09/Research_Floral_Diversity_of_GHNP_by_Singh_Rawat.pdf.
- Uniyal, V. P. and Mathur, P. K. (1998) Diversity of Butterflies in The Great Himalayan National Park, Western Himalaya. *Indian Journal of Forestry*. Vol. 21 (2): pp. 152-155.
- Uniyal, V.P. (2007). Butterflies in the Great Himalaya Conservation Landscape in Himachal Pradesh, Western Himalaya. *Entomon* Vol. 32 (2): pp 119-127.
- Verna, A. and Sharma S. K. (2012). Preliminary Survey of Angiospermic Flora of Kangra District (H.P), India. *Indian Journal of Plant Sciences* http://www.cibtech.org/jps.htm. Vol.1(1): pp.110-113.
- Wild Life Institute of India (WII). (2005) Sustainable livelihoods based approach to biodiversity conservation in the Great Himalayan Conservation Landscape (GHCL). Conservation Project-I, Himachal Pradesh Forest Department, Prepared by the Wildlife Institute of India, Dehradun. Pp. 329.

List of Angiosperms

S. No.	Group	Family	Name of Species
1	Dicots	Acanthaceae	Aeschmanthera tomentosa
2	Dicots	Acanthaceae	Andrographis paniculata
3	Dicots	Acanthaceae	Barleria cristata
4	Dicots	Acanthaceae	Barleria prionitis
5	Dicots	Acanthaceae	Blepharis maderaspatensis
6	Dicots	Acanthaceae	Dicliptera bupleuroides
7	Dicots	Acanthaceae	Dicliptera roxburghiana
8	Dicots	Acanthaceae	Eranthemum pulchellum
9	Dicots	Acanthaceae	Hygrophila auriculata
10	Dicots	Acanthaceae	Hygrophylla polysperma
11	Dicots	Acanthaceae	Justicia adhatoda
12	Dicots	Acanthaceae	Justicia japonica
13	Dicots	Acanthaceae	Justicia mollisima
14	Dicots	Acanthaceae	Lepidagathis cuspidata
15	Dicots	Acanthaceae	Lepidagathis incurva
16	Dicots	Acanthaceae	Peristrophe bicalyculata
17	Dicots	Acanthaceae	Peristrophe paniculata
18	Dicots	Acanthaceae	Phlogacanthus thyrsiflorus
19	Dicots	Acanthaceae	Ruellia patula
20	Dicots	Acanthaceae	Rungia pectinata
21	Dicots	Acanthaceae	Strobilanthes alatus
22	Dicots	Acanthaceae	Strobilanthes angustifrona
23	Dicots	Acanthaceae	Strobilanthes atropurpureus
24	Dicots	Acanthaceae	Strobilanthes auriculata
25	Dicots	Acanthaceae	Strobilanthes dalhousianus
26	Dicots	Acanthaceae	Strobilanthes extensa
27	Dicots	Acanthaceae	Strobilanthes wallichii
28	Dicots	Asteraceae	Achillea millefolium
29	Dicots	Asteraceae	Adenocaulon himalaicum
30	Dicots	Asteraceae	Adenostemma parviflorum
31	Dicots	Asteraceae	Ageratina adenophora
32	Dicots	Asteraceae	Ageratum conyzoides
33	Dicots	Asteraceae	Ainsliaea aptera
34	Dicots	Asteraceae	Ainsliaea latifolia
35	Dicots	Asteraceae	Anaphalis busua
36	Dicots	Asteraceae	Anaphalis contorta
37	Dicots	Asteraceae	Anaphalis cuneifolia
38	Dicots	Asteraceae	Anaphalis margaritacea
39	Dicots	Asteraceae	Anaphalis nepalensis
40	Dicots	Asteraceae	Anaphalis triplinervis
41	Dicots	Asteraceae	Anaphalis triplinervis var. intermedia
42	Dicots	Asteraceae	Anthemis cotula
43	Dicots	Asteraceae	Arctium lappa
44	Dicots	Asteraceae	Artemisia absinthium

45	T	I Astavassa	Automiaia indiaa
45	Dicots	Asteraceae	Artemisia indica
46	Dicots	Asteraceae	Artemisia scoparia
47 48	Dicots	Asteraceae	Artemisia vestita
_	Dicots	Asteraceae	Aster falconeri Aster himalaicus
49 50	Dicots	Asteraceae	Aster mimataicus Aster molliusculus
50	Dicots	Asteraceae	
52	Dicots	Asteraceae	Aster peduncularis
	Dicots	Asteraceae	Bidens bipinnata Bidens biternata
53 54	Dicots	Asteraceae	
	Dicots	Asteraceae	Bidens pilosa
55	Dicots	Asteraceae	Bidens tripartita
56	Dicots	Asteraceae	Blumea hieracifolia
57	Dicots	Asteraceae	Blumea mollis
58	Dicots	Asteraceae	Calendula arvensis
59	Dicots	Asteraceae	Carpesium abortanoides
60	Dicots	Asteraceae	Carpesium pedunculosum
61	Dicots	Asteraceae	Chrysanthemum leucanthemum
62	Dicots	Asteraceae	Cirsium vertum
63	Dicots	Asteraceae	Cirsium wallichii
64	Dicots	Asteraceae	Conyza aegyptiaca
65	Dicots	Asteraceae	Conyza japonica
66	Dicots	Asteraceae	Conyza stricta
67	Dicots	Asteraceae	Coreopsis lanceolata
68	Dicots	Asteraceae	Cotula anthemoides
69	Dicots	Asteraceae	Cousinia thomsoni
70	Dicots	Asteraceae	Cremanthodium arnicoides
71	Dicots	Asteraceae	Crepis flexuosa
72	Dicots	Asteraceae	Dichrocephala integrifolia
73	Dicots	Asteraceae	Dubayaea hispida
74	Dicots	Asteraceae	Echinops cornigerus
75	Dicots	Asteraceae	Eclipta prostrata
76	Dicots	Asteraceae	Emilia sonchifolia
77	Dicots	Asteraceae	Erigeron alpinus
78	Dicots	Asteraceae	Erigeron bellidioides
79	Dicots	Asteraceae	Erigeron bonariensis
80	Dicots	Asteraceae	Erigeron candensis
81	Dicots	Asteraceae	Erigeron multicaulis
82	Dicots	Asteraceae	Erigeron multiradiatus
83	Dicots	Asteraceae	Filago pyramidata
84	Dicots	Asteraceae	Galinsoga parvifolia
85	Dicots	Asteraceae	Gerbera gossypina
86	Dicots	Asteraceae	Gnaphalium affine
87	Dicots	Asteraceae	Gnaphalium hypoleuccum
88	Dicots	Asteraceae	Gynura cusimbua
89	Dicots	Asteraceae	Hieracium vulgatum
90	Dicots	Asteraceae	Hypochoeris glabra
91	Dicots	Asteraceae	Inula cappa
92	Dicots	Asteraceae	Inula cuspidata
93	Dicots	Asteraceae	Inula grandiflora
94	Dicots	Asteraceae	Jurinea macrocephala

95	Dicots	Asteraceae	Lactuca brunoniana
96	Dicots	Asteraceae	Lactuca dissecta
97	Dicots	Asteraceae	Lactuca hastata
98	Dicots	Asteraceae	Lactuca lessertiana
99	Dicots	Asteraceae	Lactuca longifolia
100	Dicots	Asteraceae	Lactuca macrorhiza
101	Dicots	Asteraceae	Lactuca serriola
102	Dicots	Asteraceae	Launea obtusatus
103	Dicots	Asteraceae	Launea secunda
104	Dicots	Asteraceae	Leontopodium himalayanum
105	Dicots	Asteraceae	Ligularia amplexicaulis
106	Dicots	Asteraceae	Ligularia fischeri
107	Dicots	Asteraceae	Myriactis nepalensis
108	Dicots	Asteraceae	Onopordum acanthium
109	Dicots	Asteraceae	Parthenium hysterophorus
110	Dicots	Asteraceae	Phagnalon niveum
111	Dicots	Asteraceae	Picris hieracioides
112	Dicots	Asteraceae	Prenanthes brunoniana
113	Dicots	Asteraceae	Prenanthes violaefolia
114	Dicots	Asteraceae	Psychrogeton andryaloides
115	Dicots	Asteraceae	Pterotheca falconeri
116	Dicots	Asteraceae	Saussurea costus
117	Dicots	Asteraceae	Saussurea gossypiphora
118	Dicots	Asteraceae	Saussurea heteromalla
119	Dicots	Asteraceae	Saussurea hypoleuca
120	Dicots	Asteraceae	Saussurea obvallata
121	Dicots	Asteraceae	Saussurea piptanthera
122	Dicots	Asteraceae	Saussurea roylei
123	Dicots	Asteraceae	Senecio alatus
124	Dicots	Asteraceae	Senecio chenopodifolius
125	Dicots	Asteraceae	Senecio chrysanthemoides
126	Dicots	Asteraceae	Senecio graciliflorus
127	Dicots	Asteraceae	Senecio kunthianus
128	Dicots	Asteraceae	Senecio nudicaulis
129	Dicots	Asteraceae	Senecio rufinervis
130	Dicots	Asteraceae	Sigesbeckia orientalis
131	Dicots	Asteraceae	Silybum marianum
132	Dicots	Asteraceae	Solidago virga-aurea
133	Dicots	Asteraceae	Sonchus asper
134	Dicots	Asteraceae	Sonchus brachyotus
135	Dicots	Asteraceae	Sonchus oleraceus
136	Dicots	Asteraceae	Sonchus wightianus
137	Dicots	Asteraceae	Tagetes minuta
138	Dicots	Asteraceae	Tagetes patula
139	Dicots	Asteraceae	Tanacetum dolichophyllum
140	Dicots	Asteraceae	Taraxacum officinale
141	Dicots	Asteraceae	Taraxacum watii
142	Dicots	Asteraceae	Tragopogon dubius
143	Dicots	Asteraceae	Tricholepis elongata
144	Dicots	Asteraceae	Tridex procumbens

145	Dicots	Asteraceae	Vernonia anthelmintica
146	Dicots	Asteraceae	Vernonia cinerea
147	Dicots	Asteraceae	Vicoa indica
148	Dicots	Asteraceae	Xanthium strumarium
149	Dicots	Asteraceae	Youngia japonica
150	Dicots	Balsaminaceae	Impatiens bicornuta
151	Dicots	Balsaminaceae	Impatiens chinensis
152	Dicots	Balsaminaceae	Impatiens cristata
153	Dicots	Balsaminaceae	Impatiens glandulifera
154	Dicots	Balsaminaceae	Impatiens laxiflora
155	Dicots	Balsaminaceae	Impatiens racemosa
156	Dicots	Balsaminaceae	Impatiens scabrida
157	Dicots	Balsaminaceae	Impatiens sulcata
158	Dicots	Balsaminaceae	Impatiens thomsonii
159	Dicots	Basellaceae	Basella rubra
160	Dicots	Begoniaceae	Begonia picta
161	Dicots	Berberidaceae	Berberis aristata
162	Dicots	Berberidaceae	Berberis asiatica
163	Dicots	Berberidaceae	Berberis chitria
164	Dicots	Berberidaceae	Berberis glaucocarpa
165	Dicots	Berberidaceae	Berberis jaeeschkeana
166	Dicots	Berberidaceae	Berberis lycium
167	Dicots	Berberidaceae	Berberis pseudoumbellata
168	Dicots	Berberidaceae	Berberis umbellata
169	Dicots	Berberidaceae	Sinopodophyllum hexandrum
170	Dicots	Betulaceae	Alnus nepalensis
171	Dicots	Betulaceae	Alnus nitida
172	Dicots	Betulaceae	Betula alnoides
173	Dicots	Betulaceae	Betula utilis
174	Dicots	Betulaceae	Carpinus viminea
175	Dicots	Betulaceae	Corylus colurna
176	Dicots	Betulaceae	Corylus jacquemontii
177	Dicots	Betulaceae	Corylus jacquemontii
178	Dicots	Bignoniaceae	Jacaranda mimosifolia
179	Dicots	Bignoniaceae	Stereospermum chelonoides
180	Dicots	Bignoniaceae	Tecoma stans
181	Dicots	Bignonicaeae	Incarvillea arguta
182	Dicots	Bignonicaeae	Incarvillea emodi
183	Dicots	Bignonicaeae	Oroxylum indicum
184	Dicots	Bignonicaeae	Tecomaria capensis
185	Dicots	Bixaceae	Cochlospermum religiosum
186	Dicots	Bombacaceae	Bombax ceiba
187	Dicots	Boraginaceae	Arnebia benthami
188	Dicots	Boraginaceae	Arnebia euchroma
189	Dicots	Boraginaceae	Asperugo procumbens
190	Dicots	Boraginaceae	Cordia vestita
191	Dicots	Boraginaceae	Cynoglossum lanceolatum
192	Dicots	Boraginaceae	Cynoglossum nervosum
193	Dicots	Boraginaceae	Cynoglossum wallichii var. glochidiatum
194	Dicots	Boraginaceae	Cynoglossum zeylanicum

195	Disate	Boraginaceae	Ehretia acuminata
196	Dicots	Boraginaceae	Ehretia laevis
197	Dicots	Boraginaceae	Eritrichium canum
198	Dicots	Boraginaceae	Hackelia uncinata
199	Dicots Dicots	Boraginaceae	Heliotropium indicum
200		Boraginaceae	Heliotropium strigosum
201	Dicots	Boraginaceae	Lappula barbata
202	Dicots Dicots	Boraginaceae	Lasiocaryum diffusum
203	Dicots	Boraginaceae	Lindelofia longiflora
204	Dicots	Boraginaceae	Lindelofia stylosa
205	Dicots	Boraginaceae	Lithospermum arvense
206	Dicots	Boraginaceae	Lithospermum tenuiflorum
207		Boraginaceae	Mertensia racemosa
208	Dicots Dicots	Boraginaceae	Myosotis alpestris
209	Dicots	Boraginaceae	Myosotis sylvatica
210		Boraginaceae	Trichodesma indicum
211	Dicots	Brassicaceae	Alliaria petiolata
212	Dicots Dicots	Brassicaceae	Arabidopsis himalaica
213		Brassicaceae	Arabidopsis militarica Arabidopsis mollissima
214	Dicots Dicots	Brassicaceae	Arabidopsis thaliana
215	Dicots	Brassicaceae	Arabidopsis wallichii
216	Dicots	Brassicaceae	Arabis amplexicaulis
217	Dicots	Brassicaceae	Arabis bijuga
218	Dicots	Brassicaceae	Arabis bijaga Arabis pterosperma
219	Dicots	Brassicaceae	Arabis peerosperma Arabis tenuirostris
220	Dicots	Brassicaceae	Barbarea vulgaris
221	Dicots	Brassicaceae	Brassica napus
222	Dicots	Brassicaceae	Brassica nigra
223	Dicots	Brassicaceae	Brassica rapa (Syn. Brassica campestris)
224	Dicots	Brassicaceae	Capsella bursa-pastoris
225	Dicots	Brassicaceae	Cardamine flexuosa
226	Dicots	Brassicaceae	Cardamine hirsuta
227	Dicots	Brassicaceae	Cardamine impatiens
228	Dicots	Brassicaceae	Cardamine macrophylla
229	Dicots	Brassicaceae	Christolea himalayensis
230	Dicots	Brassicaceae	Descurainia sophia
231	Dicots	Brassicaceae	Dontostemon glandulosus
232	Dicots	Brassicaceae	Draba altaica
233	Dicots	Brassicaceae	Eruca vesicaria (Syn. Eruca sativa)
234	Dicots	Brassicaceae	Erysimum hieraciifolium
235	Dicots	Brassicaceae	Erysimum thomsonii
236	Dicots	Brassicaceae	Lepidium apetalum
237	Dicots	Brassicaceae	Lepidium didymum (Syn. Coronopus didymus)
238	Dicots	Brassicaceae	Lepidium latifolium
239	Dicots	Brassicaceae	Lepidium pinnatifidum
240	Dicots	Brassicaceae	Lepidium sativum
241	Dicots	Brassicaceae	Lepidium virginicum
242	Dicots	Brassicaceae	Megacarpaea polyandra
243	Dicots	Brassicaceae	Nasturtium officinale
244	Dicots	Brassicaceae	Raphanus raphanistrum subsp. sativus (Syn. Raphanus
	1 2	1	, , , , , , , , , , , , , , , , , , , ,

			sativus)
245	Dicots	Brassicaceae	Rorippa indica
246	Dicots	Brassicaceae	Rorippa montana
247	Dicots	Brassicaceae	Sisymbrium irio
248	Dicots	Brassicaceae	Sisymbrium loeselii
249	Dicots	Brassicaceae	Sisymbrium officinale
250	Dicots	Brassicaceae	Thlaspi andersonii
251	Dicots	Brassicaceae	Thlaspi arvense
252	Dicots	Brassicaceae	Thlaspi cochleariforme
253	Dicots	Brassicaceae	Thlaspi cochlearioides
254	Dicots	Brassicaceae	Turrtis glabra
255	Dicots	Buxaceae	Buxus wallichiana
256	Dicots	Buxaceae	Sarcococca pruniformis (Syn. Sarcococca saligna)
257	Dicots	Cactaceae	Opuntia elatior
258	Dicots	Cactaceae	Opuntia monacantha
259	Dicots	Cactaceae	Opuntia vulgaris
260	Dicots	Caesalpiniaceae	Cassia occidentalis
261	Dicots	Calophyllaceae	Mesua ferrea
262	Dicots	Campanulaceae	Campanula benthamii
263	Dicots	Campanulaceae	Campanula cashmeriana
264	Dicots	Campanulaceae	Campanula colorata
265	Dicots	Campanulaceae	Campanula wattiana
266	Dicots	Campanulaceae	Codonopsis clematidea
267	Dicots	Campanulaceae	Codonopsis rotundifolia
268	Dicots	Campanulaceae	Cyananthus lobatus
269	Dicots	Cannabaceae	Cannabis sativa
270	Dicots	Cannabaceae	Celtis australis
271	Dicots	Cannabaceae	Celtis tetrandra
272	Dicots	Capparaceae	Capparis sepiaria
273	Dicots	Capparaceae	Capparis zeylanica
274	Dicots	Capparaceae	Crataeva magna
275	Dicots	Capparaceae	Crateva religiosa
276	Dicots	Capparidaceae	Capparis spinosa
277	Dicots	Caprifoliaceae	Leycesteria formosa
278	Dicots	Caprifoliaceae	Lonicera angustifolia
279	Dicots	Caprifoliaceae	Lonicera asperifolia
280	Dicots	Caprifoliaceae	Lonicera hypoleuca
281	Dicots	Caprifoliaceae	Lonicera obovata
282	Dicots	Caprifoliaceae	Lonicera purpurascens
283	Dicots	Caprifoliaceae	Lonicera quinquelocularis
284	Dicots	Caprifoliaceae	Morina longifolia
285	Dicots	Caprifoliaceae	Nardostachys jatamansi (Syn. Nardostachys grandiflora)
286	Dicots	Caprifoliaceae	Viburnum cotnifolium
287	Dicots	Caprifoliaceae	Viburnum cylindricum
288	Dicots	Caprifoliaceae	Viburnum foetens
289	Dicots	Caprifoliaceae	Viburnum mullaha
290	Dicots	Caryophyllaceae	Arenaria balansae
291	Dicots	Caryophyllaceae	Arenaria festucoides
292	Dicots	Caryophyllaceae	Arenaria neelgherrensis
293	Dicots	Caryophyllaceae	Arenaria serpyllifolia

294	Dicots	Caryophyllaceae	Cerastium cerastoides
295	Dicots	Caryophyllaceae	Cerastium fontanum
296	Dicots	Caryophyllaceae	Drymaria cordata
297	Dicots	Caryophyllaceae	Drymaria diandra
298	Dicots	Caryophyllaceae	Gypsophila cerastioides
299	Dicots	Caryophyllaceae	Lapyrodiclis holosteoides
300	Dicots	Caryophyllaceae	Lychnis indica
301	Dicots	Caryophyllaceae	Minuartia kashmirica
302	Dicots	Caryophyllaceae	Myosoton aquaticum
303	Dicots	Caryophyllaceae	Polycarpa corymbosa
304	Dicots	Caryophyllaceae	Sagina saginoides
305	Dicots	Caryophyllaceae	Silene conoidea
306	Dicots	Caryophyllaceae	Silene edgeworthii
307	Dicots	Caryophyllaceae	Silene vulgaris
308	Dicots	Caryophyllaceae	Stellaria decumbens
309	Dicots	Caryophyllaceae	Stellaria himalayensis
310	Dicots	Caryophyllaceae	Stellaria media
311	Dicots	Caryophyllaceae	Stellaria monosperma
312	Dicots	Caryophyllaceae	Vaccaria pyramidata
313	Dicots	Celastraceae	Cassine glauca
314	Dicots	Celastraceae	Celastrus paniculatus
315	Dicots	Celastraceae	Elaeodendron glaucum
316	Dicots	Celastraceae	Euonymus echinatus
317	Dicots	Celastraceae	Euonymus fimbriatus
318	Dicots	Celastraceae	Euonymus hamiltonianus
319	Dicots	Celastraceae	Euonymus lucidus (Syn. Euonymus pendulus)
320	Dicots	Celastraceae	Euonymus tingens
321	Dicots	Celastraceae	Gymnosporia senegalensis (Syn. Maytenus senegalensis)
322	Dicots	Chenopodiaceae	Acroglochin persicarioides
323	Dicots	Chenopodiaceae	Chenopodium album
324	Dicots	Chenopodiaceae	Chenopodium ambrosioides
325	Dicots	Chenopodiaceae	Chenopodium botrys
326	Dicots	Chenopodiaceae	Chenopodium opulifolium
327	Dicots	Chenopodiaceae	Kochia prostata
328	Dicots	Clavicipitaceae	Claviceps purpurea
329	Dicots	Cleomaceae	Cleome viscosa
330	Dicots	Combretaceae	Anogeissus latifolia
331	Dicots	Combretaceae	Terminalia alata
332	Dicots	Combretaceae	Terminalia arjuna
333	Dicots	Combretaceae	Terminalia bellirica
334	Dicots	Combretaceae	Terminalia chebula
335	Dicots	Convolvulaceae	Convolvulus arvensis
336	Dicots	Convolvulaceae	Cuscuta chinensis
337	Dicots	Convolvulaceae	Cuscuta europaea
338	Dicots	Convolvulaceae	Cuscuta reflexa
339	Dicots	Convolvulaceae	Evolvulus alsinoides
340	Dicots	Convolvulaceae	Ipomoea alba
341	Dicots	Convolvulaceae	Ipomoea cairica
342	Dicots	Convolvulaceae	Ipomoea carnea

343	Disate	Convolvulaceae	Ipomoea dumosa (Syn. Exogonium purga)
344	Dicots Dicots	Convolvulaceae	Ipomoea eriocarpa
345	Dicots	Convolvulaceae	Ipomoea fistulosa
346	Dicots	Convolvulaceae	Ipomoea nil
347	Dicots	Convolvulaceae	Ipomoea purpurea
348	Dicots	Convolvulaceae	Ipomoea quamoclit
349	Dicots	Coriariaceae	Coriaria nepalensis
350	Dicots	Cornaceae	Cornus capitata
351	Dicots	Cornaceae	Cornus macrophylla
352	Dicots	Crassulaceae	Bryophyllum pinnatum
353	Dicots	Crassulaceae	Kalanchoe integra
354	Dicots	Crassulaceae	Kalanchoe spathulata
355	Dicots	Crassulaceae	Rhodiola heterodonta
356	Dicots	Crassulaceae	Rhodiola quadrifida
357	Dicots	Crassulaceae	Rhodiola sinuata (Syn. Sedum linearifolium)
358	Dicots	Crassulaceae	Rhodiola tibetica
359	Dicots	Crassulaceae	Rosularia adenotricha
360	Dicots	Crassulaceae	Sedum ewersii
361	Dicots	Crassulaceae	Sedum glaucophyllum
362	Dicots	Crassulaceae	Sedum indicum
363	Dicots	Crassulaceae	Sedum multicaule
364	Dicots	Crassulaceae	Sedum rosulatum
365	Dicots	Crassulaceae	Sedum trullipetalum
366	Dicots	Crassulaceae	Sedum wallichianum
367	Dicots	Crassulaceae	Tillaea pentsandra
368	Dicots	Cucurbitaceae	Cayaponia laciniosa (Syn. Bryonopsis laciniosa)
369	Dicots	Cucurbitaceae	Citrullus colocynthis
370	Dicots	Cucurbitaceae	Coccinia grandis
371	Dicots	Cucurbitaceae	Diplocyclos palmatus
372	Dicots	Cucurbitaceae	Herpetospermum pedunculosum
373	Dicots	Cucurbitaceae	Melothria heterophylla
374	Dicots	Cucurbitaceae	Solena amplexicaulis (Syn. Melothria heterophylla)
375	Dicots	Cucurbitaceae	Trichosanthes cucumerina
376	Dicots	Cucurbitaceae	Trichosanthes dioica
377	Dicots	Cucurbitaceae	Trichosanthes tricuspidata
378	Dicots	Daphniphyllaceae	Daphniphyllum himalayense
379	Dicots	Dipsacaceae	Dipsacus inermis
380	Dicots	Dipterocarpaceae	Shorea robusta
381	Dicots	Ebenaceae	Diospyros montana(Syn Diospyros cordifolia)
382	Dicots	Ehretiaceae	Cordia dichotoma
383	Dicots	Elaeagnaceae	Elaeagnus conferta
384	Dicots	Elaeagnaceae	Elaeagnus laltifolia
385	Dicots	Elaeagnaceae	Elaeagnus parvifolia
386	Dicots	Elaeagnaceae	Hippophae salicifolia
387	Dicots	Elatinaceae	Elatine gracilis
388	Dicots	Ericaceae	Cassiope fastigata
389	Dicots	Ericaceae	Gaultheria nummularioides
390	Dicots	Ericaceae	Gaultheria trichophylla
391	Dicots	Ericaceae	Lyonia ovalifolia

392	Dicots	Ericaceae	Rhododendron anthopogon
393	Dicots	Ericaceae	Rhododendron arboreum
394	Dicots	Ericaceae	Rhododendron campanulatum
395	Dicots	Ericaceae	Rhododendron lepidotum
396	Dicots	Erythroxylaceae	Erythroxylum coca
397	Dicots	Euphorbiaceae	Acalypha brachystachya
398	Dicots	Euphorbiaceae	Andrachne cordifolia
399	Dicots	Euphorbiaceae	Baliospermum solanifolium (Syn. Baliospermum montanum)
400	Dicots	Euphorbiaceae	Bridelia verrucosa
401	Dicots	Euphorbiaceae	Croton tiglium
402	Dicots	Euphorbiaceae	Euphorbia antiquorum
403	Dicots	Euphorbiaceae	Euphorbia helioscopia
404	Dicots	Euphorbiaceae	Euphorbia heterophylla (Syn. Euphorbia geniculata)
405	Dicots	Euphorbiaceae	Euphorbia hirta
406	Dicots	Euphorbiaceae	Euphorbia indica
407	Dicots	Euphorbiaceae	Euphorbia kanaorica
408	Dicots	Euphorbiaceae	Euphorbia prostrata
409	Dicots	Euphorbiaceae	Euphorbia purpurea (Syn. Euphorbia pilosa)
410	Dicots	Euphorbiaceae	Euphorbia royleana
411	Dicots	Euphorbiaceae	Euphorbia stracheyi
412	Dicots	Euphorbiaceae	Euphorbia thymifolia
413	Dicots	Euphorbiaceae	Euphorbia wallichii
414	Dicots	Euphorbiaceae	Falconeria insignis (Syn. Sapium insigne)
415	Dicots	Euphorbiaceae	Jatropha curcas
416	Dicots	Euphorbiaceae	Mallotus philippensis
417	Dicots	Euphorbiaceae	Ricinus communis
418	Dicots	Euphorbiaceae	Sapium sebiferum
419	Dicots	Euphorbiaceae	Tragia involucrata
420	Dicots	Fabaceae	Abrus precatorius
421	Dicots	Fabaceae	Acacia catechu
422	Dicots	Fabaceae	Acacia farnesiana
423	Dicots	Fabaceae	Acacia leucophloea
424	Dicots	Fabaceae	Acacia modesta
425	Dicots	Fabaceae	Acacia nilotica
426	Dicots	Fabaceae	Aeschynomene indica
427	Dicots	Fabaceae	Albizia chinensis
428	Dicots	Fabaceae	Albizia julibrissin
429	Dicots	Fabaceae	Albizia lebbeck
430	Dicots	Fabaceae	Albizia odoratissima
431	Dicots	Fabaceae	Albizia stipulata
432	Dicots	Fabaceae	Alysicarpus rugosus
433	Dicots	Fabaceae	Argyrolobium flaccidum
434	Dicots	Fabaceae	Argyrolobium roseum
435	Dicots	Fabaceae	Astragalus candolleanus
436	Dicots	Fabaceae	Astragalus chlorostachys
437	Dicots	Fabaceae	Astragalus graveolens
438	Dicots	Fabaceae	Astragalus leucocephalus
439	Dicots	Fabaceae	Astragalus rhizanthus
440	Dicots	Fabaceae	Bauhinia divaricata (Syn. Bauhinia retusa)

441	Dicata	Fabaceae	Bauhinia malabarica
441	Dicots	Fabaceae	
442	Dicots	Fabaceae Fabaceae	Bauhinia purpurea Bauhinia vahlii
444	Dicots	Fabaceae	Bauhinia vahlii (Syn. Bauhinia racemosa)
444	Dicots Dicots	Fabaceae	Bauhinia variegata
446		Fabaceae	<u> </u>
447	Dicots	Fabaceae	Butea monosperma Caesalpinia bonduc
448	Dicots	Fabaceae	Caesalpinia decapetala
449	Dicots	Fabaceae	Cajanus crassus (Syn. Atylosia mollis)
450	Dicots	Fabaceae	Campylotropis eriocarpa
450	Dicots	Fabaceae	Campylotropis stenocarpa
452	Dicots		
	Dicots	Fabaceae	Caragana gerardiana Cassia absus
453 454	Dicots	Fabaceae Fabaceae	
	Dicots		Cassia fistula Cassia mimosoides
455	Dicots	Fabaceae	
456 457	Dicots	Fabaceae Fabaceae	Cassia obtusifolia Chamacarista mimosoidas (Syn. Cassia mimosoidas)
457 458	Dicots	Fabaceae Fabaceae	Charnes cynests
458 459	Dicots		Chesnea cuneata Clitoria ternata
460	Dicots	Fabaceae Fabaceae	Crotalaria albida
461	Dicots		
462	Dicots	Fabaceae	Crotalaria calycina Crotolaria albida
	Dicots	Fabaceae	
463 464	Dicots	Fabaceae	Dalbergia sissoo Delonix regia
	Dicots	Fabaceae	Desmodium caudatum
465 466	Dicots	Fabaceae	Desmodium caudatum Desmodium concinnum
	Dicots	Fabaceae Fabaceae	
467 468	Dicots		Desmodium elegans
	Dicots	Fabaceae	Desmodium gangeticum
469	Dicots	Fabaceae	Desmodium laxiflorum
470	Dicots	Fabaceae	Desmodium microphyllum
471	Dicots	Fabaceae	Desmodium motorium
472	Dicots	Fabaceae	Desmodium multiflorum
473	Dicots	Fabaceae	Desmodium oojeinense (Syn. Ougeinia oojeinensis)
474	Dicots	Fabaceae	Desmodium podocarpum
475	Dicots	Fabaceae	Desmodium tiliaefolium
476	Dicots	Fabaceae	Desmodium triflorum
477	Dicots	Fabaceae	Desmodium triquetrum
478	Dicots	Fabaceae	Desmodium velutinum Entada rhaadii (Syn. Entada pursaatha)
479	Dicots	Fabaceae	Entada rheedii (Syn. Entada pursaetha)
480	Dicots	Fabaceae	Flemingia fruticulosa
481	Dicots	Fabaceae	Hedysarum astragaloides
482	Dicots	Fabaceae	Hedysarum cachemiriana
483	Dicots	Fabaceae	Hedysarum microcalyx
484	Dicots	Fabaceae	Indigofera astragalina
485	Dicots	Fabaceae	Indigofera atropurpurea
486	Dicots	Fabaceae	Indigofera cassioides (Syn. Indigofera pulchella)
487	Dicots	Fabaceae	Indigofera elegans
488	Dicots	Fabaceae	Indigofera hebepetala
489	Dicots	Fabaceae	Indigofera heterantha (Syn. Indigofera gerardiana)
490	Dicots	Fabaceae	Lathyrus aphaca

491	Dicots	Fabaceae	Lathyrus emodi
492	Dicots	Fabaceae	Lathyrus erectus
493	Dicots	Fabaceae	Lathyrus gerardiana
494	Dicots	Fabaceae	Lathyrus pratensis
495	Dicots	Fabaceae	Lathyrus sphaericus
496	Dicots	Fabaceae	Lespedeza juncea
497	Dicots	Fabaceae	Lotus corniculatus
498	Dicots	Fabaceae	Medicago lupulina
499	Dicots	Fabaceae	Medicago polymorpha
500	Dicots	Fabaceae	Melilotus alba
501	Dicots	Fabaceae	Melilotus indica
502	Dicots	Fabaceae	Mimosa himalayana
503	Dicots	Fabaceae	Mimosa pudica
504	Dicots	Fabaceae	Mucuna pruriens
505	Dicots	Fabaceae	Oxytropis cachemirica
506	Dicots	Fabaceae	Oxytropis mollis
507	Dicots	Fabaceae	Parochetus communis
508	Dicots	Fabaceae	Piptanthus nepalensis
509	Dicots	Fabaceae	Pongamia pinnata
510	Dicots	Fabaceae	Pueraria phaseoloides
511	Dicots	Fabaceae	Pueraria tuberosa
512	Dicots	Fabaceae	Robinia pseudo-acacia
513	Dicots	Fabaceae	Saraca asoca
514	Dicots	Fabaceae	Saraca indica
515	Dicots	Fabaceae	Senna occidentalis (Syn. Cassia occidentalis)
516	Dicots	Fabaceae	Senna tora (Syn. Cassia tora)
517	Dicots	Fabaceae	Shuteria involucrata
518	Dicots	Fabaceae	Tamarindus indica
519	Dicots	Fabaceae	Tephrosia angustissima (Syn. Tephrosia purpurea)
520	Dicots	Fabaceae	Thermopsis barbata
521	Dicots	Fabaceae	Trifolium clusii
522	Dicots	Fabaceae	Trifolium dubium
523	Dicots	Fabaceae	Trifolium pratense
524	Dicots	Fabaceae	Trifolium repens
525 526	Dicots	Fabaceae	Trifolium resupinatum Trigonella corniculata
527	Dicots	Fabaceae Fabaceae	Trigonetta cornicatata Trigonella emodi (Syn. Trigonella fimbriata)
528	Dicots	Fabaceae	Trigonetta emoar (syn. Trigonetta jimbriata) Trigonetla foenum-graecum
529	Dicots	Fabaceae	Trigonetta joenam-graecum Trigonetta incisa
530	Dicots	Fabaceae	Uraria lagopoides
531	Dicots Dicots	Fabaceae	Vicia bakeri
532	Dicots	Fabaceae	Vicia bakeri Vicia hirsuta
533	Dicots	Fabaceae	Vicia sativa
534	Dicots	Fabaceae	Vigna aconitifolia
535	Dicots	Fabaceae	Vigna vexillata
536	Dicots	Fabaceae	Albizia modesta
537	Dicots	Fabaceae	Albizia nilotica
538	Dicots	Fabaceae	Glycyrrhiza glabra
539	Dicots	Fagaceae	Castanea sativa
540	Dicots	Fagaceae	Quercus dilatata
	2.000		

541	Dicots	Fagaceae	Quercus floribunda
542	Dicots	Fagaceae	Quercus glauca
543	Dicots	Fagaceae	Quercus infectoria
544	Dicots	Fagaceae	Quercus leucotrichophora
545	Dicots	Fagaceae	Quercus semecarpifolia
546	Dicots	Flacourtiaceae	Flacourtia jangomas
547	Dicots	Flacourtiaceae	Flacourtia ramontchi
548	Dicots	Flacourtiaceae	Xylosoma longifolium
549	Dicots	Gentianaceae	Canscora diffusa
550	Dicots	Gentianaceae	Comastoma tenellum (Syn.Gentianella tenella)
551	Dicots	Gentianaceae	Gentiana aprica
552	Dicots	Gentianaceae	Gentiana argentea
553	Dicots	Gentianaceae	Gentiana cachemirica
554	Dicots	Gentianaceae	Gentiana carinata
555	Dicots	Gentianaceae	Gentiana kurroo
556	Dicots	Gentianaceae	Gentiana moorcroftiana
557	Dicots	Gentianaceae	Gentiana pedicillata
558	Dicots	Gentianaceae	Gentiana venusta
559	Dicots	Gentianaceae	Gentianella moorcroftiana
560	Dicots	Gentianaceae	Halenia elliptica
561	Dicots	Gentianaceae	Jaeschkea oligosperma
562	Dicots	Gentianaceae	Swertia alata
563	Dicots	Gentianaceae	Swertia alternifolia
564	Dicots	Gentianaceae	Swertia angustifolia
565	Dicots	Gentianaceae	Swertia chirayita
566	Dicots	Gentianaceae	Swertia ciliata
567	Dicots	Gentianaceae	Swertia cordata
568	Dicots	Gentianaceae	Swertia paniculata
569	Dicots	Gentianaceae	Swertia petiolata
570	Dicots	Gentianaceae	Swertia speciosa
571	Dicots	Gentianaceae	Swertia tetragona
572	Dicots	Geraniaceae	Erodium cicutarium
573	Dicots	Geraniaceae	Geranium lucidum
574	Dicots	Geraniaceae	Geranium maculatum
575	Dicots	Geraniaceae	Geranium mascatense
576	Dicots	Geraniaceae	Geranium nepalense
577	Dicots	Geraniaceae	Geranium ocellatum
578	Dicots	Geraniaceae	Geranium polyanthes
579	Dicots	Geraniaceae	Geranium pratense
580	Dicots	Geraniaceae	Geranium rotundifolium
581	Dicots	Geraniaceae	Geranium wallichianum
582	Dicots	Gesneriaceae	Chirita bifolia
583	Dicots	Gesneriaceae	Didymocarpus pedicellatus
584	Dicots	Gleicheniaceae	Dicranopteris linearis
585	Dicots	Grossulariaceae	Ribes alpestre
586	Dicots	Grossulariaceae	Ribes glaciale
587	Dicots	Hamamelidaceae	Parrotiopsis jacquemontiana
588	Dicots	Hydrangeaceae	Deutzia corymbosa
589	Dicots	Hydrangeaceae	Deutzia staminea
590	Dicots	Hydrangeaceae	Hydrangea anomala

591	Dicots	Hydrangeaceae	Hydrangea robusta
592	Dicots	Hydrangeaceae	Philadelphus tomentosus
593	Dicots	Hypericaceae	Hypericum patalum
594	Dicots	Hypericaceae	Hypericum perforatum
595	Dicots	Hypericaeae	Hypericum elodeoides
596	Dicots	Hypericaeae	Hypericum oblongifolium
597	Dicots	Hypericaeae	Hypericum uralum
598	Dicots	Juglandaceae	Juglans regia
599	Dicots	Lamiaceae	Ajuga brachystemon
600	Dicots	Lamiaceae	Ajuga integrifolia (Syn. Ajuga bracteosa)
601	Dicots	Lamiaceae	Ajuga parviflora
602	Dicots	Lamiaceae	Caryopteris odorata
603	Dicots	Lamiaceae	Clerodendrum divaricatum
604	Dicots	Lamiaceae	Clerodendrum indicum
605	Dicots	Lamiaceae	Clerodendrum philippinum
606	Dicots	Lamiaceae	Clerodendrum phlomidis
607	Dicots	Lamiaceae	Clinopodium umbrosum
608	Dicots	Lamiaceae	Clinopodium vulgare
609	Dicots	Lamiaceae	Colebrookea oppositifolia
610	Dicots	Lamiaceae	Colquhounia coccinea
611	Dicots	Lamiaceae	Cranitome furcata
612	Dicots	Lamiaceae	Elsholtzia ciliata
613	Dicots	Lamiaceae	Elsholtzia flava
614	Dicots	Lamiaceae	Elsholtzia fruticosa
615	Dicots	Lamiaceae	Elsholtzia strobilifera
616	Dicots	Lamiaceae	Eramostachys superba
617	Dicots	Lamiaceae	Gmelina arborea
618	Dicots	Lamiaceae	Isodon rugosus (Syn. Plectranthus rugosus)
619	Dicots	Lamiaceae	Lamium album
620	Dicots	Lamiaceae	Lamium amplexicaule
621	Dicots	Lamiaceae	Leonurus cardiaca
622	Dicots	Lamiaceae	Leucas cephalotes
623	Dicots	Lamiaceae	Leucas lanata
624	Dicots	Lamiaceae	Leucosceptrum canum
625	Dicots	Lamiaceae	Lycopus europaeus
626	Dicots	Lamiaceae	Mentha arvensis
627	Dicots	Lamiaceae	Mentha longifolia
628	Dicots	Lamiaceae	Mentha spicata
629	Dicots	Lamiaceae	Meriandra strobilifera
630	Dicots	Lamiaceae	Micromeria biflora
631	Dicots	Lamiaceae	Mosla dianthera
632	Dicots	Lamiaceae	Nepeta campestris
633	Dicots	Lamiaceae	Nepeta ciliaris
634	Dicots	Lamiaceae	Nepeta erecta
635	Dicots	Lamiaceae	Nepeta eriostachya
636	Dicots	Lamiaceae	Nepeta govaniana
637	Dicots	Lamiaceae	Nepeta hindostana
638	Dicots	Lamiaceae	Nepeta laevigata
639	Dicots	Lamiaceae	Nepeta leucophylla

640	Dicots	Lamiaceae	Nepeta podostachys
641	Dicots	Lamiaceae	Nepeta raphanorhiza
642	Dicots	Lamiaceae	Nepeta royleana
643	Dicots	Lamiaceae	Ocimum americanum
644	Dicots	Lamiaceae	Ocimum basilicum
645	Dicots	Lamiaceae	Ocimum sanctum
646	Dicots	Lamiaceae	Ocimum tenuiflorum
647	Dicots	Lamiaceae	Origanum vulgare
648	Dicots	Lamiaceae	Perilla frutescens
649	Dicots	Lamiaceae	Phlomoides bracteosa
650	Dicots	Lamiaceae	Plectranthes lophanthoides
651	Dicots	Lamiaceae	Plectranthes mollis
652	Dicots	Lamiaceae	Plectranthus japonicus
653	Dicots	Lamiaceae	Pogostemon benghalensis
654	Dicots	Lamiaceae	Pogostemon plectrantoides
655	Dicots	Lamiaceae	Premna barbata
656	Dicots	Lamiaceae	Premna serratifolia (Syn. Premna obtusifolia)
657	Dicots	Lamiaceae	Prunella vulgaris
658	Dicots	Lamiaceae	Pseudocaryopteris bicolor (Syn.Caryopteris wallichiana)
659	Dicots	Lamiaceae	Rabdosia rugosa
660	Dicots	Lamiaceae	Rolea cinerea
661	Dicots	Lamiaceae	Salvia aethiopis (Syn. Salvia lanata)
662	Dicots	Lamiaceae	Salvia hians
663	Dicots	Lamiaceae	Salvia leucantha
664	Dicots	Lamiaceae	Salvia moorcroftiana
665	Dicots	Lamiaceae	Salvia nubicola
666	Dicots	Lamiaceae	Salvia plebia
667	Dicots	Lamiaceae	Scutellaria repens
668	Dicots	Lamiaceae	Scutellaria scandens
669	Dicots	Lamiaceae	Stachys floccosa
670	Dicots	Lamiaceae	Stachys sericea
671	Dicots	Lamiaceae	Tectona grandis
672	Dicots	Lamiaceae	Teucrium quadrifarium
673	Dicots	Lamiaceae	Teucrium royleanum
674	Dicots	Lamiaceae	Thymus linearis
675	Dicots	Lamiaceae	Thymus serpyllum
676	Dicots	Lamiaceae	Thymus vulgaris
677	Dicots	Lamiaceae	Mentha piperita
678	Dicots	Lauraceae	Cinnamomum camphora
679	Dicots	Lauraceae	Cinnamomum tamala
680	Dicots	Lauraceae	Cinnamomum verum
681	Dicots	Lauraceae	Neolitsea pallens
682	Dicots	Lauraceae	Neolitsea umbrosa
683	Dicots	Lauraceae	Persea odoratissima
684	Dicots	Lauraceae	Phoebe lanceolata
685	Dicots	Lecythidaceae	Careya arborea
686	Dicots	Leeaceae	Leea crispa
687	Dicots	Lentibulariaceae	Utricularia brachiata
688	Dicots	Linaceae	Linum usitatissimum
689	Dicots	Linaceae	Reinwardtia indica

690	Dicots	Linderniaceae	Lindernia anagallis
691	Dicots	Linderniaceae	Lindernia ciliata
692	Dicots	Linderniaceae	Lindernia numularifolia
693	Dicots	Linderniaceae	Torenia cordifolia
694	Dicots	Loganiaceae	Strychnos nux-vomica
695	Dicots	Loranthaceae	Dendrophthoe falcata
696	Dicots	Loranthaceae	Scurrula pulverulenta
697	Dicots	Loranthaceae	Taxillus vestitus
698	Dicots	Lythraceae	Lawsonia inermis
699	Dicots	Lythraceae	Leucas aspera
700	Dicots	Lythraceae	Lythrum salicaria
701	Dicots	Lythraceae	Punica granatum
702	Dicots	Lythraceae	Rotala densiflora
703	Dicots	Lythraceae	Rotala rotundifolia
704	Dicots	Lythraceae	Woodfordia fruticosa
705	Dicots	Malpighiaceae	Aspidopterys wallichii
706	Dicots	Malpighiaceae	Hiptage benghalensis
707	Dicots	Malvaceae	Abelmoschus crinitus
708	Dicots	Malvaceae	Abelmoschus manihot
709	Dicots	Malvaceae	Abutilon indicum
710	Dicots	Malvaceae	Gossypium arboreum
711	Dicots	Malvaceae	Gossypium herbaceum
712	Dicots	Malvaceae	Grewia serrulata (Syn. Grewia disperma)
713	Dicots	Malvaceae	Helicteres isora
714	Dicots	Malvaceae	Hibiscus rosa-sinensis
715	Dicots	Malvaceae	Kydia calycina
716	Dicots	Malvaceae	Malva neglecta
717	Dicots	Malvaceae	Malva parviflora
718	Dicots	Malvaceae	Malva verticillata
719	Dicots	Malvaceae	Malvastrum coromandelianum
720	Dicots	Malvaceae	Sida acuta
721	Dicots	Malvaceae	Sida cordata
722	Dicots	Malvaceae	Sida rhombifolia
723	Dicots	Malvaceae	Triumfetta rhomboidea
724	Dicots	Malvaceae	Urena lobata
725	Dicots	Melanthiaceae	Trillium govanianum
726	Dicots	Melastomaceae	Osbeckia stellata
727	Dicots	Melastomataceae	Melastoma malabathricum
728	Dicots	Melastomataceae	Oxyspora paniculata
729	Dicots	Meliaceae	Azadirachta indica
730	Dicots	Meliaceae	Melia azedarach
731	Dicots	Meliaceae	Soymida febrifuga
732	Dicots	Meliaceae	Toona ciliata
733	Dicots	Meliaceae	Toona hexandra
734	Dicots	Meliaceae	Toona sinensis (Syn. Toona serrata)
735	Dicots	Menispermaceae	Cissampelos pareira
736	Dicots	Menispermaceae	Stephania elegans
737	Dicots	Menispermaceae	Stephania glabra Tipospora sordifolia
738	Dicots	Menispermaceae	Tinospora cordifolia
739	Dicots	Molluginaceae	Glinus lotoides

740	Dicots	Molluginaceae	Mollugo pentaphylla
741	Dicots	Moraceae	Broussonetia papyrifera
742	Dicots	Moraceae	Ficus auriculata
743	Dicots	Moraceae	Ficus bengalensis
744	Dicots	Moraceae	Ficus glomerata
745	Dicots	Moraceae	Ficus hispida
746	Dicots	Moraceae	Ficus nerifolia
747	Dicots	Moraceae	Ficus oligodon
748	Dicots	Moraceae	Ficus palmata
749	Dicots	Moraceae	Ficus racemosa
750	Dicots	Moraceae	Ficus religiosa
751	Dicots	Moraceae	Ficus roxburghii
752	Dicots	Moraceae	Ficus rumphii
753	Dicots	Moraceae	Ficus sarmentosa
754	Dicots	Moraceae	Ficus semicordata
755	Dicots	Moraceae	Ficus virens
756	Dicots	Moraceae	Morus alba
757	Dicots	Moraceae	Morus australis
758	Dicots	Moraceae	Morus serrata
759	Dicots	Moraceae	Streblus asper
760	Dicots	Moringaceae	Moringa oleifera
761	Dicots	Musaceae	Musa paradisiaca
762	Dicots	Myricaceae	Myrica esculenta
763	Dicots	Myristicaceae	Myristica fragrans
764	Dicots	Myrsinaceae	Ardisia solanacea
765	Dicots	Myrsinaceae	Embelia tesjeriam-cottam
766	Dicots	Myrsinaceae	Myrisine affricana
767	Dicots	Myrtaceae	Callistemon viminalis
768	Dicots	Myrtaceae	Corymbia citriodora (Syn. Eucalyptus citriodora)
769	Dicots	Myrtaceae	Eucalyptus camaldulensis
770	Dicots	Myrtaceae	Eucalyptus crebra
771	Dicots	Myrtaceae	Eucalyptus globulus
772	Dicots	Myrtaceae	Eucalyptus melanophloia
773	Dicots	Myrtaceae	Psidium guajava
774	Dicots	Myrtaceae	Syzygium aromaticum
775	Dicots	Myrtaceae	Syzygium cumini
776	Dicots	Nyctaginaceae	Boerhavia diffusa
777	Dicots	Nyctaginaceae	Bougainvillea glabra
778	Dicots	Nyctaginaceae	Mirabilis jalapa
779	Dicots	Oleaceae	Fraxinus excelsior
780	Dicots	Oleaceae	Fraxinus floribunda
781	Dicots	Oleaceae	Fraxinus micrantha
782	Dicots	Oleaceae	Fraxinus xanthoxyloides
783	Dicots	Oleaceae	Jasminum dispermum
784	Dicots	Oleaceae	Jasminum grandiflorum
785	Dicots	Oleaceae	Jasminum humile
786	Dicots	Oleaceae	Jasminum multiflorum
787	Dicots	Oleaceae	Jasminum officinale
788	Dicots	Oleaceae	Nyctanthes arbor-tristis
789	Dicots	Oleaceae	Olea ferruginea

790	Dicots	Oleaceae	Olea glandulifera
791	Dicots	Oleaceae	Syringa emodi
792	Dicots	Onagraceae	Circaea alpina subsp. imaicola
793	Dicots	Onagraceae	Circaea repens
794	Dicots	Onagraceae	Epilobium angustifolium
795	Dicots	Onagraceae	Epilobium cylindricum
796	Dicots	Onagraceae	Epilobium hirsutum
797	Dicots	Onagraceae	Epilobium latifolium
798	Dicots	Onagraceae	Epilobium laxum
799	Dicots	Onagraceae	Epilobium leiophyllum
800	Dicots	Onagraceae	Epilobium royleanum
801	Dicots	Onagraceae	Epilobium wallichianum
802	Dicots	Onagraceae	Ludwigia octovalvis
803	Dicots	Onagraceae	Oenothera affinis
804	Dicots	Onagraceae	Oenothera glazioviana
805	Dicots	Onagraceae	Oenothera rosea
806	Dicots	Orobanchaceae	Euphrasia simplex
807	Dicots	Orobanchaceae	Leptorhabdos parviflora
808	Dicots	Orobanchaceae	Orobanche alba
809	Dicots	Orobanchaceae	Pedicularis albida
810	Dicots	Orobanchaceae	Pedicularis bicornuta
811	Dicots	Orobanchaceae	Pedicularis bifida
812	Dicots	Orobanchaceae	Pedicularis gracilis
813	Dicots	Orobanchaceae	Pedicularis hoffmeisteri
814	Dicots	Orobanchaceae	Pedicularis mollis
815	Dicots	Orobanchaceae	Pedicularis oederi
816	Dicots	Orobanchaceae	Pedicularis pectinata
817	Dicots	Orobanchaceae	Pedicularis punctata
818	Dicots	Orobanchaceae	Pedicularis pyramidata
819	Dicots	Oxalidaceae	Oxalis acetosella
820	Dicots	Oxalidaceae	Oxalis corniculata
821	Dicots	Oxalidaceae	Oxalis corymbosa
822	Dicots	Oxalidaceae	Oxalis latifolia
823	Dicots	Paeoniaceae	Paeonia emodi
824	Dicots	Papaveraceae	Argemone mexicana
825	Dicots	Papaveraceae	Corydalis cashmeriana
826	Dicots	Papaveraceae	Corydalis cornuta
827	Dicots	Papaveraceae	Corydalis crassifolia
828	Dicots	Papaveraceae	Corydalis diphylla
829	Dicots	Papaveraceae	Corydalis govaniana
830	Dicots	Papaveraceae	Corydalis govaniana Corydalis maifalia
831	Dicots	Papaveraceae	Corydalis meifolia Corydalis thyrsiflora
832 833	Dicots	Papaveraceae	Corydalis vaginans (Syn. Corydalis ramosa)
834	Dicots	Papaveraceae	Dicentra scandens
835	Dicots	Papaveraceae	Fumaria indica
836	Dicots	Papaveraceae Papaveraceae	Meconopsis aculeata
837	Dicots	Papaveraceae	Papaver dubium
838	Dicots	Papaveraceae	Papaver substitution Papaver somniferum
839	Dicots	Parnassaceae	Parnassia nubicola
037	Dicots	ו מווומטטמנדמד	ו מוומסטוע וועטונטנע

840	Disats	Pasiifloraceae	Passiflora coerulea
841	Dicots Dicots	Pedaliaceae	Sesamum indicum (Syn. Sesamum orientale)
842	Dicots	Phrymaceae	Mazus pumilus
843	Dicots	Phrymaceae	Mazus surculosus
844	Dicots	Phrymaceae	Phryma leptostachya
845	Dicots	Phyllanthaceae	Bischofia javanica
846	Dicots	Phyllanthaceae	Bridelia retusa (Syn. Bridelia squamosa)
847	Dicots	Phyllanthaceae	Glochidion heyneanum (Syn. Glochidion velutinum)
848	Dicots	Phyllanthaceae	Phyllanthus amarus
849	Dicots	Phyllanthaceae	Phyllanthus emblica
850	Dicots	Phyllanthaceae	Phyllanthus fraternus
851	Dicots	Phyllanthaceae	Phyllanthus niruri
852	Dicots	Phyllanthaceae	Phyllanthus parvifolius
853	Dicots	Phyllanthaceae	Phyllanthus urinaria
854	Dicots	Phytolaccaceae	Phytolacca acinosa
855	Dicots	Piperaceae	Pepromia tetraphylla
856	Dicots	Piperaceae	Piper cubeba
857	Dicots	Piperaceae	Piper nepalense
858	Dicots	Plantaginaceae	Digitalis purpurea
859	Dicots	Plantaginaceae	Hemiphragma heterophyllum
860	Dicots	Plantaginaceae	Lagotis cashmeriana
861	Dicots	Plantaginaceae	Lagotis minor
862	Dicots	Plantaginaceae	Limnophila indica
863	Dicots	Plantaginaceae	Lindenbergia grandiflora
864	Dicots	Plantaginaceae	Lindenbergia indica
865	Dicots	Plantaginaceae	Lindenbergia macrostachya
866	Dicots	Plantaginaceae	Nanorrhinum ramosissimum (Syn. Kickxia ramosissima)
867	Dicots	Plantaginaceae	Picrorhiza kurrooa
868	Dicots	Plantaginaceae	Plantago depressa
869	Dicots	Plantaginaceae	Plantago erosa
870	Dicots	Plantaginaceae	Plantago gentianoides
871	Dicots	Plantaginaceae	Plantago himalaica
872	Dicots	Plantaginaceae	Plantago lanceolata
873	Dicots	Plantaginaceae	Plantago major
874	Dicots	Plantaginaceae	Plantago ovata
875	Dicots	Plantaginaceae	Veronica agrestis
876	Dicots	Plantaginaceae	Veronica anagalis-aquatica
877	Dicots	Plantaginaceae	Veronica beccabunga
878	Dicots	Plantaginaceae	Veronica biloba
879	Dicots	Plantaginaceae	Veronica persica
880	Dicots	Plantaginaceae	Veronica serpyllifolia
881	Dicots	Plantaginaceae	Veronica verna
882	Dicots	Plantaginaceae	Wulfenia amherstiana
883	Dicots	Platanaceae	Platinus orientalis
884	Dicots	Plumbaginaceae	Plumbago zeylanica
885	Dicots	Polygalaceae	Polygala abyssinica
886	Dicots	Polygalaceae	Polygala arvensis
887	Dicots	Polygalaceae	Polygala sibirica
888	Dicots	Polygonaceae	Aconogonum alpinum
889	Dicots	Polygonaceae	Aconogonum molle

200	Diasts	Polygonacoao	Aconogonum rumicifolium
890 891	Dicots	Polygonaceae	Aconogonum rumicifolium Bilderdykia convolvulus
891	Dicots	Polygonaceae Polygonaceae	Bilderdykia pterocarpa
893	Dicots	Polygonaceae	Bistorta affinis
894	Dicots	Polygonaceae	Bistorta amplexicaulis
895	Dicots	Polygonaceae	Bistorta macrophylla
896	Dicots Dicots	Polygonaceae	Bistorta vaccinifolia
897	Dicots	Polygonaceae	Bistorta vivipara
898	Dicots	Polygonaceae	Fagopyrum dibotrys
899	Dicots	Polygonaceae	Fagopyrum esculentum
900	Dicots	Polygonaceae	Fagopyrum tataricum
901	Dicots	Polygonaceae	Koenigia delicatula
902	Dicots	Polygonaceae	Oxyria digyna
903	Dicots	Polygonaceae	Persicaria amplexicaulis (Syn. Polygonum amplexicaule)
904	Dicots	Polygonaceae	Persicaria barbata
905	Dicots	Polygonaceae	Persicaria capitata
906	Dicots	Polygonaceae	Persicaria chinensis
907	Dicots	Polygonaceae	Persicaria hydropiper (Syn. Polygonum hydropiper)
908	Dicots	Polygonaceae	Persicaria microcephala
909	Dicots	Polygonaceae	Persicaria nepalensis
910	Dicots	Polygonaceae	Persicaria polystachya
911	Dicots	Polygonaceae	Persicaria pubescens
912	Dicots	Polygonaceae	Persicaria sagittata
913	Dicots	Polygonaceae	Persicaria vivipara (Syn. Polygonum viviparum)
914	Dicots	Polygonaceae	Persicaria wallichii (Syn. Polygonum polystachyum)
915	Dicots	Polygonaceae	Polygonum aviculare
916	Dicots	Polygonaceae	Polygonum bistorta
917	Dicots	Polygonaceae	Polygonum humile
918	Dicots	Polygonaceae	Polygonum paronychioides
919	Dicots	Polygonaceae	Polygonum plebieum
920	Dicots	Polygonaceae	Polygonum recumbens
921	Dicots	Polygonaceae	Polygonum rottboellioides
922	Dicots	Polygonaceae	Polygonum sinuatum
923	Dicots	Polygonaceae	Polygonum verticillatum
924	Dicots	Polygonaceae	Rheum australe
925	Dicots	Polygonaceae	Rheum australe
926	Dicots	Polygonaceae	Rheum moorcroftiana
927	Dicots	Polygonaceae	Rheum spiciforme
928	Dicots	Polygonaceae	Rheum webbianum
929	Dicots	Polygonaceae	Rumex acetosa
930	Dicots	Polygonaceae	Rumex hastatus
931	Dicots	Polygonaceae	Rumex nepalensis
932	Dicots	Portulacaceae	Portulaca oleracea
933	Dicots	Portulacaceae	Portulaca pilosa
934	Dicots	Primulaceae	Anagalis arvensis
935	Dicots	Primulaceae	Andrasace delavayi
936	Dicots	Primulaceae	Androsace globifera
937	Dicots	Primulaceae	Androsace rotundifolia
938 939	Dicots	Primulaceae Primulaceae	Androsace sarmentosa Androsace semipervivoides

940	Dianta	Primulaceae	Androsace umbellata
941	Dicots	Primulaceae	Ardisia khasiana
942	Dicots Dicots	Primulaceae	Embelia ribes
943	+	Primulaceae	Lysimachia chenopodioides
944	Dicots Dicots	Primulaceae	Lysimachia ferruginea
945		Primulaceae	Lysimachia prolifera
946	Dicots Dicots	Primulaceae	Maesa chisia
947		Primulaceae	Primula denticulata
948	Dicots Dicots	Primulaceae	Primula floribunda
949	Dicots	Primulaceae	Primula glomerata
950	Dicots	Primulaceae	Primula involucrata
951	Dicots	Primulaceae	Primula minutissima
952		Primulaceae	Primula petiolaris
953	Dicots Dicots	Primulaceae	Primula rosea
954	Dicots	Primulaceae	Primula stuartii
955	Dicots	Proteaceae	Grevillea robusta
956		Putranjivaceae	Putranjiva roxburghii
957	Dicots Dicots	Ranunculaceae	Aconitum chasmanthum
958	Dicots	Ranunculaceae	Aconitum ferox
959	Dicots	Ranunculaceae	Aconitum heterophyllum
960	Dicots	Ranunculaceae	Aconitum laeve
961	Dicots	Ranunculaceae	Aconitum lethale (Syn. Aconitum balfourii)
962	Dicots	Ranunculaceae	Aconitum violaceum
963	Dicots	Ranunculaceae	Actaea acuminata
964	Dicots	Ranunculaceae	Actaea spicata
965	Dicots	Ranunculaceae	Adonis aestivalis
966	Dicots	Ranunculaceae	Anemone obtusiloba
967	Dicots	Ranunculaceae	Anemone polyanthes
968	Dicots	Ranunculaceae	Anemone pubiflora
969	Dicots	Ranunculaceae	Anemone rivularis
970	Dicots	Ranunculaceae	Anemone rupicola
971	Dicots	Ranunculaceae	Anemone tetrasepala
972	Dicots	Ranunculaceae	Anemone vitifolia
973	Dicots	Ranunculaceae	Caltha palustris
974	Dicots	Ranunculaceae	Clematis barbellata
975	Dicots	Ranunculaceae	Clematis buchananiana
976	Dicots	Ranunculaceae	Clematis connata
977	Dicots	Ranunculaceae	Clematis graveolens
978	Dicots	Ranunculaceae	Clematis montana
979	Dicots	Ranunculaceae	Clematis vestitum
980	Dicots	Ranunculaceae	Delphinium brunonianum
981	Dicots	Ranunculaceae	Delphinium cashmirianum
982	Dicots	Ranunculaceae	Delphinium denudatum
983	Dicots	Ranunculaceae	Delphinium elatum
984	Dicots	Ranunculaceae	Delphinium kolzii
985	Dicots	Ranunculaceae	Delphinium pyramidale
986	Dicots	Ranunculaceae	Delphnium vestitum
987	Dicots	Ranunculaceae	Nigella sativa
988	Dicots	Ranunculaceae	Oxygraphis polypetala
989	Dicots	Ranunculaceae	Ranunculus arvensis
	1 5.000		<u> </u>

991 Dicots Ranunculaceae Ranunculus diffusus 992 Dicots Ranunculaceae Ranunculus hirtellus 993 Dicots Ranunculaceae Ranunculus laetus 994 Dicots Ranunculaceae Ranunculus lingua 995 Dicots Ranunculaceae Ranunculus putchellus 996 Dicots Ranunculaceae Ranunculus secteratus 997 Dicots Ranunculaceae Thalictrum alpinum 997 Dicots Ranunculaceae Thalictrum delgans 998 Dicots Ranunculaceae Thalictrum delgans 999 Dicots Ranunculaceae Thalictrum feegans 999 Dicots Ranunculaceae Thalictrum feegans 990 Dicots Ranunculaceae Thalictrum foetidum 1000 Dicots Ranunculaceae Thalictrum foetidum 1001 Dicots Ranunculaceae Thalictrum foetidum 1002 Dicots Ranunculaceae Thalictrum reniforme 1003 Dicots Ranunculaceae Thalictrum reniforme 1004 Dicots Ranunculaceae Thalictrum reniforme 1005 Dicots Ranunculaceae Thalictrum reniforme 1006 Dicots Ranunculaceae Thalictrum secundum 1007 Dicots Ranunculaceae Thalictrum secundum 1008 Dicots Ranunculaceae Helinus lanceolatus 1007 Dicots Rhamnaceae Helinus lanceolatus 1008 Dicots Rhamnaceae Rhomnus purpureus 1008 Dicots Rhamnaceae Rhomnus triquetra 1009 Dicots Rhamnaceae Rhomnus triquetra 1010 Dicots Rhamnaceae Rhomnus triquetra 1010 Dicots Rhamnaceae Ziziphus jujuba 1010 Dicots Rhamnaceae Ziziphus mauritiana 1011 Dicots Rhamnaceae Ziziphus mauritiana 1012 Dicots Rhamnaceae Ziziphus mauritiana 1013 Dicots Rhamnaceae Ziziphus mauritiana 1014 Dicots Rhamnaceae Ziziphus mauritiana 1015 Dicots Rosaceae Agrimonia pilosa 1016 Dicots Rosaceae Agrimonia pilosa 1017 Dicots Rosaceae Cotoneaster acuminatus 1018 Dicots Rosaceae Cotoneaster microphyllus 1020 Dicots Rosaceae Cotoneaster paculiaris 1021 Dicots Rosaceae Cotoneaster paculiaris 1022 Dicots Rosaceae Fragaria indica 1023 Dicots Rosaceae Fragaria indica 1024 Dicots Rosaceae Fragaria indica 1025 Dicots Rosaceae Fragaria indica 1026 Dicots Rosaceae Fragaria indica 1027 Dicots Rosaceae Fragaria indica 1028 Dicots Rosaceae Fragaria indica 1029 Dicots Rosaceae Potentilla arrosanguinea 1030 Dicots Rosaceae Potentilla arrosanguinea 1031 Dicots Rosaceae Poten		,		•
992 Dicots Ranunculaceae Ranunculus lingua 994 Dicots Ranunculaceae Ranunculus lingua 994 Dicots Ranunculaceae Ranunculus putchellus 995 Dicots Ranunculaceae Ranunculus sceleratus 996 Dicots Ranunculaceae Thalictrum alpinum 997 Dicots Ranunculaceae Thalictrum elegans 998 Dicots Ranunculaceae Thalictrum elegans 998 Dicots Ranunculaceae Thalictrum feegans 999 Dicots Ranunculaceae Thalictrum foetidum 998 Dicots Ranunculaceae Thalictrum rostlatum 998 Dicots Ranunculaceae Thalictrum secundum 998 Dicots Ranunculaceae Helinus lanceolatus 998 Dicots Ranunculaceae Helinus lanceolatus 999 Dicots Ranunculaceae Rhammus purpureus 999 Dicots Rhamnaceae Rhammus triquetra 999 Dicots Rhamnaceae Rhamnus triquetra 999 Dicots Rhamnaceae Ziziphus jujuba 999 Dicots Rhamnaceae Ziziphus injuba 999 Dicots Rhamnaceae Ziziphus mauritiana 999 Dicots Rhamnaceae Ziziphus mauritiana 999 Dicots Rhamnaceae Ziziphus mauritiana 999 Dicots Rhamnaceae Ziziphus nummularia 999 Dicots Rosaceae Agrimonia pilosa 999 Dicots Rosaceae Cotoneaster acuminatus 999 Dicots Rosaceae Cotoneaster microphyllus 999 Dicots Rosaceae Cotoneaster microphyllus 999 Dicots Rosaceae Cotoneaster microphyllus 999 Dicots Rosaceae Fragaria nubicola 999 Dicots Rosaceae Fragaria nubicola 999 Dicots Rosaceae Fragaria indica 999 Dicots Rosaceae Potentilla arvosquinea 999 Dicots Rosaceae Potentilla arvosquinea 9990 Dicots Rosaceae Potentilla arvosquinea 9	990	Dicots	Ranunculaceae	Ranunculus diffusus
993 Dicots Ranunculaceae Ranunculus lingua 994 Dicots Ranunculaceae Ranunculus pulchellus 995 Dicots Ranunculaceae Ranunculus selectratus 996 Dicots Ranunculaceae Thalictrum alpinum 997 Dicots Ranunculaceae Thalictrum cultratum 998 Dicots Ranunculaceae Thalictrum cultratum 1000 Dicots Ranunculaceae Thalictrum foliolosum 1001 Dicots Ranunculaceae Thalictrum foliolosum 1002 Dicots Ranunculaceae Thalictrum foliolosum 1003 Dicots Ranunculaceae Thalictrum reniforme 1004 Dicots Ranunculaceae Thalictrum reniforme 1005 Dicots Ranunculaceae Thalictrum restellatum 1006 Dicots Ranunculaceae Thalictrum restellatum 1007 Dicots Ranunculaceae Thalictrum restellatum 1008 Dicots Ranunculaceae Thalictrum restellatum 1009 Dicots Ranunculaceae Rhamus purpureus 1009 Dicots Rhamnaceae Rhamus purpureus 1009 Dicots Rhamnaceae Rhamus purpureus 1009 Dicots Rhamnaceae Rhamus virgustus 1010 Dicots Rhamnaceae Rhamus virgustus 1011 Dicots Rhamnaceae Ziziphus jujuba 1012 Dicots Rhamnaceae Ziziphus mauritiana 1013 Dicots Rhamnaceae Ziziphus mauritiana 1014 Dicots Rhamnaceae Ziziphus nauritiana 1015 Dicots Rhamnaceae Ziziphus oxyphylla 1016 Dicots Rosaceae Agrimonia pilosa 1017 Dicots Rosaceae Agrimonia pilosa 1018 Dicots Rosaceae Cotoneaster acuminatus 1019 Dicots Rosaceae Cotoneaster bocillaris 1010 Dicots Rosaceae Cotoneaster bocillaris 1011 Dicots Rosaceae Cotoneaster bocillaris 1012 Dicots Rosaceae Cotoneaster bocillaris 1013 Dicots Rosaceae Fragaria indica 1020 Dicots Rosaceae Fragaria indica 1021 Dicots Rosaceae Fragaria indica 1022 Dicots Rosaceae Fragaria indica 1023 Dicots Rosaceae Fragaria indica 1024 Dicots Rosaceae Fragaria indica 1025 Dicots Rosaceae Potentilla arbuscula 1026 Dicots Rosaceae Potentilla orbuscula 1027 Dicots Rosaceae Potentilla orbuscula 1038 Dicots Rosaceae Potentilla orbuscula 1039 Dicots Rosaceae Potentilla orbuscula 1030 Dicots Rosaceae Potentilla orbuscula 1031 Dicots Rosaceae Potentilla orbuscula 1033 Dicots Rosaceae Potentilla pilgens 1034 Dicots Rosaceae Potentilla grardiana	991	Dicots	Ranunculaceae	Ranunculus hirtellus
994 Dicots Ranunculaceae Ranunculus pulchellus 995 Dicots Ranunculaceae Ranunculus sceleratus 996 Dicots Ranunculaceae Thalictrum alpinum 997 Dicots Ranunculaceae Thalictrum cultratum 998 Dicots Ranunculaceae Thalictrum elegans 999 Dicots Ranunculaceae Thalictrum feedidum 1000 Dicots Ranunculaceae Thalictrum foetidum 1010 Dicots Ranunculaceae Thalictrum javanicum 1011 Dicots Ranunculaceae Thalictrum javanicum 1012 Dicots Ranunculaceae Thalictrum rentforme 1013 Dicots Ranunculaceae Thalictrum restellatum 1004 Dicots Ranunculaceae Thalictrum secundum 1005 Dicots Ranunculaceae Thalictrum secundum 1006 Dicots Ranunculaceae Thalictrum secundum 1007 Dicots Ranunculaceae Rhamus surpupreus 1008 Dicots Rhamnaceae Rhamus triquetra 1009 Dicots Rhamnaceae Rhamus virgutus 1010 Dicots Rhamnaceae Rhamus virgutus 1010 Dicots Rhamnaceae Sageretia thea 1011 Dicots Rhamnaceae Sageretia thea 1012 Dicots Rhamnaceae Ziziphus jujuba 1013 Dicots Rhamnaceae Ziziphus muritiana 1014 Dicots Rhamnaceae Ziziphus muritiana 1015 Dicots Rhamnaceae Ziziphus muritiana 1016 Dicots Rhamnaceae Ziziphus oxyphylla 1017 Dicots Rosaceae Ziziphus oxyphylla 1018 Dicots Rosaceae Agrimonia pilosa 1019 Dicots Rosaceae Agrimonia pilosa 1010 Dicots Rosaceae Cotoneaster acuminatus 1018 Dicots Rosaceae Cotoneaster aphillaris 1019 Dicots Rosaceae Cotoneaster microphyllus 1020 Dicots Rosaceae Cotoneaster microphyllus 1021 Dicots Rosaceae Friebotrya japonica 1022 Dicots Rosaceae Frigoria nubicola 1023 Dicots Rosaceae Frigoria nubicola 1024 Dicots Rosaceae Frigoria nubicola 1025 Dicots Rosaceae Frigoria nubicola 1026 Dicots Rosaceae Frigoria nubicola 1027 Dicots Rosaceae Frigoria nubicola 1028 Dicots Rosaceae Potentilla arbuscula 1030 Dicots Rosaceae Potentilla reriocarpa 1031 Dicots Rosaceae Potentilla furbuscula 1032 Dicots Rosaceae Potentilla furbuscula 1033 Dicots Rosaceae Potentilla furbuscula 1034 Dicots Rosaceae Potentilla furbuscula 1035 Dicots Rosaceae Potentilla gerardiana	992	Dicots		Ranunculus laetus
995 Dicots Ranunculaceae Ranunculus sceleratus 996 Dicots Ranunculaceae Thalictrum alpinum 997 Dicots Ranunculaceae Thalictrum cutratum 998 Dicots Ranunculaceae Thalictrum elegans 999 Dicots Ranunculaceae Thalictrum foetidum 1000 Dicots Ranunculaceae Thalictrum foetidum 1001 Dicots Ranunculaceae Thalictrum foliolosum 1002 Dicots Ranunculaceae Thalictrum journicum 1003 Dicots Ranunculaceae Thalictrum reniforme 1004 Dicots Ranunculaceae Thalictrum reniforme 1005 Dicots Ranunculaceae Thalictrum reniforme 1006 Dicots Ranunculaceae Thalictrum restellatum 1007 Dicots Ranunculaceae Thalictrum secundum 1008 Dicots Ranunculaceae Thalictrum secundum 1009 Dicots Ranunculaceae Thalictrum secundum 1000 Dicots Ranunculaceae Rhammus purpureus 1000 Dicots Ranunculaceae Rhammus virgatus 1001 Dicots Rhamnaceae Rhammus virgatus 1002 Dicots Rhamnaceae Rhammus virgatus 1003 Dicots Rhamnaceae Ziziphus jujuba 1010 Dicots Rhamnaceae Ziziphus jujuba 1011 Dicots Rhamnaceae Ziziphus mumrtaina 1012 Dicots Rhamnaceae Ziziphus mumrtaina 1013 Dicots Rhamnaceae Ziziphus soyphylla 1014 Dicots Rhamnaceae Ziziphus soyphylla 1015 Dicots Rosaceae Agrimonia pilosa 1016 Dicots Rosaceae Agrimonia pilosa 1017 Dicots Rosaceae Agrimonia pilosa 1018 Dicots Rosaceae Cotoneaster acuminatus 1018 Dicots Rosaceae Cotoneaster microphyllus 1020 Dicots Rosaceae Cotoneaster microphyllus 1021 Dicots Rosaceae Cotoneaster microphyllus 1022 Dicots Rosaceae Cotoneaster microphyllus 1023 Dicots Rosaceae Fragaria indica 1024 Dicots Rosaceae Fragaria indica 1025 Dicots Rosaceae Fragaria indica 1026 Dicots Rosaceae Fragaria indica 1027 Dicots Rosaceae Fragaria indica 1028 Dicots Rosaceae Potentilla arbuscula 1030 Dicots Rosaceae Potentilla arbuscula 1031 Dicots Rosaceae Potentilla frucicosa 1033 Dicots Rosaceae Potentilla frucicosa 1034 Dicots Rosaceae Potentilla frucicosa 1035 Dicots Rosaceae Potentilla frucicosa 1036 Dicots Rosaceae Potentilla frucicosa 1037 Dicots Rosaceae Potentilla geradiana	993	Dicots	Ranunculaceae	Ranunculus lingua
996 Dicots Ranunculaceae Thalictrum alpinum 997 Dicots Ranunculaceae Thalictrum cutratum 998 Dicots Ranunculaceae Thalictrum legans 999 Dicots Ranunculaceae Thalictrum foetidum 1000 Dicots Ranunculaceae Thalictrum foetidum 1001 Dicots Ranunculaceae Thalictrum foetidum 1002 Dicots Ranunculaceae Thalictrum foetidum 1003 Dicots Ranunculaceae Thalictrum renforme 1003 Dicots Ranunculaceae Thalictrum renforme 1004 Dicots Ranunculaceae Thalictrum restellatum 1005 Dicots Ranunculaceae Thalictrum restellatum 1006 Dicots Ranunculaceae Thalictrum secundum 1007 Dicots Ranunculaceae Thalictrum secundum 1008 Dicots Ranunculaceae Helinus lanceolatus 1009 Dicots Ranunculaceae Rhamnus purpureus 1009 Dicots Rhamnaceae Rhamnus virgutus 1009 Dicots Rhamnaceae Rhamnus virgutus 1010 Dicots Rhamnaceae Ziziphus jujuba 1011 Dicots Rhamnaceae Ziziphus jujuba 1012 Dicots Rhamnaceae Ziziphus nummularia 1013 Dicots Rhamnaceae Ziziphus nummularia 1014 Dicots Rhamnaceae Ziziphus nummularia 1015 Dicots Rhamnaceae Ziziphus nummularia 1016 Dicots Rosaceae Agrimonia pilosa 1017 Dicots Rosaceae Agrimonia pilosa 1018 Dicots Rosaceae Cotoneaster acuminatus 1019 Dicots Rosaceae Cotoneaster obcillaris 1010 Dicots Rosaceae Cotoneaster obcillaris 1020 Dicots Rosaceae Cotoneaster microphyllus 1021 Dicots Rosaceae Cotoneaster bacillaris 1022 Dicots Rosaceae Cotoneaster indica 1023 Dicots Rosaceae Fragaria nubicola 1024 Dicots Rosaceae Fragaria nubicola 1025 Dicots Rosaceae Fragaria nubicola 1026 Dicots Rosaceae Fragaria nubicola 1027 Dicots Rosaceae Fragaria nubicola 1028 Dicots Rosaceae Fragaria nubicola 1029 Dicots Rosaceae Geum elatum 1030 Dicots Rosaceae Potentilla argyrophylla 1031 Dicots Rosaceae Potentilla argyrophylla 1033 Dicots Rosaceae Potentilla reriocarpa 1034 Dicots Rosaceae Potentilla futicosa 1035 Dicots Rosaceae Potentilla grayrophylla 1036 Dicots Rosaceae Potentilla grayrophylla 1037 Dicots Rosaceae Potentilla grayrophylla 1038 Dicots Rosaceae Potentilla grayrophylla	994	Dicots		-
997 Dicots Ranunculaceae Thalictrum cultratum 998 Dicots Ranunculaceae Thalictrum legans 999 Dicots Ranunculaceae Thalictrum foetidum 1000 Dicots Ranunculaceae Thalictrum foliolosum 1001 Dicots Ranunculaceae Thalictrum rosiolosum 1002 Dicots Ranunculaceae Thalictrum rosiolosum 1003 Dicots Ranunculaceae Thalictrum rosiolosum 1004 Dicots Ranunculaceae Thalictrum rostellatum 1005 Dicots Ranunculaceae Thalictrum rostellatum 1006 Dicots Ranunculaceae Traliisu acaulis 1007 Dicots Ranunculaceae Traliisu acaulis 1008 Dicots Rhamnaceae Rhamnus purpureus 1009 Dicots Rhamnaceae Rhamnus purpureus 1000 Dicots Rhamnaceae Rhamnus virgatus 1010 Dicots Rhamnaceae Rhamnus virgatus 1010 Dicots Rhamnaceae Ziziphus jujuba 1011 Dicots Rhamnaceae Ziziphus jujuba 1012 Dicots Rhamnaceae Ziziphus nummularia 1013 Dicots Rhamnaceae Ziziphus nummularia 1014 Dicots Rhamnaceae Ziziphus oxyphylla 1015 Dicots Rosaceae Agrimonia pilosa 1016 Dicots Rosaceae Aruncus dioicus 1017 Dicots Rosaceae Cotoneaster acuminatus 1018 Dicots Rosaceae Cotoneaster affinis 1019 Dicots Rosaceae Cotoneaster bacillaris 1020 Dicots Rosaceae Cotoneaster proseus 1021 Dicots Rosaceae Cotoneaster roseus 1022 Dicots Rosaceae Cotoneaster ripophyllus 1023 Dicots Rosaceae Fragaria indica 1024 Dicots Rosaceae Fragaria indica 1025 Dicots Rosaceae Fragaria indica 1026 Dicots Rosaceae Fragaria indica 1027 Dicots Rosaceae Fragaria indica 1028 Dicots Rosaceae Geum elatum 1030 Dicots Rosaceae Fragaria indica 1029 Dicots Rosaceae Fragaria indica 1020 Dicots Rosaceae Fragaria indica 1021 Dicots Rosaceae Fragaria indica 1022 Dicots Rosaceae Potentilla arbuscula 1033 Dicots Rosaceae Potentilla arbuscula 1034 Dicots Rosaceae Potentilla fruticosa 1035 Dicots Rosaceae Potentilla grayrophylla 1036 Dicots Rosaceae Potentilla grayrophylla	995	Dicots	Ranunculaceae	Ranunculus sceleratus
998 Dicots Ranunculaceae Thalictrum elegans 999 Dicots Ranunculaceae Thalictrum foliolosum 1000 Dicots Ranunculaceae Thalictrum foliolosum 1001 Dicots Ranunculaceae Thalictrum foliolosum 1002 Dicots Ranunculaceae Thalictrum rostellatum 1003 Dicots Ranunculaceae Thalictrum reniforme 1004 Dicots Ranunculaceae Thalictrum restellatum 1005 Dicots Ranunculaceae Thalictrum secundum 1006 Dicots Ranunculaceae Thalictrum secundum 1007 Dicots Ranunculaceae Thalictrum secundum 1008 Dicots Rhamnaceae Helinus lanceolatus 1009 Dicots Rhamnaceae Rhamnus triquetra 1009 Dicots Rhamnaceae Rhamnus virgatus 1010 Dicots Rhamnaceae Rhamnus virgatus 1010 Dicots Rhamnaceae Ziziphus jujuba 1011 Dicots Rhamnaceae Ziziphus muritiana 1012 Dicots Rhamnaceae Ziziphus muritiana 1013 Dicots Rhamnaceae Ziziphus nummularia 1014 Dicots Rhamnaceae Ziziphus nummularia 1015 Dicots Rosaceae Agrimonia pilosa 1016 Dicots Rosaceae Aruncus dioicus 1017 Dicots Rosaceae Cotoneaster acuminatus 1018 Dicots Rosaceae Cotoneaster affinis 1019 Dicots Rosaceae Cotoneaster bacillaris 1020 Dicots Rosaceae Cotoneaster bacillaris 1020 Dicots Rosaceae Cotoneaster bacillaris 1021 Dicots Rosaceae Cotoneaster bacillaris 1022 Dicots Rosaceae Cotoneaster bacillaris 1023 Dicots Rosaceae Cotoneaster pinica 1024 Dicots Rosaceae Cotoneaster pinica 1025 Dicots Rosaceae Fragaria indica 1026 Dicots Rosaceae Fragaria indica 1027 Dicots Rosaceae Fragaria indica 1028 Dicots Rosaceae Fragaria indica 1029 Dicots Rosaceae Fragaria indica 1020 Dicots Rosaceae Fragaria indica 1021 Dicots Rosaceae Fragaria indica 1022 Dicots Rosaceae Fragaria indica 1023 Dicots Rosaceae Geum elatum 1030 Dicots Rosaceae Fragaria indica 1031 Dicots Rosaceae Potentilla arbuscula 1032 Dicots Rosaceae Potentilla arbuscula 1033 Dicots Rosaceae Potentilla gripagns 1034 Dicots Rosaceae Potentilla gripagns 1035 Dicots Rosaceae Potentilla gripagns 1036 Dicots Rosaceae Potentilla gripagns	996	Dicots	Ranunculaceae	Thalictrum alpinum
999 Dicots Ranunculaceae Thalictrum foetidum 1000 Dicots Ranunculaceae Thalictrum foliolosum 1001 Dicots Ranunculaceae Thalictrum foliolosum 1002 Dicots Ranunculaceae Thalictrum reniforme 1003 Dicots Ranunculaceae Thalictrum reniforme 1004 Dicots Ranunculaceae Thalictrum restellatum 1005 Dicots Ranunculaceae Thalictrum restellatum 1006 Dicots Ranunculaceae Thalictrum secundum 1007 Dicots Ranunculaceae Thalictrum secundum 1008 Dicots Rhamnaceae Helinus lanceolatus 1009 Dicots Rhamnaceae Rhamnus purpureus 1000 Dicots Rhamnaceae Rhamnus triquetra 1010 Dicots Rhamnaceae Sageretia thea 1011 Dicots Rhamnaceae Ziziphus jujuba 1012 Dicots Rhamnaceae Ziziphus mauritiana 1013 Dicots Rhamnaceae Ziziphus mauritiana 1014 Dicots Rhamnaceae Ziziphus oxyphylla 1015 Dicots Rosaceae Agrimonia pilosa 1016 Dicots Rosaceae Agrimonia pilosa 1017 Dicots Rosaceae Cotoneaster acuminatus 1018 Dicots Rosaceae Cotoneaster acuminatus 1019 Dicots Rosaceae Cotoneaster obtulasi 1010 Dicots Rosaceae Cotoneaster microphyllus 1021 Dicots Rosaceae Cotoneaster roseus 1022 Dicots Rosaceae Cotoneaster roseus 1023 Dicots Rosaceae Eriobotrya japonica 1024 Dicots Rosaceae Fragaria indica 1025 Dicots Rosaceae Fragaria indica 1026 Dicots Rosaceae Fragaria indica 1027 Dicots Rosaceae Geum elatum 1030 Dicots Rosaceae Geum elatum 1031 Dicots Rosaceae Geum elatum 1032 Dicots Rosaceae Geum elatum 1033 Dicots Rosaceae Potentilla arbosanginea 1034 Dicots Rosaceae Potentilla arbosanginea 1035 Dicots Rosaceae Potentilla arbosanginea 1036 Dicots Rosaceae Potentilla reprocapa	997	Dicots	Ranunculaceae	
1000 Dicots Ranunculaceae Thalictrum foliolosum 1001 Dicots Ranunculaceae Thalictrum payanicum 1002 Dicots Ranunculaceae Thalictrum reniforme 1003 Dicots Ranunculaceae Thalictrum rostellatum 1004 Dicots Ranunculaceae Thalictrum rostellatum 1005 Dicots Ranunculaceae Thalictrum rostellatum 1006 Dicots Ranunculaceae Trollius acaulis 1007 Dicots Ranunculaceae Trollius acaulis 1008 Dicots Rhamnaceae Rhamnus purpureus 1009 Dicots Rhamnaceae Rhamnus virgatus 1009 Dicots Rhamnaceae Rhamnus virgatus 1010 Dicots Rhamnaceae Rhamnus virgatus 1011 Dicots Rhamnaceae Ziziphus jujuba 1012 Dicots Rhamnaceae Ziziphus numularia 1013 Dicots Rhamnaceae Ziziphus nummularia 1014 Dicots Rhamnaceae Ziziphus nummularia 1015 Dicots Rosaceae Agrimonia pilosa 1016 Dicots Rosaceae Agrimonia pilosa 1017 Dicots Rosaceae Cotoneaster acuminatus 1018 Dicots Rosaceae Cotoneaster acuminatus 1019 Dicots Rosaceae Cotoneaster bacillaris 1020 Dicots Rosaceae Cotoneaster pilosa 1021 Dicots Rosaceae Cotoneaster pilosa 1022 Dicots Rosaceae Cotoneaster pilosa 1023 Dicots Rosaceae Cotoneaster pilosa 1024 Dicots Rosaceae Cotoneaster pilosa 1025 Dicots Rosaceae Cotoneaster pilosa 1026 Dicots Rosaceae Cotoneaster pilosa 1027 Dicots Rosaceae Cotoneaster pilosa 1028 Dicots Rosaceae Cotoneaster pilosa 1029 Dicots Rosaceae Fragaria indica 1020 Dicots Rosaceae Fragaria indica 1021 Dicots Rosaceae Fragaria indica 1022 Dicots Rosaceae Fragaria indica 1023 Dicots Rosaceae Fragaria indica 1024 Dicots Rosaceae Fragaria indica 1025 Dicots Rosaceae Fragaria indica 1026 Dicots Rosaceae Fragaria indica 1027 Dicots Rosaceae Geum elatum 1030 Dicots Rosaceae Geum elatum 1031 Dicots Rosaceae Potentilla arbuscula 1032 Dicots Rosaceae Potentilla arbuscula 1033 Dicots Rosaceae Potentilla protectapa 1034 Dicots Rosaceae Potentilla protectapa 1035 Dicots Rosaceae Potentilla protectapa 1036 Dicots Rosaceae Potentilla protectapa 1037 Dicots Rosaceae Potentilla protectapa	998	Dicots	Ranunculaceae	Thalictrum elegans
1001 Dicots Ranunculaceae Thalictrum javanicum 1002 Dicots Ranunculaceae Thalictrum reniforme 1003 Dicots Ranunculaceae Thalictrum rostellatum 1004 Dicots Ranunculaceae Thalictrum secundum 1005 Dicots Ranunculaceae Thalictrum secundum 1006 Dicots Ranunculaceae Trollius acaulis 1007 Dicots Rhamnaceae Helinus lanceolatus 1008 Dicots Rhamnaceae Rhamnus purpureus 1009 Dicots Rhamnaceae Rhamnus triquetra 1009 Dicots Rhamnaceae Rhamnus virgatus 1010 Dicots Rhamnaceae Zageretia thea 1011 Dicots Rhamnaceae Ziziphus mauritiana 1012 Dicots Rhamnaceae Ziziphus mauritiana 1013 Dicots Rhamnaceae Ziziphus nummularia 1014 Dicots Rhamnaceae Ziziphus nummularia 1015 Dicots Rhamnaceae Ziziphus oxyphylla 1016 Dicots Rosaceae Agrimonia pilosa 1017 Dicots Rosaceae Agrimonia pilosa 1018 Dicots Rosaceae Cotoneaster acuminatus 1019 Dicots Rosaceae Cotoneaster acuminatus 1010 Dicots Rosaceae Cotoneaster pacillaris 1020 Dicots Rosaceae Cotoneaster microphyllus 1021 Dicots Rosaceae Cotoneaster microphyllus 1022 Dicots Rosaceae Cotoneaster roseus 1023 Dicots Rosaceae Cotoneaster roseus 1024 Dicots Rosaceae Friginalica 1025 Dicots Rosaceae Frigaria indica 1026 Dicots Rosaceae Frigaria indica 1027 Dicots Rosaceae Frigaria indica 1028 Dicots Rosaceae Frigaria indica 1029 Dicots Rosaceae Frigaria vesca 1029 Dicots Rosaceae Geum elatum 1030 Dicots Rosaceae Geum elatum 1031 Dicots Rosaceae Geum elatum 1032 Dicots Rosaceae Frigaria usucula 1033 Dicots Rosaceae Potentilla arisvophylla 1034 Dicots Rosaceae Potentilla arisvophylla 1035 Dicots Rosaceae Potentilla relicarpa 1036 Dicots Rosaceae Potentilla relicarpa 1037 Dicots Rosaceae Potentilla gerordiana	999	Dicots	Ranunculaceae	Thalictrum foetidum
1002 Dicots Ranunculaceae Thalictrum reniforme 1003 Dicots Ranunculaceae Thalictrum rostellatum 1004 Dicots Ranunculaceae Tralictrum rostellatum 1005 Dicots Ranunculaceae Trollius acaulis 1006 Dicots Rhamnaceae Helinus lanceolatus 1007 Dicots Rhamnaceae Rhamnus purpureus 1008 Dicots Rhamnaceae Rhamnus riquetra 1009 Dicots Rhamnaceae Rhamnus virgatus 1010 Dicots Rhamnaceae Sogeretia thea 1011 Dicots Rhamnaceae Ziziphus jujuba 1012 Dicots Rhamnaceae Ziziphus numrularia 1013 Dicots Rhamnaceae Ziziphus nummularia 1014 Dicots Rhamnaceae Ziziphus nummularia 1015 Dicots Rosaceae Agrimonia pilosa 1016 Dicots Rosaceae Agrimonia pilosa 1017 Dicots Rosaceae Cotoneaster acuminatus 1018 Dicots Rosaceae Cotoneaster acuminatus 1019 Dicots Rosaceae Cotoneaster bacillaris 1019 Dicots Rosaceae Cotoneaster bacillaris 1010 Dicots Rosaceae Cotoneaster bacillaris 1011 Dicots Rosaceae Cotoneaster plusus 1012 Dicots Rosaceae Cotoneaster plusus 1020 Dicots Rosaceae Cotoneaster plusus 1021 Dicots Rosaceae Cotoneaster plusus 1022 Dicots Rosaceae Cotoneaster plusus 1023 Dicots Rosaceae Cotoneaster roseus 1024 Dicots Rosaceae Frigaria indica 1025 Dicots Rosaceae Frigaria indica 1026 Dicots Rosaceae Frigaria indica 1027 Dicots Rosaceae Frigaria indica 1028 Dicots Rosaceae Frigaria indica 1029 Dicots Rosaceae Frigaria indica 1029 Dicots Rosaceae Frigaria vesca 1029 Dicots Rosaceae Frigaria indica 1029 Dicots Rosaceae Geum elatum 1030 Dicots Rosaceae Geum elatum 1031 Dicots Rosaceae Potentilla arbuscula 1033 Dicots Rosaceae Potentilla arbuscula 1034 Dicots Rosaceae Potentilla arbuscula 1035 Dicots Rosaceae Potentilla arbuscula 1036 Dicots Rosaceae Potentilla fruticosa 1037 Dicots Rosaceae Potentilla gerardiana	1000	Dicots	Ranunculaceae	Thalictrum foliolosum
1003 Dicots Ranunculaceae Thalictrum rostellatum 1004 Dicots Ranunculaceae Trollius acaulis 1006 Dicots Ranunculaceae Trollius acaulis 1007 Dicots Rhamnaceae Helinus lanceolatus 1008 Dicots Rhamnaceae Rhamnus purpureus 1008 Dicots Rhamnaceae Rhamnus riquetra 1009 Dicots Rhamnaceae Rhamnus riquetra 1010 Dicots Rhamnaceae Sageretia thea 1011 Dicots Rhamnaceae Ziziphus jujuba 1012 Dicots Rhamnaceae Ziziphus mauritiana 1013 Dicots Rhamnaceae Ziziphus nummularia 1014 Dicots Rhamnaceae Ziziphus nummularia 1015 Dicots Rhamnaceae Ziziphus nummularia 1016 Dicots Rosaceae Agrimonia pilosa 1017 Dicots Rosaceae Agrimonia pilosa 1018 Dicots Rosaceae Cotoneaster acuminatus 1019 Dicots Rosaceae Cotoneaster acuminatus 1019 Dicots Rosaceae Cotoneaster microphyllus 1020 Dicots Rosaceae Cotoneaster microphyllus 1021 Dicots Rosaceae Cotoneaster roseus 1022 Dicots Rosaceae Cotoneaster incrophyllus 1023 Dicots Rosaceae Cotoneaster incrophyllus 1024 Dicots Rosaceae Friagaria indica 1025 Dicots Rosaceae Friagaria nubicola 1026 Dicots Rosaceae Fragaria nubicola 1027 Dicots Rosaceae Fragaria nubicola 1028 Dicots Rosaceae Geum elatum 1030 Dicots Rosaceae Geum roylei 1031 Dicots Rosaceae Potentilla arbuscula 1032 Dicots Rosaceae Potentilla arbuscula 1033 Dicots Rosaceae Potentilla argyrophylla 1034 Dicots Rosaceae Potentilla argyrophylla 1035 Dicots Rosaceae Potentilla furgens 1037 Dicots Rosaceae Potentilla furgens 1038 Dicots Rosaceae Potentilla gerardiana	1001	Dicots	Ranunculaceae	-
1004 Dicots Ranunculaceae Trollius acaulis 1005 Dicots Ranunculaceae Trollius acaulis 1006 Dicots Rhamnaceae Helinus lanceolatus 1007 Dicots Rhamnaceae Rhamnus purpureus 1008 Dicots Rhamnaceae Rhamnus triquetra 1009 Dicots Rhamnaceae Rhamnus virgatus 1010 Dicots Rhamnaceae Sageretia thea 1011 Dicots Rhamnaceae Ziziphus jujuba 1012 Dicots Rhamnaceae Ziziphus nummularia 1013 Dicots Rhamnaceae Ziziphus nummularia 1014 Dicots Rhamnaceae Ziziphus nummularia 1015 Dicots Rhamnaceae Ziziphus oxyphylla 1016 Dicots Rosaceae Agrimonia pilosa 1017 Dicots Rosaceae Aruncus dioicus 1018 Dicots Rosaceae Cotoneaster acuminatus 1019 Dicots Rosaceae Cotoneaster bacillaris 1020 Dicots Rosaceae Cotoneaster roseus 1021 Dicots Rosaceae Cotoneaster roseus 1022 Dicots Rosaceae Cotoneaster roseus 1023 Dicots Rosaceae Cotoneaster roseus 1024 Dicots Rosaceae Frogaria indica 1024 Dicots Rosaceae Frogaria nubicola 1025 Dicots Rosaceae Fragaria nubicola 1026 Dicots Rosaceae Geum elatum 1027 Dicots Rosaceae Geum elatum 1030 Dicots Rosaceae Geum elatum 1031 Dicots Rosaceae Geum elatum 1032 Dicots Rosaceae Geum elatum 1033 Dicots Rosaceae Geum elatum 1034 Dicots Rosaceae Potentilla arbuscula 1035 Dicots Rosaceae Potentilla arbuscula 1036 Dicots Rosaceae Potentilla arbuscula 1037 Dicots Rosaceae Potentilla fulgens 1038 Dicots Rosaceae Potentilla fulgens 1038 Dicots Rosaceae Potentilla fulgens 1038 Dicots Rosaceae Potentilla gerardiana	1002	Dicots	Ranunculaceae	Thalictrum reniforme
1005 Dicots Ranunculaceae Trollius acaulis 1006 Dicots Rhamnaceae Helinus lanceolatus 1007 Dicots Rhamnaceae Rhamnus purpureus 1008 Dicots Rhamnaceae Rhamnus triquetra 1009 Dicots Rhamnaceae Rhamnus virgatus 1010 Dicots Rhamnaceae Sageretia thea 1011 Dicots Rhamnaceae Ziziphus jujuba 1012 Dicots Rhamnaceae Ziziphus nummularia 1013 Dicots Rhamnaceae Ziziphus nummularia 1014 Dicots Rhamnaceae Ziziphus nummularia 1015 Dicots Rhamnaceae Ziziphus nummularia 1016 Dicots Rosaceae Agrimonia pilosa 1017 Dicots Rosaceae Aruncus dioicus 1018 Dicots Rosaceae Cotoneaster acuminatus 1019 Dicots Rosaceae Cotoneaster acuminatus 1010 Dicots Rosaceae Cotoneaster bacillaris 1010 Dicots Rosaceae Cotoneaster bacillaris 1010 Dicots Rosaceae Cotoneaster obtusus 1021 Dicots Rosaceae Cotoneaster roseus 1022 Dicots Rosaceae Cotoneaster roseus 1023 Dicots Rosaceae Cotoneaster roseus 1024 Dicots Rosaceae Duchesnea indica 1025 Dicots Rosaceae Eriobotrya japonica 1026 Dicots Rosaceae Fragaria indica 1027 Dicots Rosaceae Fragaria indica 1028 Dicots Rosaceae Fragaria nubicola 1029 Dicots Rosaceae Geum elatum 1030 Dicots Rosaceae Geum elatum 1031 Dicots Rosaceae Geum roylei 1032 Dicots Rosaceae Geum elatum 1033 Dicots Rosaceae Potentilla arbuscula 1034 Dicots Rosaceae Potentilla argyrophylla 1035 Dicots Rosaceae Potentilla rilgens 1036 Dicots Rosaceae Potentilla fulgens 1037 Dicots Rosaceae Potentilla gerardiana	1003	Dicots	Ranunculaceae	Thalictrum rostellatum
1006 Dicots Rhamnaceae Rhamnus purpureus 1008 Dicots Rhamnaceae Rhamnus riquetra 1009 Dicots Rhamnaceae Rhamnus riquetra 1009 Dicots Rhamnaceae Rhamnus virgatus 1010 Dicots Rhamnaceae Sogeretia thea 1011 Dicots Rhamnaceae Ziziphus jujuba 1012 Dicots Rhamnaceae Ziziphus mauritiana 1013 Dicots Rhamnaceae Ziziphus mauritiana 1014 Dicots Rhamnaceae Ziziphus mumnularia 1015 Dicots Rhamnaceae Ziziphus oxyphylla 1016 Dicots Rosaceae Agrimonia pilosa 1017 Dicots Rosaceae Aruncus dioicus 1018 Dicots Rosaceae Cotoneaster acuminatus 1019 Dicots Rosaceae Cotoneaster affinis 1019 Dicots Rosaceae Cotoneaster bacillaris 1020 Dicots Rosaceae Cotoneaster bacillaris 1021 Dicots Rosaceae Cotoneaster roseus 1022 Dicots Rosaceae Cotoneaster roseus 1023 Dicots Rosaceae Duchesnea indica 1024 Dicots Rosaceae Eriobotrya japonica 1025 Dicots Rosaceae Fragaria indica 1026 Dicots Rosaceae Fragaria indica 1027 Dicots Rosaceae Fragaria indica 1028 Dicots Rosaceae Geum elatum 1030 Dicots Rosaceae Geum elatum 1030 Dicots Rosaceae Geum roylei 1031 Dicots Rosaceae Geum roylei 1032 Dicots Rosaceae Fragaria indica 1028 Dicots Rosaceae Geum roylei 1039 Dicots Rosaceae Geum roylei 1031 Dicots Rosaceae Potentilla arbuscula 1032 Dicots Rosaceae Potentilla arbuscula 1033 Dicots Rosaceae Potentilla rarbuscula 1034 Dicots Rosaceae Potentilla reriocarpa 1035 Dicots Rosaceae Potentilla fulgens 1036 Dicots Rosaceae Potentilla gerardiana	1004	Dicots	Ranunculaceae	Thalictrum secundum
1007 Dicots Rhamnaceae Rhamnus purpureus 1008 Dicots Rhamnaceae Rhamnus triquetra 1009 Dicots Rhamnaceae Rhamnus virgatus 1010 Dicots Rhamnaceae Ziziphus jujuba 1011 Dicots Rhamnaceae Ziziphus jujuba 1012 Dicots Rhamnaceae Ziziphus mumrularia 1013 Dicots Rhamnaceae Ziziphus mumrularia 1014 Dicots Rhamnaceae Ziziphus nummularia 1015 Dicots Rosaceae Agrimonia pilosa 1016 Dicots Rosaceae Aruncus dioicus 1017 Dicots Rosaceae Cotoneaster acuminatus 1018 Dicots Rosaceae Cotoneaster affinis 1019 Dicots Rosaceae Cotoneaster bacillaris 1020 Dicots Rosaceae Cotoneaster microphyllus 1021 Dicots Rosaceae Cotoneaster roseus 1022 Dicots Rosaceae Cotoneaster roseus 1023 Dicots Rosaceae Duchesnea indica 1024 Dicots Rosaceae Eriobotrya japonica 1025 Dicots Rosaceae Friagaria nubicola 1027 Dicots Rosaceae Fragaria indica 1028 Dicots Rosaceae Geum elatum 1029 Dicots Rosaceae Geum roylei 1030 Dicots Rosaceae Geum roylei 1031 Dicots Rosaceae Geum roylei 1032 Dicots Rosaceae Geum roylei 1033 Dicots Rosaceae Potentilla argyrophylla 1034 Dicots Rosaceae Potentilla argyrophylla 1035 Dicots Rosaceae Potentilla driuscora 1036 Dicots Rosaceae Potentilla driuscora 1037 Dicots Rosaceae Potentilla fruticosa 1038 Dicots Rosaceae Potentilla fruticosa 1037 Dicots Rosaceae Potentilla fruticosa 1038 Dicots Rosaceae Potentilla fruticosa 1039 Dicots Rosaceae Potentilla fruticosa 1030 Dicots Rosaceae Potentilla fruticosa 1031 Dicots Rosaceae Potentilla gerardiana	1005	Dicots	Ranunculaceae	Trollius acaulis
1008DicotsRhamnaceaeRhamnus triquetra1009DicotsRhamnaceaeRhamnus virgatus1010DicotsRhamnaceaeSageretia thea1011DicotsRhamnaceaeZiziphus jujuba1012DicotsRhamnaceaeZiziphus mauritiana1013DicotsRhamnaceaeZiziphus nummularia1014DicotsRhamnaceaeZiziphus oxyphylla1015DicotsRosaceaeAgrimonia pilosa1016DicotsRosaceaeCotoneaster acuminatus1017DicotsRosaceaeCotoneaster affinis1019DicotsRosaceaeCotoneaster bacillaris1020DicotsRosaceaeCotoneaster microphyllus1021DicotsRosaceaeCotoneaster roseus1022DicotsRosaceaeCotoneaster roseus1023DicotsRosaceaeCotoneaster roseus1024DicotsRosaceaeEriobotrya japonica1025DicotsRosaceaeFragaria indica1026DicotsRosaceaeFragaria indica1027DicotsRosaceaeFragaria nubicola1028DicotsRosaceaeFragaria vesca1029DicotsRosaceaeGeum elatum1030DicotsRosaceaeGeum elatum1031DicotsRosaceaePotentilla arbuscula1032DicotsRosaceaePotentilla argyrophylla1034DicotsRosaceaePotentilla argyrophylla <t< td=""><td>1006</td><td>Dicots</td><td>Rhamnaceae</td><td>Helinus lanceolatus</td></t<>	1006	Dicots	Rhamnaceae	Helinus lanceolatus
1019 Dicots Rhamnaceae Rhamnus virgatus 1010 Dicots Rhamnaceae Sageretia thea 1011 Dicots Rhamnaceae Ziziphus jujuba 1012 Dicots Rhamnaceae Ziziphus mauritiana 1013 Dicots Rhamnaceae Ziziphus mumularia 1014 Dicots Rhamnaceae Ziziphus mumularia 1015 Dicots Rhamnaceae Ziziphus oxyphylla 1016 Dicots Rosaceae Agrimonia pilosa 1016 Dicots Rosaceae Aruncus dioicus 1017 Dicots Rosaceae Cotoneaster acuminatus 1018 Dicots Rosaceae Cotoneaster affinis 1019 Dicots Rosaceae Cotoneaster bacillaris 1020 Dicots Rosaceae Cotoneaster microphyllus 1021 Dicots Rosaceae Cotoneaster roseus 1022 Dicots Rosaceae Cotoneaster roseus 1023 Dicots Rosaceae Cotoneaster roseus 1024 Dicots Rosaceae Eriobotrya japonica 1025 Dicots Rosaceae Fragaria indica 1026 Dicots Rosaceae Fragaria indica 1027 Dicots Rosaceae Fragaria nubicola 1028 Dicots Rosaceae Fragaria vesca 1029 Dicots Rosaceae Fragaria vesca 1029 Dicots Rosaceae Fragaria vesca 1029 Dicots Rosaceae Fragaria vesca 1020 Dicots Rosaceae Fragaria vesca 1021 Dicots Rosaceae Fragaria vesca 1022 Dicots Rosaceae Fragaria vesca 1023 Dicots Rosaceae Fragaria vesca 1024 Dicots Rosaceae Fragaria vesca 1025 Dicots Rosaceae Fragaria vesca 1026 Dicots Rosaceae Fragaria vesca 1027 Dicots Rosaceae Fragaria vesca 1028 Dicots Rosaceae Geum elatum 1030 Dicots Rosaceae Potentilla arbuscula 1031 Dicots Rosaceae Potentilla arbuscula 1032 Dicots Rosaceae Potentilla rosanguinea 1033 Dicots Rosaceae Potentilla rivicosa 1036 Dicots Rosaceae Potentilla furticosa 1037 Dicots Rosaceae Potentilla furticosa 1038 Dicots Rosaceae Potentilla gerardiana	1007	Dicots	Rhamnaceae	Rhamnus purpureus
1010 Dicots Rhamnaceae Ziziphus jujuba 1011 Dicots Rhamnaceae Ziziphus jujuba 1012 Dicots Rhamnaceae Ziziphus mauritiana 1013 Dicots Rhamnaceae Ziziphus nummularia 1014 Dicots Rosaceae Agrimonia pilosa 1015 Dicots Rosaceae Agrimonia pilosa 1016 Dicots Rosaceae Aruncus dioicus 1017 Dicots Rosaceae Cotoneaster acuminatus 1018 Dicots Rosaceae Cotoneaster affinis 1019 Dicots Rosaceae Cotoneaster bacillaris 1020 Dicots Rosaceae Cotoneaster microphyllus 1021 Dicots Rosaceae Cotoneaster roseus 1022 Dicots Rosaceae Cotoneaster roseus 1023 Dicots Rosaceae Cotoneaster roseus 1024 Dicots Rosaceae Duchesnea indica 1024 Dicots Rosaceae Filipendula vestita 1025 Dicots Rosaceae Fragaria indica 1026 Dicots Rosaceae Fragaria nubicola 1027 Dicots Rosaceae Fragaria nubicola 1028 Dicots Rosaceae Geum elatum 1030 Dicots Rosaceae Geum elatum 1030 Dicots Rosaceae Potentilla arayrophylla 1031 Dicots Rosaceae Potentilla arayrophylla 1032 Dicots Rosaceae Potentilla arayrophylla 1033 Dicots Rosaceae Potentilla arrosanguinea 1034 Dicots Rosaceae Potentilla arrosanguinea 1035 Dicots Rosaceae Potentilla fruticosa 1036 Dicots Rosaceae Potentilla fruticosa 1037 Dicots Rosaceae Potentilla gerardiana	1008	Dicots	Rhamnaceae	Rhamnus triquetra
1011DicotsRhamnaceaeZiziphus jujuba1012DicotsRhamnaceaeZiziphus mauritiana1013DicotsRhamnaceaeZiziphus nummularia1014DicotsRhamnaceaeZiziphus oxyphylla1015DicotsRosaceaeAgrimonia pilosa1016DicotsRosaceaeCotoneaster acuminatus1017DicotsRosaceaeCotoneaster affinis1018DicotsRosaceaeCotoneaster bacillaris1019DicotsRosaceaeCotoneaster microphyllus1020DicotsRosaceaeCotoneaster roseus1021DicotsRosaceaeCotoneaster roseus1022DicotsRosaceaeCotoneaster roseus1023DicotsRosaceaeDuchesnea indica1024DicotsRosaceaeEriobotrya japonica1025DicotsRosaceaeFrilipendula vestita1026DicotsRosaceaeFragaria indica1027DicotsRosaceaeFragaria nubicola1028DicotsRosaceaeFragaria vesca1029DicotsRosaceaeGeum elatum1030DicotsRosaceaeGeum elatum1031DicotsRosaceaePotentilla argyrophylla1033DicotsRosaceaePotentilla argyrophylla1034DicotsRosaceaePotentilla eriocarpa1035DicotsRosaceaePotentilla fruticosa1036DicotsRosaceaePotentilla fruticosa <td>1009</td> <td>Dicots</td> <td>Rhamnaceae</td> <td>Rhamnus virgatus</td>	1009	Dicots	Rhamnaceae	Rhamnus virgatus
1012DicotsRhamnaceaeZiziphus mauritiana1013DicotsRhamnaceaeZiziphus nummularia1014DicotsRhamnaceaeZiziphus oxyphylla1015DicotsRosaceaeAgrimonia pilosa1016DicotsRosaceaeAruncus dioicus1017DicotsRosaceaeCotoneaster acuminatus1018DicotsRosaceaeCotoneaster affinis1019DicotsRosaceaeCotoneaster microphyllus1020DicotsRosaceaeCotoneaster obtusus1021DicotsRosaceaeCotoneaster roseus1022DicotsRosaceaeCotoneaster roseus1023DicotsRosaceaeEriobotrya japonica1024DicotsRosaceaeFilipendula vestita1025DicotsRosaceaeFragaria indica1027DicotsRosaceaeFragaria nubicola1028DicotsRosaceaeFragaria vesca1029DicotsRosaceaeGeum elatum1030DicotsRosaceaeGeum elatum1031DicotsRosaceaePotentilla arbuscula1033DicotsRosaceaePotentilla arbuscula1034DicotsRosaceaePotentilla artosanguinea1035DicotsRosaceaePotentilla fruticosa1036DicotsRosaceaePotentilla fruticosa1037DicotsRosaceaePotentilla gerardiana	1010	Dicots	Rhamnaceae	Sageretia thea
1013DicotsRhamnaceaeZiziphus nummularia1014DicotsRhamnaceaeZiziphus oxyphylla1015DicotsRosaceaeAgrimonia pilosa1016DicotsRosaceaeAruncus dioicus1017DicotsRosaceaeCotoneaster acuminatus1018DicotsRosaceaeCotoneaster affinis1019DicotsRosaceaeCotoneaster bacillaris1020DicotsRosaceaeCotoneaster obtusus1021DicotsRosaceaeCotoneaster roseus1022DicotsRosaceaeCotoneaster roseus1023DicotsRosaceaeEriobotrya japonica1024DicotsRosaceaeFilipendula vestita1025DicotsRosaceaeFragaria indica1026DicotsRosaceaeFragaria nubicola1027DicotsRosaceaeFragaria vesca1029DicotsRosaceaeGeum elatum1030DicotsRosaceaeGeum roylei1031DicotsRosaceaePotentilla arbuscula1032DicotsRosaceaePotentilla argyrophylla1033DicotsRosaceaePotentilla argyrophylla1034DicotsRosaceaePotentilla eriocarpa1035DicotsRosaceaePotentilla fruticosa1036DicotsRosaceaePotentilla gerardiana	1011	Dicots	Rhamnaceae	Ziziphus jujuba
1014DicotsRhamnaceaeZiziphus oxyphylla1015DicotsRosaceaeAgrimonia pilosa1016DicotsRosaceaeAruncus dioicus1017DicotsRosaceaeCotoneaster acuminatus1018DicotsRosaceaeCotoneaster bacillaris1019DicotsRosaceaeCotoneaster bacillaris1020DicotsRosaceaeCotoneaster obtusus1021DicotsRosaceaeCotoneaster roseus1022DicotsRosaceaeCotoneaster roseus1023DicotsRosaceaeDuchesnea indica1024DicotsRosaceaeEriobotrya japonica1025DicotsRosaceaeFilipendula vestita1026DicotsRosaceaeFragaria nidica1027DicotsRosaceaeFragaria nubicola1028DicotsRosaceaeFragaria vesca1029DicotsRosaceaeGeum roylei1030DicotsRosaceaeGeum roylei1031DicotsRosaceaePotentilla arbuscula1032DicotsRosaceaePotentilla argyrophylla1033DicotsRosaceaePotentilla atrosanguinea1034DicotsRosaceaePotentilla eriocarpa1035DicotsRosaceaePotentilla fruticosa1036DicotsRosaceaePotentilla fulgens1038DicotsRosaceaePotentilla gerardiana	1012	Dicots	Rhamnaceae	Ziziphus mauritiana
1015DicotsRosaceaeAgrimonia pilosa1016DicotsRosaceaeAruncus dioicus1017DicotsRosaceaeCotoneaster acuminatus1018DicotsRosaceaeCotoneaster affinis1019DicotsRosaceaeCotoneaster bacillaris1020DicotsRosaceaeCotoneaster microphyllus1021DicotsRosaceaeCotoneaster roseus1022DicotsRosaceaeCotoneaster roseus1023DicotsRosaceaeDuchesnea indica1024DicotsRosaceaeFribpendula vestita1025DicotsRosaceaeFrigaria indica1026DicotsRosaceaeFragaria nubicola1027DicotsRosaceaeFragaria vesca1029DicotsRosaceaeGeum elatum1030DicotsRosaceaeGeum roylei1031DicotsRosaceaePotentilla arbuscula1032DicotsRosaceaePotentilla argyrophylla1033DicotsRosaceaePotentilla artosanguinea1034DicotsRosaceaePotentilla eriocarpa1035DicotsRosaceaePotentilla fruticosa1037DicotsRosaceaePotentilla fruticosa1038DicotsRosaceaePotentilla gerardiana	1013	Dicots	Rhamnaceae	·
1016DicotsRosaceaeAruncus dioicus1017DicotsRosaceaeCotoneaster acuminatus1018DicotsRosaceaeCotoneaster affinis1019DicotsRosaceaeCotoneaster bacillaris1020DicotsRosaceaeCotoneaster microphyllus1021DicotsRosaceaeCotoneaster obtusus1022DicotsRosaceaeCotoneaster roseus1023DicotsRosaceaeDuchesnea indica1024DicotsRosaceaeEriobotrya japonica1025DicotsRosaceaeFilipendula vestita1026DicotsRosaceaeFragaria indica1027DicotsRosaceaeFragaria nubicola1028DicotsRosaceaeGeum elatum1030DicotsRosaceaeGeum elatum1031DicotsRosaceaeGeum roylei1032DicotsRosaceaePotentilla arbuscula1033DicotsRosaceaePotentilla argyrophylla1034DicotsRosaceaePotentilla arrosanguinea1035DicotsRosaceaePotentilla eriocarpa1036DicotsRosaceaePotentilla fruticosa1037DicotsRosaceaePotentilla gerardiana	1014	Dicots	Rhamnaceae	Ziziphus oxyphylla
1017DicotsRosaceaeCotoneaster acuminatus1018DicotsRosaceaeCotoneaster bacillaris1020DicotsRosaceaeCotoneaster microphyllus1021DicotsRosaceaeCotoneaster obtusus1022DicotsRosaceaeCotoneaster roseus1023DicotsRosaceaeDuchesnea indica1024DicotsRosaceaeEriobotrya japonica1025DicotsRosaceaeFilipendula vestita1026DicotsRosaceaeFragaria indica1027DicotsRosaceaeFragaria nubicola1028DicotsRosaceaeFragaria vesca1029DicotsRosaceaeGeum elatum1030DicotsRosaceaeGeum roylei1031DicotsRosaceaePotentilla arbuscula1032DicotsRosaceaePotentilla argyrophylla1033DicotsRosaceaePotentilla arrosanguinea1034DicotsRosaceaePotentilla eriocarpa1036DicotsRosaceaePotentilla fruticosa1037DicotsRosaceaePotentilla fulgens1038DicotsRosaceaePotentilla gerardiana	1015	Dicots	Rosaceae	Agrimonia pilosa
1018DicotsRosaceaeCotoneaster affinis1019DicotsRosaceaeCotoneaster bacillaris1020DicotsRosaceaeCotoneaster microphyllus1021DicotsRosaceaeCotoneaster obtusus1022DicotsRosaceaeDuchesnea indica1023DicotsRosaceaeEriobotrya japonica1024DicotsRosaceaeFilipendula vestita1025DicotsRosaceaeFragaria indica1026DicotsRosaceaeFragaria nubicola1027DicotsRosaceaeFragaria vesca1028DicotsRosaceaeGeum elatum1030DicotsRosaceaeGeum roylei1031DicotsRosaceaeMalus baccata1032DicotsRosaceaePotentilla arbuscula1033DicotsRosaceaePotentilla argyrophylla1034DicotsRosaceaePotentilla eriocarpa1035DicotsRosaceaePotentilla fruticosa1036DicotsRosaceaePotentilla fruticosa1037DicotsRosaceaePotentilla gerardiana	1016	Dicots	Rosaceae	Aruncus dioicus
1019 Dicots Rosaceae Cotoneaster bacillaris 1020 Dicots Rosaceae Cotoneaster microphyllus 1021 Dicots Rosaceae Cotoneaster obtusus 1022 Dicots Rosaceae Cotoneaster roseus 1023 Dicots Rosaceae Duchesnea indica 1024 Dicots Rosaceae Eriobotrya japonica 1025 Dicots Rosaceae Filipendula vestita 1026 Dicots Rosaceae Fragaria indica 1027 Dicots Rosaceae Fragaria nubicola 1028 Dicots Rosaceae Fragaria vesca 1029 Dicots Rosaceae Geum elatum 1030 Dicots Rosaceae Geum roylei 1031 Dicots Rosaceae Malus baccata 1032 Dicots Rosaceae Potentilla arbuscula 1033 Dicots Rosaceae Potentilla argyrophylla 1034 Dicots Rosaceae Potentilla eriocarpa 1035 Dicots Rosaceae Potentilla fruticosa 1037 Dicots Rosaceae Potentilla fruticosa 1038 Dicots Rosaceae Potentilla gerardiana	1017	Dicots	Rosaceae	Cotoneaster acuminatus
1020DicotsRosaceaeCotoneaster microphyllus1021DicotsRosaceaeCotoneaster roseus1022DicotsRosaceaeDuchesnea indica1023DicotsRosaceaeEriobotrya japonica1024DicotsRosaceaeFilipendula vestita1025DicotsRosaceaeFragaria indica1026DicotsRosaceaeFragaria nubicola1027DicotsRosaceaeFragaria vesca1028DicotsRosaceaeGeum elatum1030DicotsRosaceaeGeum roylei1031DicotsRosaceaeMalus baccata1032DicotsRosaceaePotentilla arbuscula1033DicotsRosaceaePotentilla argyrophylla1034DicotsRosaceaePotentilla eriocarpa1035DicotsRosaceaePotentilla eriocarpa1036DicotsRosaceaePotentilla fruticosa1037DicotsRosaceaePotentilla gerardiana	1018	Dicots	Rosaceae	Cotoneaster affinis
1021DicotsRosaceaeCotoneaster obtusus1022DicotsRosaceaeDuchesnea indica1023DicotsRosaceaeEriobotrya japonica1024DicotsRosaceaeFilipendula vestita1025DicotsRosaceaeFragaria indica1026DicotsRosaceaeFragaria nubicola1027DicotsRosaceaeFragaria vesca1028DicotsRosaceaeGeum elatum1030DicotsRosaceaeGeum roylei1031DicotsRosaceaeMalus baccata1032DicotsRosaceaePotentilla arbuscula1033DicotsRosaceaePotentilla argyrophylla1034DicotsRosaceaePotentilla eriocarpa1035DicotsRosaceaePotentilla fruticosa1036DicotsRosaceaePotentilla fruticosa1037DicotsRosaceaePotentilla gerardiana	1019	Dicots	Rosaceae	Cotoneaster bacillaris
1022 Dicots Rosaceae Cotoneaster roseus 1023 Dicots Rosaceae Duchesnea indica 1024 Dicots Rosaceae Eriobotrya japonica 1025 Dicots Rosaceae Filipendula vestita 1026 Dicots Rosaceae Fragaria indica 1027 Dicots Rosaceae Fragaria nubicola 1028 Dicots Rosaceae Fragaria vesca 1029 Dicots Rosaceae Geum elatum 1030 Dicots Rosaceae Geum roylei 1031 Dicots Rosaceae Malus baccata 1032 Dicots Rosaceae Potentilla arbuscula 1033 Dicots Rosaceae Potentilla atrosanguinea 1034 Dicots Rosaceae Potentilla eriocarpa 1035 Dicots Rosaceae Potentilla fruticosa 1037 Dicots Rosaceae Potentilla fulgens 1038 Dicots Rosaceae Potentilla gerardiana	1020	Dicots	Rosaceae	Cotoneaster microphyllus
1023DicotsRosaceaeDuchesnea indica1024DicotsRosaceaeEriobotrya japonica1025DicotsRosaceaeFilipendula vestita1026DicotsRosaceaeFragaria indica1027DicotsRosaceaeFragaria nubicola1028DicotsRosaceaeFragaria vesca1029DicotsRosaceaeGeum elatum1030DicotsRosaceaeGeum roylei1031DicotsRosaceaeMalus baccata1032DicotsRosaceaePotentilla arbuscula1033DicotsRosaceaePotentilla argyrophylla1034DicotsRosaceaePotentilla atrosanguinea1035DicotsRosaceaePotentilla eriocarpa1036DicotsRosaceaePotentilla fruticosa1037DicotsRosaceaePotentilla fulgens1038DicotsRosaceaePotentilla gerardiana	1021	Dicots	Rosaceae	Cotoneaster obtusus
1024DicotsRosaceaeEriobotrya japonica1025DicotsRosaceaeFilipendula vestita1026DicotsRosaceaeFragaria indica1027DicotsRosaceaeFragaria nubicola1028DicotsRosaceaeFragaria vesca1029DicotsRosaceaeGeum elatum1030DicotsRosaceaeGeum roylei1031DicotsRosaceaeMalus baccata1032DicotsRosaceaePotentilla arbuscula1033DicotsRosaceaePotentilla argyrophylla1034DicotsRosaceaePotentilla atrosanguinea1035DicotsRosaceaePotentilla eriocarpa1036DicotsRosaceaePotentilla fruticosa1037DicotsRosaceaePotentilla fulgens1038DicotsRosaceaePotentilla gerardiana	1022	Dicots	Rosaceae	Cotoneaster roseus
1025 Dicots Rosaceae Filipendula vestita 1026 Dicots Rosaceae Fragaria indica 1027 Dicots Rosaceae Fragaria nubicola 1028 Dicots Rosaceae Fragaria vesca 1029 Dicots Rosaceae Geum elatum 1030 Dicots Rosaceae Geum roylei 1031 Dicots Rosaceae Malus baccata 1032 Dicots Rosaceae Potentilla arbuscula 1033 Dicots Rosaceae Potentilla argyrophylla 1034 Dicots Rosaceae Potentilla atrosanguinea 1035 Dicots Rosaceae Potentilla eriocarpa 1036 Dicots Rosaceae Potentilla fruticosa 1037 Dicots Rosaceae Potentilla fulgens 1038 Dicots Rosaceae Potentilla gerardiana	1023	Dicots	Rosaceae	Duchesnea indica
1026 Dicots Rosaceae Fragaria indica 1027 Dicots Rosaceae Fragaria nubicola 1028 Dicots Rosaceae Fragaria vesca 1029 Dicots Rosaceae Geum elatum 1030 Dicots Rosaceae Geum roylei 1031 Dicots Rosaceae Malus baccata 1032 Dicots Rosaceae Potentilla arbuscula 1033 Dicots Rosaceae Potentilla argyrophylla 1034 Dicots Rosaceae Potentilla atrosanguinea 1035 Dicots Rosaceae Potentilla eriocarpa 1036 Dicots Rosaceae Potentilla fruticosa 1037 Dicots Rosaceae Potentilla fruticosa 1038 Dicots Rosaceae Potentilla gerardiana	1024	Dicots	Rosaceae	Eriobotrya japonica
1027DicotsRosaceaeFragaria nubicola1028DicotsRosaceaeFragaria vesca1029DicotsRosaceaeGeum elatum1030DicotsRosaceaeGeum roylei1031DicotsRosaceaeMalus baccata1032DicotsRosaceaePotentilla arbuscula1033DicotsRosaceaePotentilla argyrophylla1034DicotsRosaceaePotentilla atrosanguinea1035DicotsRosaceaePotentilla eriocarpa1036DicotsRosaceaePotentilla fruticosa1037DicotsRosaceaePotentilla fulgens1038DicotsRosaceaePotentilla gerardiana	1025	Dicots	Rosaceae	•
1028DicotsRosaceaeFragaria vesca1029DicotsRosaceaeGeum elatum1030DicotsRosaceaeGeum roylei1031DicotsRosaceaeMalus baccata1032DicotsRosaceaePotentilla arbuscula1033DicotsRosaceaePotentilla argyrophylla1034DicotsRosaceaePotentilla atrosanguinea1035DicotsRosaceaePotentilla eriocarpa1036DicotsRosaceaePotentilla fruticosa1037DicotsRosaceaePotentilla fulgens1038DicotsRosaceaePotentilla gerardiana	1026	Dicots	Rosaceae	
1029 Dicots Rosaceae Geum elatum 1030 Dicots Rosaceae Geum roylei 1031 Dicots Rosaceae Malus baccata 1032 Dicots Rosaceae Potentilla arbuscula 1033 Dicots Rosaceae Potentilla argyrophylla 1034 Dicots Rosaceae Potentilla atrosanguinea 1035 Dicots Rosaceae Potentilla eriocarpa 1036 Dicots Rosaceae Potentilla fruticosa 1037 Dicots Rosaceae Potentilla fulgens 1038 Dicots Rosaceae Potentilla gerardiana		Dicots	Rosaceae	_
1030 Dicots Rosaceae Geum roylei 1031 Dicots Rosaceae Malus baccata 1032 Dicots Rosaceae Potentilla arbuscula 1033 Dicots Rosaceae Potentilla argyrophylla 1034 Dicots Rosaceae Potentilla atrosanguinea 1035 Dicots Rosaceae Potentilla eriocarpa 1036 Dicots Rosaceae Potentilla fruticosa 1037 Dicots Rosaceae Potentilla fulgens 1038 Dicots Rosaceae Potentilla gerardiana	1028	Dicots	Rosaceae	_
1031 Dicots Rosaceae Malus baccata 1032 Dicots Rosaceae Potentilla arbuscula 1033 Dicots Rosaceae Potentilla argyrophylla 1034 Dicots Rosaceae Potentilla atrosanguinea 1035 Dicots Rosaceae Potentilla eriocarpa 1036 Dicots Rosaceae Potentilla fruticosa 1037 Dicots Rosaceae Potentilla fulgens 1038 Dicots Rosaceae Potentilla gerardiana		Dicots	Rosaceae	
1032 Dicots Rosaceae Potentilla arbuscula 1033 Dicots Rosaceae Potentilla argyrophylla 1034 Dicots Rosaceae Potentilla atrosanguinea 1035 Dicots Rosaceae Potentilla eriocarpa 1036 Dicots Rosaceae Potentilla fruticosa 1037 Dicots Rosaceae Potentilla fulgens 1038 Dicots Rosaceae Potentilla gerardiana	1030	Dicots	Rosaceae	-
1033 Dicots Rosaceae Potentilla argyrophylla 1034 Dicots Rosaceae Potentilla atrosanguinea 1035 Dicots Rosaceae Potentilla eriocarpa 1036 Dicots Rosaceae Potentilla fruticosa 1037 Dicots Rosaceae Potentilla fulgens 1038 Dicots Rosaceae Potentilla gerardiana		Dicots	Rosaceae	
1034DicotsRosaceaePotentilla atrosanguinea1035DicotsRosaceaePotentilla eriocarpa1036DicotsRosaceaePotentilla fruticosa1037DicotsRosaceaePotentilla fulgens1038DicotsRosaceaePotentilla gerardiana		Dicots	Rosaceae	
1035 Dicots Rosaceae Potentilla eriocarpa 1036 Dicots Rosaceae Potentilla fruticosa 1037 Dicots Rosaceae Potentilla fulgens 1038 Dicots Rosaceae Potentilla gerardiana		Dicots	Rosaceae	77 1 7
1036DicotsRosaceaePotentilla fruticosa1037DicotsRosaceaePotentilla fulgens1038DicotsRosaceaePotentilla gerardiana	1034	Dicots	Rosaceae	Potentilla atrosanguinea
1037DicotsRosaceaePotentilla fulgens1038DicotsRosaceaePotentilla gerardiana	1035	Dicots	Rosaceae	Potentilla eriocarpa
1038 Dicots Rosaceae Potentilla gerardiana	1036	Dicots	Rosaceae	-
	1037	Dicots	Rosaceae	
4020 D	1038	Dicots	Rosaceae	
1039 Dicots Rosaceae Potentilla Indica	1039	Dicots	Rosaceae	Potentilla indica

1040	Dicots	Rosaceae	Potentilla nepalensis
1041	Dicots	Rosaceae	Potentilla supina
1042	Dicots	Rosaceae	Prinsepia utilis
1043	Dicots	Rosaceae	Prunus armeniaca
1044	Dicots	Rosaceae	Prunus avium
1045	Dicots	Rosaceae	Prunus cerasoides
1046	Dicots	Rosaceae	Prunus cornuta
1047	Dicots	Rosaceae	Prunus domestica
1048	Dicots	Rosaceae	Prunus padus
1049	Dicots	Rosaceae	Prunus persica
1050	Dicots	Rosaceae	Pyracantha crenulata
1051	Dicots	Rosaceae	Pyrus communis
1052	Dicots	Rosaceae	Pyrus pashia
1053	Dicots	Rosaceae	Rosa brunonii
1054	Dicots	Rosaceae	Rosa macrophylla
1055	Dicots	Rosaceae	Rosa sericea
1056	Dicots	Rosaceae	Rosa webbiana
1057	Dicots	Rosaceae	Rubus biflorus
1058	Dicots	Rosaceae	Rubus burkillii
1059	Dicots	Rosaceae	Rubus ellipticus
1060	Dicots	Rosaceae	Rubus foliolatus
1061	Dicots	Rosaceae	Rubus lasiocarpus
1062	Dicots	Rosaceae	Rubus macilentus
1063	Dicots	Rosaceae	Rubus nepalensis
1064	Dicots	Rosaceae	Rubus niveus
1065	Dicots	Rosaceae	Rubus paniculatus
1066	Dicots	Rosaceae	Sibbaldia cuneata
1067	Dicots	Rosaceae	Sibbaldia purpurea
1068	Dicots	Rosaceae	Sorbaria tomentosa
1069	Dicots	Rosaceae	Sorbus foliolosa
1070	Dicots	Rosaceae	Sorbus lanata
1071	Dicots	Rosaceae	Spiraea bella
1072	Dicots	Rosaceae	Spiraea canescens
1073	Dicots	Rosaceae	Spiraea sorbifolia
1074	Dicots	Rosaceae	Spiraea vaccinifolia
1075	Dicots	Rosaceae	Rosa moschata
1076	Dicots	Rubiaceae	Agrostemma verticillata
1077	Dicots	Rubiaceae	Borreria articularis
1078	Dicots	Rubiaceae	Catunaregam spinosa
1079	Dicots	Rubiaceae	Galium acutum
1080	Dicots	Rubiaceae	Galium aparine
1081	Dicots	Rubiaceae	Galium asperifolium
1082	Dicots	Rubiaceae	Galium asperuloides
1083	Dicots	Rubiaceae	Galium elegans
1084	Dicots	Rubiaceae	Galium rotundifolium
1085	Dicots	Rubiaceae	Haldina cordifolia
1086	Dicots	Rubiaceae	Hedyotis diffusa
1087	Dicots	Rubiaceae	Hedyotis pruinosa (Syn. Hedyotis corymbosa)
1088	Dicots	Rubiaceae	Hedyotis verticillata
1089	Dicots	Rubiaceae	Hymenodictyon excelsum

1090	Dicots	Rubiaceae	Hymenodictyon orixense
1091	Dicots	Rubiaceae	Leptodermis lanceolata
1092	Dicots	Rubiaceae	Leptodermis virgata
1093	Dicots	Rubiaceae	Luculia pinceana
1094	Dicots	Rubiaceae	Mitragyna parvifolia
1095	Dicots	Rubiaceae	Oldenlandia corymbosa
1096	Dicots	Rubiaceae	Randia dumetorum
1097	Dicots	Rubiaceae	Randia tetrasperma
1098	Dicots	Rubiaceae	Rubia cordifolia
1099	Dicots	Rubiaceae	Rubia manjith
1100	Dicots	Rubiaceae	Spermadictyon suaveolens
1101	Dicots	Rubiaceae	Wendlandia puberula
1102	Dicots	Rutaceae	Aegle marmelos
1103	Dicots	Rutaceae	Boenninghausenia albiflora
1104	Dicots	Rutaceae	Citrus aurantiifolia
1105	Dicots	Rutaceae	Citrus aurantium
1106	Dicots	Rutaceae	Citrus media
1107	Dicots	Rutaceae	Glycosmis mauritiana
1108	Dicots	Rutaceae	Glycosmis pentaphylla (Syn.Glycosmis arborea)
1109	Dicots	Rutaceae	Murraya koenigii
1110	Dicots	Rutaceae	Murraya paniculata
1111	Dicots	Rutaceae	Naringi crenulata
1112	Dicots	Rutaceae	Skimmia laureola
1113	Dicots	Rutaceae	Zanthoxylum armatum
1114	Dicots	Sabiaceae	Meliosma dilleniifolia
1115	Dicots	Sabiaceae	Sabia campanulata
1116	Dicots	Salicaceae	Flacourtia indica
1117	Dicots	Salicaceae	Populus ciliata
1118	Dicots	Salicaceae	Populus deltoides
1119	Dicots	Salicaceae	Populus nigra
1120	Dicots	Salicaceae	Salix acutifolia
1121	Dicots	Salicaceae	Salix alba
1122	Dicots	Salicaceae	Salix denticulata
1123	Dicots	Salicaceae	Salix disperma (Syn. Salix wallichiana)
1124	Dicots	Salicaceae	Salix flabellaris
1125	Dicots	Salicaceae	Salix fragilis
1126	Dicots	Salicaceae	Salix hastata
1127	Dicots	Salicaceae	Salix lindleyana
1128	Dicots	Salicaceae	Salix oxycarpa
1129	Dicots	Salicaceae	Salix tetrasperma
1130	Dicots	Salicaceae	Salix wallichiana
1131	Dicots	Sambucaceae	Sambucus wightiana
1132	Dicots	Santalaceae	Korthalsella opuntia
1133	Dicots	Santalaceae	Osyris quadripartita
1134	Dicots	Santalaceae	Viscum album
1135	Dicots	Sapindaceae	Acer acuminata
1136	Dicots	Sapindaceae	Acer acuminatum
1137	Dicots	Sapindaceae	Acer caesium
1138	Dicots	Sapindaceae	Acer cappadocicum
1139	Dicots	Sapindaceae	Acer pictum

1140	D:	Capindacoao	Acer villosum
1140	Dicots	Sapindaceae	Aesculus indica
1141	Dicots	Sapindaceae Sapindaceae	Cardiospermum helicacabum
1143	Dicots	Sapindaceae	Dodonaea viscosa
1144	Dicots Dicots	Sapindaceae	Litchi chinensis
1145	Dicots	Sapindaceae	Litsea elongata
1146	Dicots	Sapindaceae	Litsea glutinosa
1147	Dicots	Sapindaceae	Litsea salicifolia
1148	Dicots	Sapindaceae	Litsea umbrosa
1149	Dicots	Sapindaceae	Sapindus mukorossi
1150	Dicots	Saururaceae	Houttuynia cordata
1151	Dicots	Saxifragaceae	Astilbe rivularis
1152	Dicots	Saxifragaceae	Bergenia ciliata
1153	Dicots	Saxifragaceae	Bergenia pacumbis (Syn. Bergenia ligulata)
1154	Dicots	Saxifragaceae	Bergenia stracheyi
1155	Dicots	Saxifragaceae	Saxifraga brunonis
1156	Dicots	Saxifragaceae	Saxifraga diversifolia
1157	Dicots	Saxifragaceae	Saxifraga moorcroftiana
1158	Dicots	Saxifragaceae	Saxifraga odontophylla
1159	Dicots	Saxifragaceae	Saxifraga parnassifolia
1160	Dicots	Saxifragaceae	Saxifraga sibirica
1161	Dicots	Schisandraceae	Illicium verum
1162	Dicots	Schisandraceae	Schisandra grandiflora
1163	Dicots	Scrophulariaceae	Antirrhinum orontium
1164	Dicots	Scrophulariaceae	Buchneria hispida
1165	Dicots	Scrophulariaceae	Buddleja asiatica
1166	Dicots	Scrophulariaceae	Buddleja crispa
1167	Dicots	Scrophulariaceae	Buddleja madagascariensis
1168	Dicots	Scrophulariaceae	Euphrasia himalaica
1169	Dicots	Scrophulariaceae	Scrophularia decomposita
1170	Dicots	Scrophulariaceae	Scrophularia himalensis
1171	Dicots	Scrophulariaceae	Scrophularia scabiosaefolia
1172	Dicots	Scrophulariaceae	Verbascum chinense
1173	Dicots	Scrophulariaceae	Verbascum thapsus
1174	Dicots	Simaroubaceae	Ailanthus altissima
1175	Dicots	Simaroubaceae	Brucea javanica (Syn. Rhus javanica)
1176	Dicots	Simaroubaceae	Brucea mollis
1177	Dicots	Simaroubaceae	Picrasma quassioides
1178	Dicots	Solanaceae	Atropa acuminata
1179	Dicots	Solanaceae	Atropa belladonna
1180	Dicots	Solanaceae	Brugmansia suaveolens
1181	Dicots	Solanaceae	Datura innoxia
1182	Dicots	Solanaceae	Datura metel
1183	Dicots	Solanaceae	Datura stramonium
1184	Dicots	Solanaceae	Datura stramonium
1185	Dicots	Solanaceae	Hyocyamus niger
1186	Dicots	Solanaceae	Lycopersicum esculentum
1187	Dicots	Solanaceae	Nicandra physaloides
1188	Dicots	Solanaceae	Nicotiana tabacum
1189	Dicots	Solanaceae	Physalis micrantha

1190	Dicots	Solanaceae	Physalis peruviana
1191	Dicots	Solanaceae	Physochlaina praealta
1192	Dicots	Solanaceae	Solanum erianthum
1193	Dicots	Solanaceae	Solanum indicum
1194	Dicots	Solanaceae	Solanum nigrum
1195	Dicots	Solanaceae	Solanum pseudo-capsicum
1196	Dicots	Solanaceae	Solanum surettense
1197	Dicots	Solanaceae	Solanum viarum
1198	Dicots	Solanaceae	Withania somnifera
1199	Dicots	Staphyleaceae	Staphylea emodi
1200	Dicots	Symplocaceae	Symplocos paniculata
1201	Dicots	Tamaricaceae	Myricaria germanica
1202	Dicots	Tamaricaceae	Tamarix indica (Syn. Tamarix troupii)
1203	Dicots	Theaceae	Camellia sinensis
1204	Dicots	Thymelaeaceae	Daphne cannabina
1205	Dicots	Thymelaeaceae	Daphne papyracea
1206	Dicots	Thymelaeaceae	Wikrostroemia canescens
1207	Dicots	Tiliaceae	Corchorus aestuans
1208	Dicots	Tiliaceae	Grewia eriocarpa
1209	Dicots	Tiliaceae	Grewia glabra
1210	Dicots	Tiliaceae	Grewia optiva
1211	Dicots	Tiliaceae	Tilia cordata
1212	Dicots	Ulmaceae	Holoptelea integrifolia
1213	Dicots	Ulmaceae	Trema cannabina
1214	Dicots	Ulmaceae	Ulmus villosa
1215	Dicots	Ulmaceae	Ulmus wallichiana
1216	Dicots	Urticaceae	Boehmeria macrophylla (Syn. Boehmeria platyphylla)
1217	Dicots	Urticaceae	Boehmeria rugulosa
1218	Dicots	Urticaceae	Debregeasia longifolia
1219	Dicots	Urticaceae	Debregeasia salicifolia
1220	Dicots	Urticaceae	Elatostema aquifolium
1221	Dicots	Urticaceae	Elatostema lineolatum
1222	Dicots	Urticaceae	Elatostema platyphyllum
1223	Dicots	Urticaceae	Elatostemma sessile
1224	Dicots	Urticaceae	Geradiana diversifolia
1225	Dicots	Urticaceae	Lecanthus peduncularis
1226	Dicots	Urticaceae	Parietaria micranthera
1227	Dicots	Urticaceae	Pilea racemosa
1228	Dicots	Urticaceae	Pilea scripta
1229	Dicots	Urticaceae	Pilea umbrosa
1230	Dicots	Urticaceae	Pouzolzia petendra
1231	Dicots	Urticaceae	Pouzolzia zeylanica
1232	Dicots	Urticaceae	Urtica dioica
1233	Dicots	Urticaceae	Urtica hyperborea
1234	Dicots	Urticaceae	Urtica mairei
1235	Dicots	Urticaceae	Urtica parviflora
1236	Dicots	Valerianaceae	Valeriana hardwickii
1237	Dicots	Valerianaceae	Valeriana jatamansii
1238	Dicots	Valerianaceae	Valeriana pyrolifolias

1239	Dicots	Verbenaceae	Callicarpa macrophylla
1240	Dicots	Verbenaceae	Caryopteris bicolor
1241	Dicots	Verbenaceae	Duranta erecta
1242	Dicots	Verbenaceae	Duranta repens
1243	Dicots	Verbenaceae	Homskioldia sanguinea
1244	Dicots	Verbenaceae	Lantana camara
1245	Dicots	Verbenaceae	Phyla nodiflora
1246	Dicots	Verbenaceae	Verbena bonnariensis
1247	Dicots	Verbenaceae	Verbena officinalis
1248	Dicots	Verbenaceae	Vitex negundo
1249	Dicots	Violaceae	Viola betonicifolia
1250	Dicots	Violaceae	Viola biflora
1251	Dicots	Violaceae	Viola canescens
1252	Dicots	Violaceae	Viola odorata
1253	Dicots	Violaceae	Viola pilosa
1254	Dicots	Vitaceae	Ampelocissus divaricata
1255	Dicots	Vitaceae	Ampelocissus latifolia
1256	Dicots	Vitaceae	Cayratia trifolia
1257	Dicots	Vitaceae	Cissus himalayana
1258	Dicots	Vitaceae	Cissus quadrangularis
1259	Dicots	Vitaceae	Cissus repanda
1260	Dicots	Vitaceae	Leea asiatica
1261	Dicots	Vitaceae	Parthenocissus semicordata
1262	Dicots	Vitaceae	Tetrastigma serrulatum
1263	Dicots	Zygophyllaceae	Tribulus terrestris
1264	Monocots	Acoraceae	Acorus calamaus
1265	Monocots	Agavaceae	Agave wightii
1266	Monocots	Alismataceae	Alisma plantago-aquatica
1267	Monocots	Alismataceae	Sagittaria guyanensis
1268	Monocots	Amaryllidaceae	Allium cepa
1269	Monocots	Amaryllidaceae	Allium humile
1270	Monocots	Amaryllidaceae	Allium rubellum
1271	Monocots	Amaryllidaceae	Allium stracheyi
1272	Monocots	Amaryllidaceae	Allium victorialis
1273	Monocots	Amaryllidaceae	Allium wallichii
1274	Monocots	Araceae	Amorphophallus paeoniifolius
1275	Monocots	Araceae	Arisaema costatum
1276	Monocots	Araceae	Arisaema flavum
1277	Monocots	Araceae	Arisaema intermedium
1278	Monocots	Araceae	Arisaema jacquemontii
1279	Monocots	Araceae	Arisaema tortuosum
1280	Monocots	Araceae	Arisaema wallichianum
1281	Monocots	Araceae	Colocasia affinis
1282	Monocots	Araceae	Colocasia esculenta
1283	Monocots	Araceae	Remusatia hookeriana
1284	Monocots	Araceae	Sauromatum venosum
1285	Monocots	Araceae	Scindapsus officinalis
1286	Monocots	Araliaceae	Aralia cachemirica
1287	Monocots	Araliaceae	Hedera helix
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285	Monocots	Amaryllidaceae Amaryllidaceae Araceae	Allium victorialis Allium wallichii Amorphophallus paeoniifolius Arisaema costatum Arisaema flavum Arisaema intermedium Arisaema jacquemontii Arisaema tortuosum Arisaema wallichianum Colocasia affinis Colocasia esculenta Remusatia hookeriana Sauromatum venosum Scindapsus officinalis Aralia cachemirica

1288	Monocots	Arecaceae	Arenga saccharifera
1289	Monocots	Arecaceae	Phoenix acaulis
1290	Monocots	Arecaceae	Phoenix humilis
1291	Monocots	Arecaceae	Phoenix sylvestris
1292	Monocots	Asparagaceae	Agave americana
1293	Monocots	Asparagaceae	Asparagus adscendens
1294	Monocots	Asparagaceae	Asparagus filicinus
1295	Monocots	Asparagaceae	Asparagus racemosus
1296	Monocots	Asparagaceae	Drimia indica
1297	Monocots	Asparagaceae	Elephantopus mollis (Syn. Elephantopus scaber)
1298	Monocots	Asparagaceae	Ophiopogon intermedius
1299	Monocots	Asparagaceae	Polygonatum cirrhifolium
1300	Monocots	Asparagaceae	Polygonatum multiflorum
1301	Monocots	Asparagaceae	Polygonatum verticillatum
1302	Monocots	Asparagaceae	Yucca aloifolia
1303	Monocots	Asparagaceae	Yucca gloriosa (Syn. Yucca superba)
1304	Monocots	Colchicaceae	Gloriosa superba
1305	Monocots	Commelinaceae	Commelina benghalensis
1306	Monocots	Commelinaceae	Commelina paludosa
1307	Monocots	Commelinaceae	Cyanotis cristata
1308	Monocots	Commelinaceae	Cyanotis vaga
1309	Monocots	Commelinaceae	Pollia subumbellata
1310	Monocots	Cyperaceae	Bulbostylis barbata
1311	Monocots	Cyperaceae	Bulbostylis densa
1312	Monocots	Cyperaceae	Carex breviculmis
1313	Monocots	Cyperaceae	Carex cruciata
1314	Monocots	Cyperaceae	Carex infuscata
1315	Monocots	Cyperaceae	Carex longipes
1316	Monocots	Cyperaceae	Carex munroi
1317	Monocots	Cyperaceae	Carex nubigena
1318	Monocots	Cyperaceae	Carex obscura
1319	Monocots	Cyperaceae	Carex sempervirens (Syn. Carex alpina)
1320	Monocots	Cyperaceae	Carex setosa
1321	Monocots	Cyperaceae	Carex stramentitia (Syn. Carex filicina)
1322	Monocots	Cyperaceae	Cyperus alulatus
1323	Monocots	Cyperaceae	Cyperus breviculmis
1324	Monocots	Cyperaceae	Cyperus cardiolepis
1325	Monocots	Cyperaceae	Cyperus compressus
1326	Monocots	Cyperaceae	Cyperus cuspidatus
1327	Monocots	Cyperaceae	Cyperus cyperoides
1328	Monocots	Cyperaceae	Cyperus diaphanus
1329	Monocots	Cyperaceae	Cyperus filicina
1330	Monocots	Cyperaceae	Cyperus foliosa
1331	Monocots	Cyperaceae	Cyperus ligulata
1332	Monocots	Cyperaceae	Cyperus melanatha
1333	Monocots	Cyperaceae	Cyperus niveus
1334	Monocots	Cyperaceae	Cyperus nubigena
1335	Monocots	Cyperaceae	Cyperus rotundus
1333	MOHOCOLS	Сурстассас	Cyper as rotaliaas

4334	Ι	C	C
1336	Monocots	Cyperaceae	Cyperus setigera
1337	Monocots	Cyperaceae	Cyperus squarrosus
1338	Monocots	Cyperaceae	Eleocharis congesta
1339	Monocots	Cyperaceae	Eriophorum comosum
1340	Monocots	Cyperaceae	Eriophorum microstachyum
1341	Monocots	Cyperaceae	Eriophorum palustris
1342	Monocots	Cyperaceae	Fimbristylis bisumbellata
1343	Monocots	Cyperaceae	Fimbristylis dichotoma
1344	Monocots	Cyperaceae	Kobresia royleana
1345	Monocots	Cyperaceae	Kyllinga brevifolia
1346	Monocots	Cyperaceae	Scirpus juncoides
1347	Monocots	Cyperaceae	Scirpus littoralis
1348	Monocots	Cyperaceae	Scirpus mucronatus
1349	Monocots	Cyperaceae	Scirpus squarrosus
1350	Monocots	Dioscoreaceae	Dioscorea bulbifera
1351	Monocots	Dioscoreaceae	Dioscorea deltoidea
1352	Monocots	Dioscoreaceae	Dioscorea glabra
1353	Monocots	Dioscoreaceae	Dioscorea melanophyma
1354	Monocots	Dioscoreaceae	Dioscorea pentaphylla
1355	Monocots	Eriocaulaceae	Eriocaulon nepalense
1356	Monocots	Haemodoraceae	Aletris pauciflora
1357	Monocots	Hydrocharitaceae	Hydrilla verticillata
1358	Monocots	Hypoxidaceae	Curculigo orchoides
1359	Monocots	Hypoxidaceae	Hypoxis aurea
1360	Monocots	Hypoxidaceae	Molineria capitulata
1361	Monocots	Iridaceae	Belamcanda chinensis
1362	Monocots	Iridaceae	Iris hookeriana
1363	Monocots	Iridaceae	Iris kemaonensis
1364	Monocots	Iridaceae	Iris milesii
1365	Monocots	Juncaceae	Juncus articulatus
1366	Monocots	Juncaceae	Juncus bufonius
1367	Monocots	Juncaceae	Juncus concinnus
1368	Monocots	Juncaceae	Juncus leucomelas
1369	Monocots	Juncaceae	Juncus membranaceus
1370	Monocots	Juncaceae	Juncus sphacelatus
1371	Monocots	Juncaceae	Juncus thomsonii
1372	Monocots	Juncaceae	Luzula multiflora
1373	Monocots	Lemnaceae	Lemna purpusilla
1374	Monocots	Liliaceae	Cardiocrinum giganteum
1375	Monocots	Liliaceae	Clintonia udensis
1376	Monocots	Liliaceae	Fritillaria cirrhosa (Syn. Fritillaria roylei)
1377	Monocots	Liliaceae	Gagea elegans
1378	Monocots	Liliaceae	Lilium giganteum
1379	Monocots	Liliaceae	Lilium polyphyllum
1380	Monocots	Liliaceae	Lilium thomsonianum
1381	Monocots	Liliaceae	Lloydia serotina
1382	Monocots	Liliaceae	Smilacina purpurea

	I		I = 1
1383	Monocots	Liliaceae	Tulipa stellata
1384	Monocots	Orchidaceae	Aerides multiflora
1385	Monocots	Orchidaceae	Brassiopsis mitis
1386	Monocots	Orchidaceae	Calanthe tricarinata
1387	Monocots	Orchidaceae	Cephalanthera ensifolia
1388	Monocots	Orchidaceae	Cypripedium cordigerum
1389	Monocots	Orchidaceae	Cypripedium himalaicum
1390	Monocots	Orchidaceae	Dactylorhiza hatagirea
1391	Monocots	Orchidaceae	Epipactis gigantea
1392	Monocots	Orchidaceae	Eulophia dabia (Syn. Eulophia campestris)
1393	Monocots	Orchidaceae	Gastrodia orobanchoides
1394	Monocots	Orchidaceae	Goodyera repens
1395	Monocots	Orchidaceae	Habenaria acuminata
1396	Monocots	Orchidaceae	Habenaria latilibris
1397	Monocots	Orchidaceae	Habenaria monorchis
1398	Monocots	Orchidaceae	Habenaria puginiforme
1399	Monocots	Orchidaceae	Herminium lanceum
1400	Monocots	Orchidaceae	Malaxis mucifera
1401	Monocots	Orchidaceae	Neottia listeroides
1402	Monocots	Orchidaceae	Platanthera edgeworthii (Syn. Habenaria edgeworthii)
1403	Monocots	Orchidaceae	Rhynchostylis retusa
1404	Monocots	Orchidaceae	Spiranthes sinensis
1405	Monocots	Orchidaceae	Vanda testacea
1406	Monocots	Orobanchaceae	Boschniakia himalaica
1407	Monocots	Poaceae	Agrostis micrantha
1408	Monocots	Poaceae	Agrostis munroana
1409	Monocots	Poaceae	Agrostis pilosula
1410	Monocots	Poaceae	Agrostis stolonifera
1411	Monocots	Poaceae	Alopecurus arundinaceus
1412	Monocots	Poaceae	Andropogon contortus
1413	Monocots	Poaceae	Andropogon halepensis
1414	Monocots	Poaceae	Andropogon ischaemum
1415	Monocots	Poaceae	Andropogon munroi
1416	Monocots	Poaceae	Anthoxanthum odoratum
1417	Monocots	Poaceae	Apluda aristata
1418	Monocots	Poaceae	Apluda mutica
1419	Monocots	Poaceae	Aristida adscensionis
1420	Monocots	Poaceae	Aristida dascerisionis Aristida cyanantha
1421	Monocots	Poaceae	Aristida eyanantha Aristida setacea
1422		Poaceae	Arthraxon hispidus
1423	Monocots Monocots	Poaceae	Arthraxon lanceolatus
1423		Poaceae	Arthraxon lancifolius
1425	Monocots Monocots	Poaceae	Arundinaria falconeri
1425		Poaceae	Arundinella bengalensis
1427	Monocots	Poaceae	Arundinetta bengaterisis Arundinetta bengaterisis
1427	Monocots	Poaceae	Arundinetta jatua Arundinetta jatua Arundinetta jatua
	Monocots		Arundinella setosa
1429	Monocots	Poaceae	Ar unumettu setosu

1430	Monocots	Poaceae	Arundo donax
1431	Monocots	Poaceae	Avena sativa
1432	Monocots	Poaceae	Avena volgensis
1433	Monocots	Poaceae	Bambusa arundinacea
1434	Monocots	Poaceae	Bambusa bambos
1435	Monocots	Poaceae	Bambusa nutans
1436	Monocots	Poaceae	Bothriochloa bladhii
1437	Monocots	Poaceae	Bothriochloa ischaemum
1438	Monocots	Poaceae	Bothriochloa pertusa
1439	Monocots	Poaceae	Brachiaria ramosa
1440	Monocots	Poaceae	Brachiaria reptans
1441	Monocots	Poaceae	Brachypodium sylvaticum
1442	Monocots	Poaceae	Briza minor
1443	Monocots	Poaceae	Bromus gracillimus
1444	Monocots	Poaceae	Bromus japonicus
1445	Monocots	Poaceae	Calamagrostis emodensis
1446	Monocots	Poaceae	Calamagrostis lahulensis
1447	Monocots	Poaceae	Calamagrostis parviflorum
1448		Poaceae	Calamagrostis pseudophragmites
1449	Monocots	Poaceae	Calamagrostis scabrescens
1450	Monocots	Poaceae	Calamagrostis serrulatus
1451	Monocots	Poaceae	Capillipedium assimile
1451	Monocots	Poaceae	Cenchrus ciliaris
1453	Monocots	Poaceae	Chloris dolichostachya
1454	Monocots	Poaceae	Chrysopgon fulvus
1455	Monocots Monocots	Poaceae	Chrysopogon aciculatus
1456	Monocots	Poaceae	Chrysopogon gryllus
1457		Poaceae	Coix lacryma-jobi
1458	Monocots	Poaceae	Cymbopogon martinii
1459	Monocots	Poaceae	Cynodon dactylon
1460	Monocots	Poaceae	Dactylis glomerata
1461	Monocots	Poaceae	Dactyloctenium aegyptium
1462	Monocots	Poaceae	Danthonia cachymyriana
1463	Monocots	Poaceae	Danthonia jacquemontii
1464	Monocots	Poaceae	Danthonia schneideri
1465	Monocots Monocots	Poaceae	Dendrocalamus hamiltonii
1466	Monocots	Poaceae	Dendrocalamus strictus
1467	Monocots	Poaceae	Deschampsia caespitosa
1468	Monocots	Poaceae	Dichanthium annulatum
1469	Monocots	Poaceae	Digitaria ciliaris
1470	Monocots	Poaceae	Digitaria cruciata
1471	Monocots	Poaceae	Digitaria stricta (Syn. Agrostis pilosa)
1472	Monocots	Poaceae	Drepanostachyum falcatum (Syn. Sinarundinaria falcata)
1473	Monocots	Poaceae	Echinochloa colona
1474	Monocots	Poaceae	Eleusine coracana
1475	Monocots	Poaceae	Elymus nutans
1476	Monocots	Poaceae	Eragrostis amabilis (Syn. Eragrostis tenella)
			, , , , , , , , , , , , , , , , , , ,

1477	Monocots	Poaceae	Eragrostis atrovirens
1478	Monocots	Poaceae	Eragrostis ciliaris
1479	Monocots	Poaceae	Eragrostis crusgalli
1480	Monocots	Poaceae	Eragrostis indica
1481	Monocots	Poaceae	Eragrostis minor
1482	Monocots	Poaceae	Eragrostis nigra
1483	Monocots	Poaceae	Eragrostis pilosa
1484	Monocots	Poaceae	Eragrostis unioloides
1485	Monocots	Poaceae	Eulalia mollis
1486	Monocots	Poaceae	Eulaliopsis binata
1487	Monocots	Poaceae	Festuca kashmiriana
1488	Monocots	Poaceae	Festuca rubra
1489	Monocots	Poaceae	Festuca valesiaca
1490	Monocots	Poaceae	Heteropogon contortus
1491	Monocots	Poaceae	Imperata cylindrica
1492	Monocots	Poaceae	Isachaemum rugosum
1493	Monocots	Poaceae	Isachne albens
1494	Monocots	Poaceae	Isachne himalaica
1495	Monocots	Poaceae	Koeleria macrantha
1496	Monocots	Poaceae	Leersia haxandra
1497	Monocots	Poaceae	Lolium temulentum
1498	Monocots	Poaceae	Melica scaberrima
1499	Monocots	Poaceae	Melocalamus compactiflorus
1500	Monocots	Poaceae	Miscanthus nudipes
1501	Monocots	Poaceae	Muhlenbergia himalayensis
1502	Monocots	Poaceae	Neyraudia arundinacea
1503	Monocots	Poaceae	Oplismenus burmannii
1504	Monocots	Poaceae	Oplismenus compositus
1505	Monocots	Poaceae	Oplismenus munroi
1506	Monocots	Poaceae	Oplismenus undulatifolius
1507	Monocots	Poaceae	Oryza sativa
1508	Monocots	Poaceae	Oryzopsis lateralis
1509	Monocots	Poaceae	Panicum paludosum
1510	Monocots	Poaceae	Panicum psilopodium
1511	Monocots	Poaceae	Paspalidium flavidum
1512	Monocots	Poaceae	Paspalum dilatatum
1513	Monocots	Poaceae	Paspalum distichum
1514	Monocots	Poaceae	Paspalum scrobiculatum
1515	Monocots	Poaceae	Pennisetum flaccidum
1516	Monocots	Poaceae	Pennisetum orientale
1517	Monocots	Poaceae	Phacelurus speciosus
1518	Monocots	Poaceae	Phalaris minor
1519	Monocots	Poaceae	Phleum alpinum
1520	Monocots	Poaceae	Phragmites austarlis
1521	Monocots	Poaceae	Poa alpina
1522	Monocots	Poaceae	Poa annua
1523	Monocots	Poaceae	Poa falconeri

1524	Monocots	Poaceae	Poa himalaicum
1525	Monocots	Poaceae	Poa himlayana
1526	Monocots	Poaceae	Poa lahulensis
1527	Monocots	Poaceae	Poa pagophylla
1528	Monocots	Poaceae	Poa pratensis
1529	Monocots	Poaceae	Poa sikkimensis
1530	Monocots	Poaceae	Poa staphiana
1531	Monocots	Poaceae	Poa supina
1532	Monocots	Poaceae	Pogonatherum paniceum
1533	Monocots	Poaceae	Polypogon fugax
1534	Monocots	Poaceae	Polypogon monspeliensis
1535	Monocots	Poaceae	Saccharum bengalense
1536	Monocots	Poaceae	Saccharum filifolium
1537	Monocots	Poaceae	Saccharum rufipilum (Syn. Erianthus rufipilus)
1538	Monocots	Poaceae	Saccharum spontaneum
1539	Monocots	Poaceae	Setaria glauca
1540	Monocots	Poaceae	Setaria homonyma
1541	Monocots	Poaceae	Setaria palmifolia
1542	Monocots	Poaceae	Setaria rufipilum
1543	Monocots	Poaceae	Setaria viridis
1544	Monocots	Poaceae	Sinarundinaria falcata
1545	Monocots	Poaceae	Sorghum miliaceum
1546	Monocots	Poaceae	Sorghum nitidum
1547	Monocots	Poaceae	Sorghum vulgare
1548	Monocots	Poaceae	Sporobolus piliferus
1549	Monocots	Poaceae	Stipa sibirica
1550	Monocots	Poaceae	Tenaxia cachemyriana (Syn. Danthonia cachemyriana)
1551	Monocots	Poaceae	Thamnocalamus falconeri
1552	Monocots	Poaceae	Thamnocalamus spathiflorus
1553	Monocots	Poaceae	Themeda anathera
1554	Monocots	Poaceae	Themeda arundinacea
1555	Monocots	Poaceae	Themeda purpurescens
1556	Monocots	Poaceae	Thysanolaena latifolia
1557	Monocots	Poaceae	Thysanolaena maxima
1558	Monocots	Poaceae	Tripogon filiformis
1559	Monocots	Poaceae	Trisetum aeneum
1560	Monocots	Pontederiaceae	Monochoria hastata
1561	Monocots	Potamogetonaceae	Potamogeton octandrus
1562	Monocots	Potamogetonaceae	Potamogeton perfoliatus
1563	Monocots	Smilacaceae	Smilax aspera
1564	Monocots	Smilacaceae	Smilax glaucophylla
1565	Monocots	Smilacaceae	Smilax menispermoidea
1566	Monocots	Smilacaceae	Smilax zeylanica
1567	Monocots	Typhaceae	Typha angustata
1568	Monocots	Xanthorrhoeaceae	Aloe vera
1569	Monocots	Xanthorrhoeaceae	Eremurus himalaicus
1570	Monocots	Zingiberaceae	Alpinia galanga
	- 33		<u>, </u>

1571	Monocots	Zingiberaceae	Costus speciosus	
1572	Monocots	Zingiberaceae	Curcuma amada	
1573	Monocots	Zingiberaceae	Curcuma angustifolia	
1574	Monocots	Zingiberaceae	Curcuma aromatica	
1575	Monocots	Zingiberaceae	Curcuma longa (Syn. Curcuma domestica)	
1576	Monocots	Zingiberaceae	Elettaria cardamomum	
1577	Monocots	Zingiberaceae	Hedychium spicatum	
1578	Monocots	Zingiberaceae	Roscoea alpina	
1579	Monocots	Zingiberaceae	Roscoea purpurea	
1580	Monocots	Zingiberaceae	Zingiber officinale	
1581	Monocots	Zingiberaceae	Zingiber zerumbet	

Annexure II

List of Medicinal Plants reported from the Beas Basin

S.	Family	Scientific Name			5
No.	_		Local Name	Habitat	Part Used
1	Solanaceae	Atropa acuminata (=Atropa belladona)		Н	
2	Orchidaceae	Dactylorhiza hatagirea (=Orchis latifolia)		Н	
3	Gentianaceae	Gentiana kurroo		Н	
4	Asteraceae	Jurinea dolomiaea (=J. macrocephala)		Н	
5	Liliaceae	Lilium polyphyllum		Н	
6	Orchidaceae	Malaxis muscifera		Н	
7	Plantaginaceae	Picrorhiza kurroa		Н	
8	Gentianaceae	Swertia chirayita (= S. chirata)		Н	
9	Apiaceae	Angelica glauca	Chora	Н	Rt
10	Boraginaceae	Arnebia benthamii		Н	
11	Berberidaceae	Berberis aristata		S	
12	Betulaceae	Betula utilis		Т	
13	Dioscoreaceae	Dioscorea deltoidea	Shingli-Mingli	Н	Tu
14	Liliaceae	Fritillaria roylei		Н	
15	Caprifoliaceae	Nardostachys grandiflora (=N.		Н	
13	Capinottaceae	jatamansi)			
16	Asparagaceae	Polygonatum cirrhifolium		Н	
17	Asparagaceae	Polygonatum multiflorum		Н	
18	Asparagaceae	Polygonatum verticillatum	Salam Mishri	Н	Tu
19	Polygonaceae	Rheum moorcroftianum		Н	
20	Asteraceae	Saussurea obvallata		Н	
21	Berberidaceae	Senopodophyllum hexandrum		Н	
22	Pinaceae	Taxus wallichiana (= T. baccata)		Т	
23	Rutaceae	Zanthoxylum armatum	Tirmir	Sh	Fr, Sd
24	Ranunculaceae	Aconitum laeve		Н	
25	Fabaceae	Desmodium gangeticum		Н	
26	Bignoniaceae	Oroxylum indicum		T	
27	Solanaceae	Hyoscyamus niger		Н	
28	Polygonaceae	Rheum speciforme		Н	
29	Ranunculaceae	Aconitum violaceum		Н	
30	Amaryllidaceae	Allium stracheyi		Н	
31	Lauraceae	Cinnamomum tamala	Tejpatta	T	Bk, Lf
32	Ephederaceae	Ephedra gerardiana			
33	Hypericaceae	Hypericum peforatum		Н	
34	Cupressaceae	Juniperus communis		S	
35	Lauraceae	Litsea glutinosa	Gwanyu	T	Bk, Lf
36	Polygonaceae	Rheum webbianum		Н	
37	Zingiberaceae	Roscoea alpina		Н	
38	Apiaceae	Selinum connifolium (S. tenuifolium)		Н	
39	Apiaceae	Selinum vaginatum		Н	
40	Rutaceae	Skimmia laureola		S	
41	Symplocaceae	Symplocos paniculata		Т	
42	Malvaceae	Abelmoschus crinitus	Basuti	Sh	Rt, Fl, Fr. Lf., Wp
43	Fabaceae	Abrus precatorius	Rati	Sh	Rt, lf, Sd
44	Fabaceae	Acacia catechu	Khair	Т	Bk, Wd
45	Fabaceae	Acacia gageana	Bagharne	Sh	Lf, Fl, Sd
46	Asteraceae	Achillea millefolium	Gandan	Н	Lf, Fl
47	Amaranthacea e	Achyranthes aspera	Puthkanda	Н	Wp
48	Amaranthacea e	Achyranthes bidentata	Puthkanda	Н	Wp
49	Acoraceae	Acorus calamus	Bare/Bauch	Н	Rh, St, Lf

S. No.	Family	Scientific Name	Local Name	Habitat	Part Used
50	Acanthaceae	Adhatoda vasica	Basuti		Lf
51	Rutaceae	Aegle marmelos	Bel	Т	Fr
52	Asparagaceae	Agave americana	Ramban	Н	Wp
53					Lf, Rt, Sd,
	Asteraceae	Ageratum conyzoides	Okalbuti	Н	Fr, Fl
54	Asteraceae	Ageratum houstonianum	Okalbuti	Н	Wp
55	Rosaceae	Agrimonia pilosa	Kuri	Н	Ap, Rt
56	Asteraceae	Ainsliaea aptera	Sath jalari	Н	Rt
57		Ajuga integrifolia (Syn. Ajuga			
	Lamiaceae	bracteosa)	Neelkanthi	Н	Lf, Rt
58	Fabaceae	Albizia chinensis	Srinh	Т	Wd, Lf
59	Mimosaceae	Albizia julibrissin		Т	Wd, Lf
60	Fabaceae	Albizia lebbeck	Chuli	Т	Fl, Sd
61	Amaranthacea	Amaranthus cruentus (Syn.			
	е	Amaranthus paniculatus)	Saryara	Н	Sd
62	Vitaceae	Ampelocissus latifolia		Н	Lf, Fl
63	Araceae	Arisaema flavum	Kira aloo	Н	Bb
64	Araceae	Arisaema tortuosum	Biskaphar	Н	Wp
65	Asteraceae	Artemisia absinthium	Kachumebera	Sh	Lf
66	Asteraceae	Artemisia japonica	Chamber	Н	Lf
67	Asteraceae	Artemisia nilagirica		Н	Wp
68	Asteraceae	Artemisia parviflora	Jhau	Н	Lf, Rt, Sd
69	Asteraceae	Artemisia scoparia	Jandrodhi	Н	Lf, Rt, Sd
70	Apocynaceae	Asclepias curassavica		Sh	Lf, Rt
71	Asparagaceae	Asparagus adscendens	Sansarpali	Н	Wp
72	Asparagaceae	Asparagus filicinus	Shatavari	Sh	Tu
73	Aspleniaceae	Asplenium dalhousiae	Kajeri	Н	Wp
74	Meliaceae	Azadirachta indica	Darek	Т	Lf, Bk, Fr
75	Plantaginaceae	Bacopa monnieri		Н	Wp
76	Acanthaceae	Barleria cristata	Morani	Н	Wp
77	Fabaceae	Bauhinia divaricata (Syn. Bauhinia retusa)		Т	Sd, Fr
70		Bauhinia vahlii (Syn. Bauhinia			
78	Fabaceae	racemosa)	Tour	Т	Lf, Bk, Sd, Fr
79	Fabaceae	Bauhinia variegata	Karyalae	Т	Lf, Fr, Fl
00			Bhander		
80	Saxifragaceae	Bergenia ciliata Bergenia pacumbis (Syn. Bergenia	Pocha	Н	Rh
81	Saxifragaceae	ligulata)	Pashanbhed	Н	Lf, Rh
82	Asteraceae	Bidens bipinnata	Badigumbri	Н	Fr, Lf, Fl, Rt
83	Asteraceae	Bidens pilosa	J	Н	Wp
84	Asteraceae	Blumea laciniata	1	H	Lf
			Chitri,	<u> </u>	
85	Rutaceae	Boenninghausenia albiflora	Pissumar	Н	Lf
86	Nyctaginaceae	Boerhavia diffusa	Itsit		Rt, Lf
87	Bombacaceae	Bombax ceiba	Simbal	Т	Tr, Bk, Lf
88	Solanaceae	Brugmansia suaveolens	Datura	S	Fl
	Scrophulariace				
89	ae	Buddleja asiatica		Sh	Lf
	Scrophulariace		+		
90	ae	Buddleja crispa	Sfed saryu	Sh	Lf, Wd
91	Apiaceae	Bupleurum hamiltonii	5.00 July u	H	Ap, Rt
	. 15140040	Bupleurum tenuissimum (Syn.		- ''	, τρ, ττ
92	Apiaceae	Bupleurum tenue)		Н	Wp
93	Fabaceae	Butea monosperma	Palah	T	Wp
94	Fabaceae	Caesalpinia bonduc	i atali	Sh	Rt, Bk, Sd
95	Fabaceae	Cajanus crassus (Syn. Atylosia mollis)		H	Wp
96	Verbenaceae	Callicarpa macrophylla	Nagdhava	Sh	Lf, Rt
97	Apocynaceae	Calotropis procera	raganava	Fl	
98	Cannabaceae	Cannabis sativa	Bhang	Н	Lf, Bk, Sd,
	Carmanaceae	Carmadis Sacriva	שומווק	1 11	בו, טת, טע,

S. No.	Family	Scientific Name	Local Name	Habitat	Part Used Fr, Fl, St
99	Capparaceae	Capparis zeylanica		Sh	Wp
100	Brassicaceae	Cardamine impatiens		311	Н
101	Cyperaceae	Carex breviculmis		Н	Ap
102	Cyperaceae	Carex cruciata		Н	Wp
103	Apocynaceae	Carissa spinarum (Syn. Carissa opaca)	Garnoni	Sh	Lf, Fr
104	Verbenaceae	Caryopteris foetida	Rumri	Sh	Lf
105	Fabaceae	Cassia fistula	Amaltas	T	Rt, Lf, Fr, Bk
106	Apocynaceae	Catharanthus roseus		Sh	Wp, Rt, Lf
107	Apocynaceae	Catharanthus roseus (Syn. Vinca rosea)	Sadabahar	Н	Rh, St, Lf
108	Cucurbitaceae	Cayaponia laciniosa (Syn. Bryonopsis laciniosa)	Shivlingi		Sd
109	Celastraceae	Celastrus paniculatus	Sankhiran		Sd
110	Ulmaceae	Celtis australis	Kharik	Т	Lf, Rt, Bk
111	Apiaceae	Centella asiatica	Brahmi	H	Wp
112	Solanaceae	Cestrum nocturnum	Ratrani	Sh	Lf
113	Apiaceae	Chaerophyllum reflexum	Raciani	H	Rt
	Aplaceae	Chamaecrista mimosoides (Syn. Cassia			IXC
114	Fabaceae Amaranthacea	mimosoides)		Н	Rt, Lf
115	е	Chenopodium album	Bathua	Н	Sd, Lf
116	Amaranthacea e	Chenopodium botrys	Sokana	Н	Wp
117	Menispermacea		Bhatindru,		
	е	Cissampelos pareira	Patindu	Н	Wp
118	Lamiaceae	Clinopodium vulgare	Kusuma	Sh	Lf, Fl
119	Cucurbitaceae	Coccinia grandis		Н	Rt, Lf, Fr
120	Lamiaceae	Colebrookea oppositifolia	Gaddoos	Sh	Lf, Wp
121	Araceae	Colocasia antiquorum		Н	
122	Commelinacea e	Commelina benghalensis		Н	Lf Rt
123	Commelinacea e	Commelina paludosa	Chura	Н	Wp
124	Convolvulacea e	Convolvulus arvensis		Н	Wp
125	Asteraceae	Conyza japonica	Gaadi	Н	Wp
126	Ehretiaceae	Cordia dichotoma	Lasura		Lf
127	Coriariaceae	Coriaria nepalensis	Fanai	Sh	St, Lf, Fr
128	Myrtaceae	Corymbia citriodora (Syn. Eucalyptus citriodora)		Т	, ,
129	Asteraceae	Cosmos caudatus		H	lf
130	Anacardiaceae	Cotinus coggygria		Sh	Fr, Fl
131	Fabaceae	Crotalaria albida		Н	Sd, Rt
132	Apocynaceae	Cryptolepis dubia (Syn. Cryptolepis buchananii)	Taern	Sh	Wp
133	Zingiberaceae	Curcuma angustifolia	Chudidar Haldi	Н	Rh
134	Zingiberaceae	Curcuma longa (Syn. Curcuma domestica)	Haldi	Н	Rh
135	Convolvulacea	,	ιαισι		
136	e Commelinacea	Cuscuta reflexa		H	Wp
137	e Commelinacea	Cyanotis cristata		Н	Lf
	e Amaranthacea	Cyanotis vaga		Н	Ар
138	е	Cyathula capitata	Litra	Н	Lf, Sd
139	Amaranthacea e	Cyathula tomentosa	Kutha	Н	Ap, Rt, Lf
140	Apiaceae	Cyclospermum leptophyllum (Syn.		Н	Fr

S.	Family	Scientific Name			5 (1)
No.	,		Local Name	Habitat	Part Used
4.44	D	Apium leptophyllum)	Mala a Class		1.6
141	Poaceae	Cymbopogon martini	Makora Ghas		Lf
142	Boraginaceae	Cynoglossum zeylanicum		Н	Lf, Rt
143	Cyperaceae	Cyperus compressus		Н	Wp
144	Cyperaceae	Cyperus rotundus	Dhabai	Н	Rh
145	Cyperaceae	Cyperus squarrosus		Н	
146	Fabaceae	Dalbergia sissoo	Shisam, ayointi	Т	Lf, Wd
147	Thymelaeacea e	Daphne papyracea	Kania/ Patrori	Sh	Rt, Lf
148	Solanaceae	Datura innoxia	Datura	Н	Lf, Sd, Fr
149	Solanaceae	Datura stramonium	Datura	Н	Lf, Sd, Fr
150	Urticaceae	Debregeasia longifolia	Shyaru	Sh	Bk, Lf
151	Urticaceae	Debregeasia salicifolia	,	Sh	Bk, Lf
450	Amaranthacea	,			,
152	е	Deeringia amaranthoides		Sh	Lf, Fr
153	Ranunculaceae	Delphinium denudatum	Nirbisi	S	Lf, Fl
154	Fabaceae	Desmodium concinnum		Sh	Wp
		Desmodium oojeinense (Syn. Ougeinia			··· F
155	Fabaceae	oojeinensis)		Т	St, Lf
156	Fabaceae	Desmodium sequax		Sh	Lf, Rt
157	Fabaceae	Desmodium triquetrum		Sh	Wp
	Tubuccuc	Dichrocephala bicolor (Syn.		511	<u>''P</u>
158	Asteraceae	Dichrocephala integrifolia)		Н	Rt
	Asteraceae	Dicliptera chinensis (Syn. Dicliptera		11	IXC .
159	Acanthaceae	roxburghiana)	Saundi	Н	Wp
160	Dioscoreaceae	Dioscorea bulbifera	Jauriui	H	Tu
161					
	Ebenaceae	Diospyros montana	AA = le := -de :	T	Wd
162	Sapindaceae	Dodonaea viscosa	Mehndu	Sh	Lf, Fr
163	Caryophyllacea	0			147
	е	Drymaria cordata		Н	Wp
164	1 11	Duabanga grandiflora (Duabanga		_	W.L. DI
4.45	Lythraceae	sonneratioides)		T	Wd, Bk
165	Asteraceae	Eclipta prostrata (Syn. Eclipta alba)	Bringraj	Н	Wp
166	F1		Bakli/Bakaar/	_	DI
	Ehretiaceae	Ehretia acuminata	Banchaula	T	Bk, Fr, Wd
167	Boraginaceae	Ehretia laevis		T	Lf, Bk, Fr
168	Elaeagnaceae	Elaeagnus conferta	Ghayai	Sh	Fl, Fr
169	Elaeagnaceae	Elaeagnus parvifolia	Ghayai	Sh	Fr, Lf
170		Elephantopus mollis (Syn.			
	Asparagaceae	Elephantopus scaber)		Н	Lf, Rt
171	Ateraceae	Erigeron bonariensis		Н	Lf
172	Asteraceae	Erigeron canadensis		Н	Wp
173	Asteraceae	Erigeron trilobus (Syn. Conyza stricta)		Н	Wp
174	Myrtaceae	Eucalyptus globulus		Т	
175	Celastraceae	Euonymus lucidus (Syn. Euonymus pendulus)		Т	Rt, Bk, Lf
176	Euphorbiaceae	Euphorbia helioscopia		Н	Wp
177	Euphorbiaceae	Euphorbia hirta	Dhudhi	Н	Wp
178	Euphorbiaceae	Euphorbia prolifera		Н	Wp
179	Euphorbiaceae	Euphorbia royleana	Choi	Sh	Bk
	Convolvulacea		J	J.,	D I.
180	e	Evolvulus alsinoides		Н	Wp
181	Euphorbiaceae	Falconeria insignis (Syn. Sapium insigne)		Т	
182	Moraceae	Ficus benghalensis	Bad	Т	La, Lf, Fr
183	Moraceae	Ficus hederacea		Sh	Wd, Lf
184	Moraceae	Ficus nemoralis		T	Fr, Lf, Wd
185	Moraceae	Ficus palmata	Phaegda	T	Fr, Lf
186	Moraceae	Ficus racemosa	,	T	Wp
100	moraceae	r reas racernosa		1	11P

S. No.	Family	Scientific Name	Local Name	Habitat	Part Used
187	Moraceae	Ficus religiosa	Pipal	Т	Wp
188	Moraceae	Ficus roxburghii	Traymbalu	Т	Lf, Rt, Wd
189	Moraceae	Ficus rumphii		Т	Fr
190	Salicaceae	Flacourtia indica	Kangu	Т	Lf, Bk, Fr, Rt
191	Rosaceae	Fragaria nubicola	Bumbra	Н	Fr
192	Rosaceae	Fragaria vesca		Н	Fr
193	Papaveraceae	Fumaria indica		Н	Wp
194	Rubiaceae	Galium aparine		Н	Wp
195	Rubiaceae	Galium rotundifolium		Н	Ap
196	Geraniaceae	Geranium maculatum	Dandupoocha	Н	Lf, Fl
197	Geraniaceae	Geranium nepalense	Tirahni	Н	Rt
198	Asteraceae	Gerbera gossypina	Bach	Н	Rt
199		Girardinia diversifolia (Syn. Girardinia			
	Urticaceae	heterophylla)	Jatahan	H	Bk, St
200	Colchicaceae	Gloriosa superba	Kalihari	Н	Rh
201	Apocynaceae	Gymnema sylvestre		Н	Lf, Rt
202	Caryophyllacea	6			V47
202	e Ali	Gypsophila cerastioides	I/	Н	Wp
203	Araliaceae	Hedera helix	Kermayi	C	St, Lf
204 205	Araliaceae	Hedera nepalensis	Katari	Sh H	Fr, Lf
	Zingiberaceae	Hedychium spicatum	Ban Haldi		Rh, Lf
206	Malvaceae	Helicteres isora		Sh	Ap, St
207	Dubiacasa	Himalrandia tetrasperma (Syn. randia	/harnadu	Ch	Er If Di
208	Rubiaceae Araliaceae	tetrasperma)	Kharnadu	Sh H	Fr, Lf, Bk Lf
208	Rubiaceae	Hydrocotyle javanica Hymenodictyon excelsum		T T	Rt, Bk, Lf
209	Rubiaceae	Hypericum oblongifolium (Syn.	Kharau,	I	KL, DK, LI
210	Hypericaceae	Hypericum obtoligijotium (syn. Hypericum cernuum)	Kalalber	Sh	Lf, Fl
211	Hypericaceae	Hypericum uralum	Bani Wakra	Sh	Sd, Lf
212	Lamiaceae	Hyssopus officinalis	Jufah	JII	Wp
213	Fabaceae	Indigofera atropurpurea	Kathi	Sh	Lf, Wd
	Tabaccac	Indigofera heterantha (Syn. Indigofera	Racin	311	Li, Wd
214	Asteraceae	gerardiana)	Kali Kathi	Sh	Lf, Wd
215	Fabaceae	Indigofera linifolia	Nati Natiii	Н	Wp
216	Asteraceae	Inula cappa		Sh	Lf
217	Asteraceae	Inula cuspidata		Sh	Lf
	Convolvulacea	mata caspitatia		<u> </u>	
218	е	Ipomoea nil	Ghaudan	Н	Wp
240	Convolvulacea	r			· · · F
219	е	Ipomoea purpurea		Н	Ap, Sd Lf
220	Lamiaceae	Isodon coetsa (Plectranthus coesta)		Н	Lf
221	Euphorbiaceae	Jatropha curcas	Jatropha	Т	Sd, La
222	Juglandaceae	Juglans regia	Akhrot, Khod	Т	Fr, Wd, lf
223	Acanthaceae	Justicia adhatoda	Adasthodalam	Sh	Н
224		Justicia japonica (Syn. Justicia			
77 4	Acanthaceae	simplex)		Н	Н
225		Kalanchoe integra (Kalanchoe			
	Crassulaceae	spathulata)	Patharchat	H	Lf
226	Anacardiaceae	Lannea coromandelica		T	Bk, Lf
227	Verbenaceae	Lantana camara		Sh	Lf, fr
228	Fabaceae	Lathyrus aphaca	Janglimattar	Н	Sd
229	Lythraceae	Lawsonia inermis	Mehandi	Sh	Lf, Rt, Fl, Sd
230	Vitaceae	Leea asiatica (Leea aspera)		H	Rt
231	Acanthaceae	Lepidagathis cuspidata	Bralu	Н	Wp
232	Acanthaceae	Lepidagathis incurva		Н	Lf
233	Brassicaceae	Lepidium virginicum		Н	Wp
234	Rubiaceae	Leptodermis lanceolata		Sh	Bk, Lf
235	Fabaceae	Lespedeza gerardianan		H	Lf
236	Lamiaceae	Leucas lanata		H	Wp
237	Rutaceae	Limonia acidissima		Т	Rt, Bk

238 Boraginaceae Lindelofia longiflora 239 Scrophulariace ae Lindenbergia indica	Н	Lf
1 / 39 '		LI LI
Lindenhergia indica		
	H	Lf
240 Ericaceae Lyonia ovalifolia Ehran	Т	Wp
241 Euphorbiaceae <i>Mallotus philippensis</i> Kambla	T	Sd, Fr
242 Malvaceae Malva neglecta Such	Sh	Lf
243 Malvaceae Malvastrum coromandelianum	H	Lf
244 Anacardiaceae <i>Mangifera indica</i> Aam	T	Lf, Fr, Sd
245 Asclepiadaceae Marsdenia roylei	Н	Wp
246LamiaceaeMentha longifoliaPudina247LamiaceaeMentha piperitaPiperme	ent H	Lf, Wp
247LamiaceaeMentha piperitaPiperme248LamiaceaeMentha spicata (Syn. Mentha viridis)Hungli P		Wp Lf
249 Fabaceae <i>Millettia extensa (Millettia auriculata)</i>	Sh	Wp
250 Fabaceae Mimosa rubicaulis	Sh	Wp
251 Moraceae Morus alba Sehtoot		Lf Fr
252 Fabaceae Mucuna pruriens Daryaga		Sd
253 Rutaceae <i>Murraya koenigii</i> Gandael		Rt, Lf, Fr, Bk
254 Rutaceae Murraya paniculata	Sh	Rt, Bk, Lf
255 Lamiaceae Nepeta hindostana	H	Lf,Fl, Wp
256 Solanaceae <i>Nicotiana tabacum</i> Tambakl		Wp
257 Lamiaceae <i>Ocimum basilicum</i> Bhabri	H	Lf, Rt, Wp
258 Rubiaceae Oldenlandia corymbosa	Н	Wp
259 Cactaceae Opuntia monacantha	Sh	Lf, Wd
260 Lamiaceae <i>Origanum vulgare</i> Van Tuls		Lf, Rt, Wp
Molastomataco		, , ,
261 ae Osbeckia stellata	Sh	Rt, Lf
262 Santalaceae Osyris lanceolata	Sh	Wp
263 Urticaceae Parietaria debilis	Н	Rt
264 Asteraceae Parthenium hysterophorus Chikadu		Wp
265 Vitaceae Parthenocissus himalayana	Н	Lf, Fl
266 Vitaceae Parthenocissus semicordata var. roylei Karmai	Sh	Fr, Lf
267 Acanthaceae Peristrophe bicalyculata	Н	Wp
268 Arecaceae Phoenix sylvestris	Sh	Lf, Fr
269 Phyllanthaceae Phyllanthus emblica Amala	T	Fr, Br
270 Phyllanthaceae Phyllanthus fraternus	Н	Wp
271 Phyllanthaceae Phyllanthus parvifolius	Н	Lf
272 Solanaceae Physalis minima	H	Wp
273 Urticaceae Pilea scripta 274 Apiaceae Pimpinella diversifolia	H	Ap
, ,	nghi T	Rt, Wp Fr
275AnacardiaceaePistacia integerrimaKakarsin276LamiaceaePogostemon benghalensisBhaerda		Lf, Fl
277 Rosaceae <i>Prinsepia utilis</i> Bhekhal		Sd, Fr
277 Rosaceae Prinsepia utitis Briekhat 278 Rosaceae Prunus persica Aadu	T	Fr, Fl, Lf
279 Rosaceae Pruns persicu Addu 279 Rosaceae Pyrus pashia Shegal	<u> </u>	Lf, Fr, Wd
280 Fagaceae Quercus glauca Bani	T	Wd, Lf
281 Fagaceae Quercus leucotrichophora Ban	<u> </u>	Wd, Lf
282 Lamiaceae Rabdosia rugosa	Sh	Lf, Wp
283 Linaceae <i>Reinwardtia indica</i> Matkhen		Ap
284 Rhamnaceae <i>Rhamnus purpureus</i> Chaunsh		Fr, Wd, Lf
285 Rhamnaceae Rhamnus triquetra	T	Bk
286 Ericaceae Rhododendron arboreum Braah	T T	Fl, Lf
287 Euphorbiaceae <i>Ricinus communis</i> Arndi	Sh	Sd, Rt, Lf, Fr
288 Fabaceae Robinia pseudoacacia Ravinia	T	St, Bk, Wd
289 Rosaceae Rosa brunonii Kunja	Sh	Rt
290 Lamiaceae <i>Roylea cinerea</i> Kadaku	Sh	Lf, Rt
Majort		,
291 Rubiaceae Rubia cordifolia Pagalpat		Lf, Rt, St
292 Rosaceae Rubus biflorus Aachhe	Sh	Fr, Rt
293 Rosaceae Rubus ellipticus Aachhe	Sh	Fr, Rt

S. No.	Family	Scientific Name	Local Name	Habitat	Part Used
294	Rosaceae	Rubus foliolatus		Sh	Fr, Rt
295	Polygonaceae	Rumex hastatus	Malori	Н	St, Fl
296	Acanthaceae	Rungia pectinata		Н	Wp
297	Salicaceae	Salix denticulata		Sh	Wd, Lf
298	Salicaceae	Salix tetrasperma	Biunsh	Т	Lf, Wd
299	Lamiaceae	Salvia aethiopis (Syn. Salvia lanata)	Gawandru	Н	Rt, Lf, Fl
300	Lamiaceae	Salvia nubicola		Н	Lf, Rt
301	Sapindaceae	Sapindus mukorossi	Reetha, Doda	Т	Fr, Fd, Fu
302	Araceae	Sauromatum venosum	Kidachali	Н	Tu
303	Scrophulariace ae	Scrophularia himalensis		Н	Lf
304	Lamiaceae	Scutellaria angulosa		Н	Lf
305	Crassulaceae	Sedum glaucophyllum	Mochu-gha	Н	Wp
306	Asteraceae	Senecio graciliflorus		Н	Ар
307	Asteraceae	Senecio nudicaulis		Н	Rt
308		Senna occidentalis (Syn. Cassia			
	Fabaceae	occidentalis)		Sh	Rt, Lf, Fl, Sd
309	Fabaceae	Senna tora (Syn. Cassia tora)		Н	Sd, Lf
310	Fabaceae	Sesbania bispinosa		Н	Rt, Sd
311	Fabaceae	Sesbania grandiflora	Gach Munga	Т	Lf
312	Malvaceae	Sida cordata		Н	Wp
313	Asteraceae	Sigesbeckia orientalis	-	Н	Wp
314	Smilacaceae	Smilax aspera		Sh	Rt, Lf, St
315	Solanaceae	Solanum indicum		Н	Fr
316	Solanaceae	Solanum nigrum	Makoi, Bara lianchu	Н	Fr, Lf, Fl, Sd
317	Cucurbitaceae	Solena amplexicaulis (Syn. Melothria heterophylla)	Bankakadi	Н	Rt, Lf, Fr
318	Asteraceae	Sonchus asper		Н	Lf
319	Asteraceae	Sonchus oleraceus		h	Lf, La
320	Rosaceae	Sorbaria tomentosa	Chhattayee	Sh	Wd
321	Symplocaceae	Symplocos paniculata (Syn. Symplocos chinensis)	Lojj	Т	Bk, Lf
322	Asteraceae	Tagetes minuta		Н	Lf, La
323	Asteraceae	Taraxacum officinale	Kanphul	Н	Wp
324	Bignoniaceae	Tecoma stans		T	Wp
325	Combretaceae	Terminalia bellirica	Baheda	Т	Bk, Fr
326	Combretaceae	Terminalia chebula	Harad	Т	Bk, Fr
327	Lamiaceae	Thymus linearis	Ban ajwain	Н	Wp
328	Menispermacea	Tinasnava savdifalia	Calay/Cyina	Ch	D+ C+
220	e Molinsono	Tinospora cordifolia Toona ciliata	Galoy/Gujya Daral	Sh	Rt, St
329 330	Meliaceae Meliaceae	Toona cittata Toona sinensis (Syn. Toona serrata)	Darat	T	Bk, Fr, Lf St
331	Apiaceae	Trachydium roylei	שמונפווו	H	Ap
332	Cucurbitaceae	Trichosanthes tricuspidata		Н	Lf, Rt, Sd, Fr
333	Asteraceae	Tridax procumbens		H	Wp
334	Fabaceae	Trifolium repens	Malori	H	Wp
335		Trillium govanianum (Syn. Trillidium			
336	Melanthiaceae Ulmaceae	govanianum) Ulmus villosa	Nag Chhatri Chor	H T	Rh Lf, Rt, Bk
337	Malvaceae	Urena lobata	CHOI	Sh	Rt, Lf
338			Aan/		,
	Urticaceae	Urtica dioica	Bichubuti	Sh	Wp
339	Caprifoliaceae	Valeriana jatamansi	Mushkbala	Н	Wp
340	Scrophulariace ae	Verbascum thapsus	Jungli Tambakhoo	Н	Sd
341	Adoxaceae	Viburnum cotinifolium	Jungli dhak	Sh	Lf, Fr, Bk
342	Fabaceae	Vicia rigidula		Н	Wp
343	Fabaceae	Vigna vexillata		Н	Rt, Sd
344	Violaceae	Viola canescens	Banafsha,	Н	Lf, Fl

S. No.	Family	Scientific Name	Local Name	Habitat	Part Used
			Guguluphul		
345	Violaceae	Viola pilosa (Syn. Viola serpens)	Banafsha	Н	Lf, Fl
346	Santalaceae	Viscum album	Rhini, Banda	Sh	Wp
347	Verbenaceae	Vitex negundo	Banna	Sh	Wp
348	Vitaceae	Vitis parviflora		Sh	St
349	Rubiaceae	Wendlandia heynei		Т	St
350	Solanaceae	Withania somnifera	Ashwagandha	Sh	Rt, Lf, Wp
351	Lythraceae	Woodfordia fruticosa		Sh	St, Fl, Rt
352	Salicaceae	Xylosma longifolia		Т	Bk, Lf
353	Asparagaceae	Yucca gloriosa (Syn. Yucca superba)		Н	Bb
354	Rhamnaceae	Ziziphus mauritiana	Ber	Sh	Ap, Fr, Rt, Bk
355	Rhamnaceae	Ziziphus rugosa		Sh	Bk, Fl

COMMUNITY STRUCTURE

Site V1: Upstream Beas Kund Diversion Weir - Beas River

Table 6.1: Community structure -Site-V1 (Trees)

S.No.	Scientific Name	Frequency	Density	Basal Cover	IVI
3.NO.	Scientific Name	(%)	(ind./ha)	(sq m/ha)	171
1	Acer caesium	20	20	17.96	25
2	Alnus nitida	20	40	6.08	26
3	Cedrus deodara	30	100	122.29	100
4	Corylus colurna	20	30	4.92	23
5	Picea smithiana	20	20	6.58	21
6	Pinus wallichiana	30	70	69.05	68
	Populus ciliata	10	20	3.40	13
8	Salix fragilis	20	30	1.90	23
			330		

Table 6.2: Community structure -Site-V1 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Berberis jaeschkeana	30	1200	47
2	Cotoneaster bacillaris	20	200	12
3	Ephedra vulgaris	20	400	21
4	Indigofera pulchella	30	800	32
5	Juniperus communis	30	1000	37
6	Rabdosia rugosa	30	500	30
7	Rhododendron anthopogon	40	1800	78
8	Rosa webbiana	40	1400	43
			7300	

Table 6.3: Community structure -Site-V1 (Herbs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Pre-Monsoon			
1	Aconitum violaceum	17	4167	9
2	Bromus japonicus	17	14167	18
3	Dactylis glomerata	33	10000	19
4	Eremurus himalaicus	25	8333	15
5	Fragaria nubicola	33	6667	16
6	Gentiana kurroo	25	16667	23
7	Iris kemaonesis	17	8333	13
8	Isodon rugosus	33	9167	18
9	Jurinea macrocephala	25	2500	10
10	Poa alpina	17	12500	16
11	Podophyllum hexandrum	33	3333	13
12	Thymus serpyllum	33	9167	18
13	Oxytropis mollis	17	6667	11
			111667	
	Monsoon			
1	Aconitum violaceum	20	3333	7
2	Bromus japonicus	13	4000	7
3	Carum copticum	13	4667	7
4	Cynodon dactylon	33	6000	13
5	Delphinium elatum	20	6667	11
6	Eremurus himalaicus	20	6000	10
7	Fragaria nubicola	27	7333	13
8	Gentiana kurroo	33	6667	14
9	Impatiens balsamina	13	7333	10
10	Iris kemaonesis	33	8667	15

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
11	Jurinea macrocephala	27	9333	15
12	Lilium giganteum	20	8000	12
13	Mentha longifolia	53	4000	15
14	Oxytropis mollis	20	4667	9
15	Poa alpina	27	5333	11
16	Podophyllum hexandrum	33	6000	13
17	Potentilla nepalensis	27	4667	10
18	Thymus serpyllum	20	5333	9
			108000	
	Winter			
1	Bromus japonicus	17	5000	15.59
2	Dactylis glomerata	25	6667	21.98
3	Eremurus himalaicus	17	7500	19.82
4	Gentiana kurroo	17	6667	18.41
5	Iris kemaonesis	33	5000	22.74
6	Jurinea macrocephala	42	7500	30.53
7	Oxytropis mollis	17	6667	18.41
8	Poa alpina	42	5833	27.72
9	Thymus serpyllum	25	8333	24.80
			59167	

Site V2: Near Power House site of Proposed Palchan Bhang HE Project -Beas River

Table 6.4: Community structure -Site-V2 (Trees)

S. No.	Scientific Name	Frequency (%)	Density (ind./ha)	Basal Cover (sq m/ha)	IVI
1	Alnus nitida	20	50	2.21	29
2	Cedrus deodara	30	100	102.29	101
3	Celtis australis	20	30	3.74	24
4	Fraxinus floribunda	30	30	4.22	30
5	Juglans regia	30	70	19.05	50
6	Pinus wallichiana	20	20	68.58	53
7	Populus ciliata	10	20	2.40	14
			320		

Table 6.5: Community structure -Site-V2 (Shrubs)

S. No.	Scientific Name	Frequency (%)	Density (ind./ha)	IVI
1	Artemisia nilagirica	40	1200	52
2	Cotoneaster bacillaris	20	200	13
3	Ephedra vulgaris	20	400	23
4	Juniperus communis	30	500	32
5	Lonicera quinquelocularis	40	800	69
6	Rosa webbiana	40	400	30
7	Spiraea sorbifolia	40	900	51
8	Viburnum cotinifolium	30	600	29
			5000	

Table 6.6: Community structure -Site V2 (Herbs

Table 6.6. Community structure -Site V2 (Herbs)					
S. No.	Scientific Name	Frequency (%)	Density (ind. /ha)	IVI	
	Pre-Monsoon				
1	Anaphalis triplinervis	8	3333	6	
2	Bromus japonicus	42	8333	22	
3	Cirsium falconeri	25	4167	12	
4	Cousinia thomsonii	25	6667	15	

S. No.	Scientific Name	Frequency (%)	Density (ind. /ha)	IVI
5	Dactylis glomerata	33	8333	20
6	Fragaria nubicola	33	8333	20
7	Gentiana kurroo	25	18333	27
8	Iris kemaonesis	33	8333	20
9	Oxytropis mollis	25	5833	14
10	Poa alpina	25	8333	17
11	Thymus serpyllum	17	11667	18
12	Girardinia heterophylla	17	3333	9
			95000	
	Monsoon			
1	Achyranthes asper	20	4667	9
2	Anaphalis triplinervis	27	6667	13
3	Andropogon ischaemum	13	4667	8
4	Bistorta macrophylla	20	7333	12
5	Bromus japonicus	27	6667	13
6	Cousinia thomsonii	27	4667	11
7	Cyperus niveus	13	4000	7
8	Fragaria nubicola	20	3333	8
9	Gentiana kurroo	13	4667	8
10	Impatiens bicolor	27	7333	13
11	Inula obtusifolia	27	6000	12
12	Iris kemaonesis	20	6667	11
13	Mentha longifolia	33	4667	12
14	Oxytropis mollis	27	4000	10
15	Pilea scripta	20	4667	9
16	Poa alpina	33	6667	14
17	Rumex nepalensis	27	5333	11
18	Thymus serpyllum	20	6000	10
19	Trifolium repens	20	6667	11
			104667	
	Winter			
1	Anaphalis triplinervis	17	4167	18
2	Cousinia thomsonii	17	6667	23
3	Dactylis glomerata	25	4167	23
4	Gentiana kurroo	25	7500	29
5	Iris kemaonesis	17	5833	21
6	Oxytropis mollis	25	6667	28
7	Poa alpina	25	9167	32
8	Thymus serpyllum	17	8333	26
			52500	

Site V3: Near Bhang HE Project area- Beas River

Table 6.7: Community structure -Site-V3 (Trees and Shrubs)

S.No.	Name of Species	Frequency	Density	TBC	IVI
		(%)	(ind./ha ⁻¹)	(m²ha ⁻¹)	
1	Acer caesium	40	70	12.84	44.0
2	Cedrus deodara	50	80	89.13	78.9
3	Corylus colurna	10	20	3.50	11.8
4	Juglans regia	20	30	11.31	22.4
5	Picea smithiana	30	50	72.91	54.8
6	Pinus wallichiana	20	40	86.98	52.1
7	Salix fragilis	30	70	4.42	36.0
			360		

Table 6.8: Community structure -Site-V3 (Shurbs)

.No. Scientific Name	Frequency (%)	Density (ind./ha)	IVI I
------------------------	---------------	-------------------	-------

S.No.	Scientific Name	Frequency (%)	Density (ind./ha)	IVI
1	Artemisia nilagirica	40	1200	40
2	Berberis aristata	30	800	36
3	Cotoneaster bacillaris	20	200	10
4	Ephedra vulgaris	20	400	18
5	Indigofera pulchella	30	800	28
6	Lonicera quinquelocularis	40	800	54
7	Parrotiopsis jacquemontiana	30	500	25
8	Rosa webbiana	40	400	24
9	Spiraea sorbifolia	40	900	40
10	Viburnum cotinifolium	30	600	23
			6600	

Table 6.9: Community structure -Site-V3 (Herbs)

Table 6.9: Community structure -Site-V3 (Herbs)					
S.No.	Scientific Name	Frequency (%)	Density (ind./ha)	IVI	
	Pre-Monsoon	4-	5000	4.5	
1	Aconitum heterophyllum	17	5000	10	
2	Allium stracheyi	17	4167	9	
3	Cyperus squarrosus	8	4167	7	
4	Dactylis glomerata	25	10000	17	
5	Deutzia corymbosa	33	14167	24	
6	Fragaria nubicola	17	8333	13	
7	Gentiana kurroo	25	15000	22	
8	Inula obtusifolia	25	4167	12	
9	Isodon rugosus	17	6667	12	
10	Poa alpina	33	16667	26	
11	Polygonum bistorta	33	8333	19	
12	Primula glomerata	17	2500	8	
13	Saussurea lappa	25	3333	11	
14	Trifolium repens	17	4167	9	
			106667		
	Monsoon				
1	Aconitum heterophyllum	33	6000	14	
2	Adiantum lunulatum	20	8000	12	
3	Allium stracheyi	27	6667	13	
4	Androsace rotundifolia	20	6000	10	
5	Circium wallichii	7	5333	6	
6	Cyperus squarrosus	20	6667	11	
7	Deutzia corymbosa	27	6000	12	
8	Fragaria nubicola	20	8667	13	
9	Gentiana kurroo	13	6000	9	
10	Gnaphalium hypoleucum	27	6000	12	
11	Inula obtusifolia	27	6667	13	
12	Isodon rugosus	20	4667	9	
13	Onychium contiguum	20	7333	11	
14	Poa alpina	20	8667	13	
15	Primula glomerata	20	7333	11	
16	Senecio chrysanthemoides	27	5333	11	
17	Trifolium repens	13	6000	9	
18	Viburnum nervosum	27	6667	13	
			118000		
	Winter				
1	Allium stracheyi	17	6667	20	
2	Cyperus squarrosus	33	5000	25	
3	Dactylis glomerata	42	7500	33	
4	Gentiana kurroo	17	6667	20	
5	Isodon rugosus	25	4167	19	
6	Poa alpina	25	7500	25	
7	Primula glomerata	25	9167	28	

S.No.	Scientific Name	Frequency (%)	Density (ind./ha)	IVI
8	Oxytropis mollis	8	4167	11
9	Trifolium repens	17	6667	20
			57500	

Site V4: Near Proposed Jobrie HE Project area- Allain Nala

Table 6.10: Community structure -Site V4 (Trees)

S.No.	Scientific Name	Frequency (%)	Density (ind./ha)	TBC (m²ha-1)	IVI
1	Cedrus deodara	20	40	62.682	123
2	Celtis australis	10	10	1.791	20
3	Fraxinus floribunda	30	30	3.899	59
4	Picea smithiana	20	20	18.291	59
5	Pinus wallichiana	20	20	4.011	41
			120		

Table 6.11: Community structure -Site V4 (Shrubs)

S.No.	Scientific Name	Frequency (%)	Density (ind./ha)	IVI
1	Artemisia nilagirica	50	900	85
2	Indigofera pulchella	40	1200	56
3	Berberis aristata	30	300	43
4	Cotoneaster bacillaris	40	700	38
5	Daphne cannabina	10	100	17
6	Lonicera quinquelocularis	30	300	28
7	Rosa webbiana	10	100	17
8	Viburnum cotinifolium	10	300	17
			3900	

Table 6.12: Community structure -Site V4 (Herbs)

S.No.	Scientific Name	Frequency (%)	Density (ind./ha)	IVI
	Pre-Monsoon			
1	Aconitum heterophyllum	17	2500	9
2	Allium stracheyi	17	3333	10
3	Cyperus squarrosus	8	2500	6
4	Dactylis glomerata	33	12500	27
5	Deutzia corymbosa	33	11667	26
6	Gentiana kurroo	25	13333	25
7	Inula obtusifolia	25	9167	20
8	Isodon rugosus	25	4167	14
9	Poa alpina	33	11667	26
10	Podophyllum hexandrum	25	3333	13
11	Trifolium repens	33	8333	22
			82500	
	Monsoon			
1	Aconitum heterophyllum	27	6667	14
2	Ainsliaea latifolia	20	5333	11
3	Allium stracheyi	27	7333	14
4	Carex filicina	27	8667	16
5	Cyperus squarrosus	20	10000	15
6	Dactylis glomerata	13	6667	10
7	Deutzia corymbosa	33	8000	17
8	Fragaria nubicola	33	4667	13
9	Gentiana kurroo	27	4000	11
10	Inula obtusifolia	20	6000	11
11	Origanum vulgare	20	3333	9
12	Oxytropis mollis	27	6000	13
13	Poa alpina	20	7333	13
14	Roscoea alpina	27	8000	15
15	Salvia moorcroftiana	20	2667	8

S.No.	Scientific Name	Frequency (%)	Density (ind./ha)	IVI
16	Viola canescens	27	5333	12
			100000	
	Winter			
1	Allium stracheyi	8	4167	14
2	Cyperus squarrosus	17	5833	24
3	Dactylis glomerata	17	5000	22
4	Deutzia corymbosa	33	9167	42
5	Gentiana kurroo	33	6667	37
6	Poa alpina	25	8333	35
7	Trifolium repens	17	7500	27
			46667	

Site V5: Near Power House area of Allain Duhangan HE Project area - Allain Nala

Table 6.13: Community structure -Site V5 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha-1)	IVI
1	Abies pindrow	30	80	14.16	51
2	Aesculus indica	10	20	10.01	19
3	Cedrus deodara	30	50	42.41	66
4	Ilex dipyrena	10	10	8.702	16
5	Picea smithiana	30	120	17.98	65
6	Pinus wallichiana	20	40	12.28	33
7	Pyrus pashia	10	10	0.774	9
8	Quercus semecarpifolia	20	20	13.63	28
9	Ulmus villosa	10	20	3.4	14
			370		

Table 6.14: Community structure -Site V5 (Shrubs)

S. No.	Scientific Name	Frequency (%)	Density (ind./ha)	IVI
1	Berberis aristata	20	200	22
2	Cotoneaster bacillaris	30	400	36
3	Daphne cannabina	40	700	62
4	Indigofera pulchella	30	300	28
5	Juniperus communis	30	300	29
6	Lonicera quinquelocularis	30	400	39
7	Rosa webbiana	40	500	53
8	Viburnum cotinifolium	20	300	29
			3100	

Table 6.15: Community structure -Site V5 (Herbs)

S. No.	Scientific Name	Frequency (%)	Density (ind./ha)	IVI
	Pre-Monsoon			
1	Artemisia nilagirica	25	7500	13
2	Bromus japonicus	33	10000	18
3	Cirsium falconeri	33	4167	12
4	Cousinia thomsonii	25	3333	10
5	Cyperus squarrosus	25	4167	10
6	Dactylis glomerata	17	8333	12
7	Deutzia corymbosa	25	5833	12
8	Fragaria indica	25	9167	15
9	Gentiana kurroo	25	20000	25
10	Girardinia heterophylla	33	6667	15
11	Oxytropis mollis	33	6667	15
12	Polygonum bistorta	25	8333	14
13	Rumex acetosa	17	3333	7

S. No.	Scientific Name	Frequency (%)	Density (ind./ha)	IVI
14	Saussurea lappa	25	5833	12
15	Trifolium pratense	17	6667	10
			110000	
	Monsoon			
1	Ainsliaea latifolia	20	6000	10
2	Anemone rivularis	27	8000	13
3	Artemisia nilagirica	27	5333	11
4	Bromus japonicus	20	4000	8
5	Carex filicina	20	3333	8
6	Cirsium falconeri	13	6667	9
7	Cousinia thomsonii	20	4667	9
8	Dactylis glomerata	20	7333	11
9	Deutzia corymbosa	20	8000	12
10	Gentiana kurroo	27	5333	11
11	Origanum vulgare	27	8667	14
12	Oxytropis mollis	20	5333	9
13	Polygonum bistorta	13	4667	7
14	Roscoea alpina	33	6667	14
15	Rumex acetosa	33	4667	12
16	Salvia moorcroftiana	27	6000	11
17	Saussurea lappa	20	7333	11
18	Trifolium pratense	27	8000	13
19	Verbascum thapsus	13	5333	8
			115333	
	Winter			
1	Artemisia nilagirica	17	4167	18
2	Bromus japonicus	25	3333	21
3	Cousinia thomsonii	8	4167	13
4	Dactylis glomerata	17	6667	22
5	Deutzia corymbosa	17	3333	16
6	Gentiana kurroo	25	5833	26
7	Oxytropis mollis	17	5000	19
8	Rumex acetosa	25	8333	30
9	Trifolium pratense	25	10833	35
			51667	

Site V6: Downstream of Diversion site of Allain Duhangan HE Project area - Dunhangan Nala

Table 6.16: Community structure -Site V6 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha ⁻¹)	IVI
1	Cedrus deodara	20	40	42.68	76
2	Celtis australis	10	10	1.79	12
3	Fraxinus floribunda	30	30	1.90	33
4	Juglans regia	10	20	8.12	23
5	Picea smithiana	20	20	12.29	35
6	Pinus wallichiana	20	20	4.01	25
7	Quercus semecarpifolia	40	130	18.38	95
			270		

Table 6.17: Community structure -Site V6 (Shrubs)

S.No.	Scientific Name	Frequency (%)	Density (ind./ha)	IVI
1	Artemisia roxburghii	30	800	21
2	Berberis aristata	40	700	26
3	Colebrookea oppositifolia	20	300	12
4	Daphne cannabina	40	800	26
5	Girardinia heterophylla	30	500	21
6	Inula cuspidata	20	500	24

48

7	Leptodermis lanceolata	20	300	12
8	Rosa webbiana	30	500	33
9	Rubus niveus	40	800	28
10	Viburnum cotinifolium	20	300	11
11	Sorbaria tomentosa	70	800	46
12	Urtica dioica	20	800	40
			7100	

	Table 6.18: Community	Frequency	Density	Т
S.No.	Name of Species	(%)	(ind./ha ⁻¹)	IVI
	Pre-Monsoon	(70)	(ma./ma	171
1	Aconitum violaceum	25	6667	13
2	Arenaria serpyllifolia	33	8333	17
3	Bromus japonicus	33	8333	17
4	Circium wallichii	33	8333	17
5	Dactylis glomerata	17	2500	7
6	Deutzia corymbosa	25	3333	10
7	Fragaria nubicola	25	13333	19
8	Gentiana kurroo	25	9167	16
9	Iris kemaonesis	25	4167	11
10		17	5833	10
11	Isodon rugosus Oxytropis mollis	17	9167	13
12	Poa alpina	8	10000	11
13	Trifolium repens	25	20000	25
14	Viburnum nervosum	25	4167	11
	Managas		113333	
	Monsoon	43	///=	_
1	Aconitum violaceum	13	6667	9
2	Adiantum lunulatum	27	7333	13
3	Arenaria serpyllifolia	20	4667	9
4	Arundinella nepalensis	27	9333	14
5	Bromus japonicus	20	2667	7
6	Celosia argentea	27	4667	11
7	Circium wallichii	27	7333	13
8	Dactylis glomerata	13	11333	13
9	Gentiana kurroo	27	8000	13
10	Inula cappa	20	6667	11
11	Iris kemaonesis	27	5333	11
12	Mentha longifolia	20	8000	12
13	Oenothera rosea	27	11333	16
14	Oxytropis mollis	20	3333	8
15	Phytolacca acinosa	27	5333	11
16	Trifolium repens	20	6667	11
17	Viburnum nervosum	13	6000	8
18	Viola canescens	20	7333	11
			122000	
	Winter			
1	Arenaria serpyllifolia	25	6667	23
2	Bromus japonicus	25	5833	22
3	Dactylis glomerata	17	5000	16
4	Deutzia corymbosa	25	8333	26
5	Gentiana kurroo	17	2500	12
6	Iris kemaonesis	25	3333	17
7	Isodon rugosus	17	5833	18
8	Poa alpina	17	5000	16
9	Rumex acetosa	33	9167	31
10	Trifolium repens	17	5833	18
	, ,		57500	

Table 6.19: Community structure -Site V7 (Trees)

S.No.	Name of Species	Frequency	Density	TBC	IVI
3.NO.		(%)	(ind. /ha ⁻¹)	(m²ha ⁻¹)	171
1	Ilex dipyrena	20	20	8.702	24
2	Quercus semecarpifolia	20	20	13.63	29
3	Ulmus villosa	10	20	3.4	13
4	Aesculus indica	20	30	5.01	22
5	Cedrus deodara	30	30	24.41	48
6	Pinus wallichiana	20	30	12.28	30
7	Abies pindrow	40	70	14.16	52
8	Pyrus pashia	30	70	0.774	32
9	Picea smithiana	30	100	7.98	48
			390		

Table 6.20: Community structure -Site V7 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Asparagus adscendens	30	300	21
2	Berberis aristata	40	500	37
3	Berberis lycium	40	1200	34
4	Daphne papyracea	30	300	17
5	Desmodium gangeticum	20	500	24
6	Girardinia heterophylla	10	100	9
7	Jasminum officinale	30	300	23
8	Juniperus communis	40	800	25
9	Lonicera angustifolia	20	300	11
10	Prinsepia utilis	30	500	23
11	Sarcococca pruniformis	30	500	21
12	Sinarundinaria falcata	30	400	17
13	Solanum indicum	40	700	37
			6400	

Table 6.21: Community structure -Site V7 (Herbs)

S.No.	Name of Species	Frequency	Density	
3.NO.	Name of Species	(%)	(ind./ha ⁻¹)	IVI
	Pre-Monsoon			
1	Achyranthes bidentata	13	3333	6
2	Adiantum lunulatum	13	11333	12
3	Apluda mutica	27	8000	13
4	Arundinella nepalensis	20	6667	10
5	Caltha palustris	27	5333	11
6	Celosia argentea	20	13333	16
7	Cirsium wallichii	20	3333	8
8	Conyza stricta	20	5333	9
9	Inula cappa	27	6667	12
10	Mentha longifolia	27	6667	12
11	Oenothera rosea	20	14667	17
12	Phytolacca acinosa	20	8000	12
13	Pilea scripta	27	11333	16
14	Poa annua	20	3333	8
15	Trifolium pratense	27	5333	11
16	Urtica parviflora	20	2000	7
17	Viburnum nervosum	27	4000	10
18	Viola canescens	13	7333	9
			126000	

S.No.	Name of Species	Frequency	Density	IVI
	Monsoon	(%)	(ind./ha ⁻¹)	171
1	Aconitum heterophyllum	13	4667	7
2	Acorus calamus	20	10000	13
3		13	4667	7
4	Andropogon nepalensis Arenaria serpyllifolia	27	6667	12
5		20	4000	8
	Bupleurum falcatum			_
6 7	Cannabis sativa	20 20	17333	18
	Carum copticum		4000	8
8	Cyperus niveus	27	5333	11
9	Datura stramonium	13	8000	9
10	Delphinium elatum	27	6000	11
11	Fragaria vesca	13	4000	6
12	Galium aparine	27	6000	11
13	Geranium wallichianum	20	5333	9
14	Impatiens balsamina	13	6667	8
15	Lilium giganteum	20	4000	8
16	Mentha longifolia	27	8000	13
17	Polygonatum verticillatum	13	3333	6
18	Potentilla nepalensis	20	4000	8
19	Thymus serpyllum	13	8667	10
20	Trifolium pratense	20	5333	9
21	Viburnum nervosum	20	3333	7
			129333	
	Winter			
1	Aconitum heterophyllum	25	5833	16
2	Acorus calamus	33	10000	25
3	Andropogon nepalensis	17	5000	12
4	Argemone mexicana	25	8333	19
5	Cannabis sativa	25	4167	14
6	Carum copticum	17	5000	12
7	Datura stramonium	17	6667	14
8	Delphinium elatum	17	4167	11
9	Impatiens balsamina	33	9167	23
10	Potentilla nepalensis	33	8333	22
11	Strobilanthes	25	7500	18
12	Thymus serpyllum	17	4167	11
			78333	

Site V8: Downstream of Malan II HE Project Dam Site- Malana Nala

Table 6.22: Community structure -Site V8 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha ⁻¹)	IVI
1	Pyrus pashia	20	15	64.98	52
2	Celtis australis	50	16	1.62	29
3	Abies pindrow	30	17	28.88	36
4	Aesculus indica	30	23	2.02	24
5	Prunus padus	30	23	27.38	39
6	Acer caesium	20	30	33.62	41
7	Cupressus torulosa	30	30	15.68	35
8	Picea smithiana	10	30	0.82	18
9	Cedrus deodara	20	35	2.16	26
			219		

Table 6.23: Community structure -Site V8 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Berberis chitria	40	700	30
2	Girardinia heterophylla	30	300	29
3	Elsholtzia fruticosa	30	300	17
4	Indigofera gerardiana	30	400	19
5	Leycesteria formosa	40	800	33
6	Phytolacca acinosa	30	500	19
7	Salvia moorcroftiana	20	500	18
8	Sorbaria tomentosa	20	300	19
9	Spiraea canescens	30	500	18
10	Viburnum nervosum	20	300	23
11	Sinarundinaria falcata	40	800	36
12	Zanthoxylum armatum	30	800	38
			6200	

Table 6.24: Community structure -Site 8 (Herbs)

	Table 6.24: Community stri	Frequency	Density	
S.No.	Name of Species	(%)	(ind./ha ⁻¹)	IVI
	Pre Monsoon	,	,	
1	Bupleurum falcatum	20	6667	10
2	Carum copticum	27	11333	15
3	Cannabis sativa	13	6667	8
4	Impatiens balsamina	20	12000	14
5	Andropogon nepalensis	20	3333	8
6	Mentha longifolia	13	5333	7
7	Thymus serpyllum	27	13333	17
8	Aconitum heterophyllum	27	6667	12
9	Acorus calamus	27	10000	14
10	Argemone mexicana	27	9333	14
11	Iris sp	20	10667	13
12	Polygonatum verticillatum	27	3333	9
13	Delphinium elatum	20	2667	7
14	Delphinium vestitum	20	3333	8
15	Lilium giganteum	13	6667	8
16	Strobilanthes	20	6667	10
17	Potentilla nepalensis	13	2667	5
18	Cynodon dactylon	20	4667	9
19	Datura stramonium	20	7333	11
			132667	
	Monsoon			
1	Achyranthes asper	20	6000	9
2	Anaphalis contorta	27	7333	12
3	Andropogon ischaemum	33	6667	13
4	Bistorta macrophylla	13	7333	9
5	Bromus japonicus	33	8667	14
6	Cannabis sativa	20	14667	16
7	Cyperus niveus	27	9333	13
8	Eremurus himalaicus	20	8000	11
9	Fragaria nubicola	13	4000	6
10	Gnaphalium hypoleucum	13	3333	6
11	Impatiens bicolor	13	1333	4
12	Iris kemaonesis	13	2667	5
13	Mentha longifolia	13	4000	6
14	Oxytropis mollis	27	4667	10
15	Pilea scripta	20	8667	11
16	Poa alpina	20	5333	9
17	Podophyllum hexandrum	20	6667	10
18	Rumex nepalensis	40	11333	18

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
19	Thymus serpyllum	20	8000	11
20	Trifolium repens	13	5333	7
			133333	
	Winter			
1	Andropogon ischaemum	25	5000	13
2	Bistorta macrophylla	33	6667	18
3	Eremurus himalaicus	17	10000	16
4	Gentiana kurroo	33	7500	19
5	Impatiens bicolor	17	9167	15
6	Inula obtusifolia	25	5000	13
7	Mentha longifolia	17	10833	17
8	Pilea scripta	25	6667	15
9	Poa alpina	25	4167	12
10	Rumex nepalensis	33	10000	21
11	Thymus serpyllum	33	8333	19
12	Trifolium repens	25	13333	22
		308	96667	

Site V9: Upstream of Malana II Power House site

Table 6.25: Community structure -Site V9 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha ⁻¹)	IVI
1	Alnus nepalensis	20	30	2.21	24
2	Cedrus deodara	30	60	102.29	90
3	Corylus colurna	20	20	3.74	21
4	Juglans regia	20	20	4.22	21
5	Pinus wallichiana	30	100	2.40	55
6	Populus ciliata	20	20	19.05	28
7	Salix wallichiana	30	30	68.58	62
			280		

Table 6.26: Community structure -Site V9 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Buddleja crispa	10	500	12
2	Berberis lycium	20	700	17
3	Girardinia diversifolia	20	300	25
4	Hypericum patulum	20	400	16
5	Cannabis sativa	30	600	31
6	Sinarundinaria falcata	30	800	24
7	Sinopodophyllum hexandrum	30	500	20
8	Rubus ellipticus	30	800	20
9	Rosa brunonii	30	500	20
10	Viburnum mullaha	30	600	25
11	Chenopodium album	40	700	35
12	Desmodium gangeticum	40	400	20
13	Rhamnus triqueter	40	600	34
			7400	

Table 6.27: Community structure -Site V9 (Herbs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Pre-Monsoon			
1	Achyranthes asper	27	8000	14
2	Anaphalis contorta	20	6667	11
3	Andropogon ischaemum	27	5333	12

S.No.	Name of Species	Frequency	Density	IVI
5.110.	•	(%)	(ind./ha ⁻¹)	
4	Bistorta macrophylla	20	13333	16
5	Fragaria nubicola	13	6667	9
6	Gentiana kurroo	27	7333	13
7	Gnaphalium hypoleucum	20	2000	7
8	Impatiens bicolor	20	3333	8
9	Inula obtusifolia	20	5333	10
10	Cyperus niveus	27	6667	13
11	Mentha longifolia	27	6667	13
12	Pilea scripta	20	14667	17
13	Poa alpina	27	11333	16
14	Poa pratensis	13	6667	9
15	Podophyllum hexandrum	20	12000	15
16	Rumex nepalensis	20	3333	8
17	Trifolium repens	13	5333	8
			124667	
	Monsoon			
1	Adiantum lunulatum	13	6000	8
2	Acorus calamus	13	4667	7
3	Agrimonia pilosa	27	6667	12
4	Andropogon nepalensis	13	3333	6
5	Arenaria serpyllifolia	13	2667	5
6	Bupleurum falcatum	13	3333	6
7	Cannabis sativa	20	10667	13
8	Carum copticum	27	5333	11
9	Clematis vestitum	20	6000	10
10	Datura stramonium	13	4667	7
11	Gentiana kurroo	13	6667	9
12	Isodon rugosus	20	5333	9
13	Onychium contiguum	20	6000	10
14	Oxytropis mollis	20	4000	8
15	Pedicularis hoffmeisteri	27	4667	10
16	Pilea scripta	13	3333	6
17	Poa alpina	13	12667	13
18	Rumex nepalensis	20	6000	10
19	Senecio chrysanthemoides	20	6667	10
20	Stellaria media	13	3333	6
21	Thymus serpyllum	27	4667	10
22	Trifolium pratense	13	5333	8
23	Viburnum nervosum	13	4000	6
			126000	
	Winter	_		
1	Agrimonia pilosa	8	5000	8
2	Androsace rotundifolia	17	4167	10
3	Clematis vestitum	33	8333	20
4	Cyperus niveus	25	5833	14
5	Gentiana kurroo	33	9167	21
6	Isodon rugosus	25	10000	19
7	Mentha longifolia	25	8333	17
8	Myosotis alpestris	33	9167	21
9	Pedicularis hoffmeisteri	17	4167	10
10	Persicaria capitata	17	5833	12
11	Poa alpina	17	12500	18
12	Stellaria media	17	5833	12
13	Trifolium pratense	25	10833	19
			99167	

Table 6.28: Community structure -Site V10 (Trees)

S.No.	Name of Species	Frequency	Density	TBC	IVI
3.110.	Name of Species	(%)	(ind./ha ⁻¹)	(m²ha ⁻¹)	1 7 1
1	Acer caesium	30	50	12.84	39.3
2	Alnus nitida	20	30	16.98	31.9
3	Cedrus deodara	30	100	2.91	43.7
4	Pinus wallichiana	30	120	3.50	48.9
5	Populus ciliata	20	40	11.31	29.9
6	Corylus colurna	10	10	79.13	68.6
7	Salix fragilis	30	70	4.42	37.7
			420		

Table 6.29: Community structure -Site V10 (Shrubs)

S.No.	Name of Species	Frequency	Density	,
		(%)	(ind./ha ⁻¹)	IVI
1	Buddleja crispa	30	500	15
2	Deutzia staminea	40	600	21
3	Elsholtzia fruticosa	20	400	13
4	Impatiens cristata	30	500	16
5	Indigofera gerardiana	40	800	26
6	Leycesteria formosa	30	300	14
7	Plectranthus rugosus	40	600	18
8	Prinsepia utilis	10	100	30
9	Rosa macrophylla	30	300	15
10	Rubus lasiocarpus	30	400	15
11	Rubus niveus	40	500	44
12	Salvia moorcroftiana	30	500	28
13	Sinarundinaria falcata	40	500	20
14	Sorbaria tomentosa	20	300	13
15	Viburnum nervosum	20	500	13
			6800	

Table 6.30: Community structure -Site V10 (Herbs)

S.No.	Name of Species	Frequency	Density	13.71
		(%)	(ind./ha ⁻¹)	IVI
	Pre-Monsoon			
1	Adiantum lunulatum	20	10667	15
2	Agrimonia pilosa	20	7333	12
3	Androsace rotundifolia	20	3333	8
4	Circium wallichii	27	9333	15
5	Clematis vestitum	20	2667	8
6	Isodon rugosus	27	3333	10
7	Cyperus niveus	20	2667	8
8	Myosotis alpestris	20	3333	8
9	Onychium contiguum	13	6667	9
10	Pedicularis hoffmeisteri	20	4667	9
11	Persicaria capitata	20	7333	12
12	Senecio chrysanthemoides	20	16000	19
13	Stellaria media	27	6667	13
14	Trifolium pratense	20	14667	18
15	Viburnum nervosum	13	3333	6
16	Gentiana kurroo	13	1333	5
17	Gnaphalium hypoleucum	13	2667	6
18	Mentha longifolia	13	4000	7
19	Poa alpina	27	4667	11
			114667	
	Monsoon			

S.No.	Name of Species	Frequency	Density	
5.110.	•	(%)	(ind./ha ⁻¹)	IVI
1	Adiantum lunulatum	13	8000	10
2	Ainsliaea latifolia	20	4667	9
3	Allium stracheyi	13	4000	7
4	Andropogon nepalensis	20	6667	11
5	Carex filicina	27	8000	13
6	Cyperus squarrosus	20	5333	10
7	Datura stramonium	13	5333	8
8	Deutzia corymbosa	7	4000	5
9	Eremurus himalaicus	13	5333	8
10	Gentiana kurroo	33	12667	19
11	Gnaphalium hypoleucum	20	5333	10
12	Isodon rugosus	13	3333	6
13	Origanum vulgare	13	5333	8
14	Pedicularis hoffmeisteri	27	7333	13
15	Pilea scripta	20	6000	10
16	Rumex nepalensis	13	4000	7
17	Senecio chrysanthemoides	13	6000	8
18	Stellaria media	27	8000	13
19	Trifolium pratense	13	7333	9
20	Verbascum thapsus	20	5333	10
21	Viola canescens	13	4000	7
			126000	
S.No.	Winter			
1	Ainsliaea latifolia	25	6667	14
2	Anemone rivularis	8	5000	7
3	Cannabis sativa	25	7500	15
4	Cousinia thomsonii	25	9167	16
5	Cyperus squarrosus	25	6667	14
6	Deutzia corymbosa	25	5833	13
7	Gentiana kurroo	33	7500	17
8	Gnaphalium hypoleucum	25	6667	14
9	Malva veticellata	17	6667	11
10	Pedicularis hoffmeisteri	17	5833	11
11	Roscoea alpina	33	10000	20
12	Rumex nepalensis	25	8333	15
13	Salvia moorcroftiana	25	7500	15
14	Trifolium pratense	33	9167	19
			102500	

Site V11: Power House site Malana I HEP- Malana Nala

Table 6.31: Community structure -Site V11 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha ⁻¹)	IVI
1	Cedrus deodara	20	40	42.68	115
2	Celtis australis	10	20	1.79	25
3	Fraxinus floribunda	20	30	3.90	45
4	Picea smithiana	30	50	8.29	75
5	Pinus wallichiana	20	20	4.01	39
			160		

Table 6.32: Community structure -Site V11 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Artemisia nilagirica	20	500	24
2	Buddleja crispa	20	400	20
3	Cotoneaster bacillaris	30	500	24

56

4	Desmodium elegans	20	500	21
5	Elsholtzia fruticosa	20	200	58
6	Impatiens cristata	20	400	27
7	Indigofera gerardiana	20	600	23
8	Indigofera pulchella	40	700	42
9	Salvia moorcroftiana	10	300	14
10	Sorbaria tomentosa	10	200	14
11	Spiraea canescens	10	200	19
12	Viburnum nervosum	10	300	14
			4800	

Table 6.33: Community structure -Site 11 (Herbs)

	Table 6.33: Community structure -Site 11 (Herbs)					
S.No.	Name of Species	Frequency	Density			
3.110.	-	(%)	(ind./ha ⁻¹)	IVI		
	Pre-Monsoon					
1	Ainsliaea latifolia	27	2667	10		
2	Allium stracheyi	27	7333	15		
3	Anemone rivularis	33	6667	17		
4	Carex filicina	20	3333	9		
5	Cousinia thomsonii	20	5333	11		
6	Cyperus squarrosus	20	6667	13		
7	Deutzia corymbosa	13	9333	14		
8	Fragaria nubicola	13	2667	7		
9	Gentiana kurroo	7	3333	5		
10	Malva verticillata	20	8000	14		
11	Origanum vulgare	27	11333	20		
12	Oxytropis mollis	20	5333	11		
13	Roscoea alpina	20	3333	9		
14	Rumex nepalensis	27	4667	13		
15	Salvia moorcroftiana	27	2667	10		
16	Verbascum thapsus	13	2000	6		
17	Viola canescens	20	8000	14		
17	Viola carresceris	20	92667	• • •		
	Monsoon		72007			
1	Achyranthes asper	13	8667	10		
2	Adiantum lunulatum	27	6667	12		
3	Anaphalis contorta	13	4667	7		
4	Andropogon ischaemum	27	6667	12		
5	Apluda mutica	27	8667	14		
6	Arundinella nepalensis	13	4000	7		
7	Celosia argentea	20	4667	9		
8	<u> </u>	13	9333	11		
9	Conyza stricta	27	10000	15		
	Delphinium denudatum					
10	Inula cappa	20 13	8667	12 7		
11	Mentha longifolia		4667			
12	Phytolacca acinosa	13	5333	8		
13	Poa annua	13	7333	9		
14	Poa pratensis	20	6000	10		
15	Pogonatherum sacchaoidon	20	6667	11		
16	Tagetes erecta	7	4667	5		
17	Trifolium pratense	13	6000	8		
18	Viburnum nervosum	33	8000	15		
19	Vicoa biflora	20	6000	10		
20	Viola canescens	13	5333	8		
			132000			
	Winter					
1	Achyranthes bidentata	17	5833	11		
2	Adiantum lunulatum	17	12500	17		
3	Arundinella nepalensis	33	8333	18		

CNo	Name of Species	Frequency	Density	
S.No.	Name of Species	(%)	(ind./ha ⁻¹)	IVI
4	Caltha palustris	25	7500	15
5	Cirsium wallichii	33	6667	17
6	Conyza stricta	17	9167	14
7	Inula cappa	25	5833	13
8	Oenothera rosea	17	6667	11
9	Phytolacca acinosa	33	7500	17
10	Poa annua	25	8333	16
11	Trifolium pratense	25	10833	18
12	Phytolacca acinosa	17	7500	12
13	Tagetes erecta	33	11667	21
			108333	

Site V12: Tosh HEP near Power House site: Tosh Nala

Table 6.34: Community structure -Site V12 (Trees)

C No	Name of Chasins	Frequency	Density	TBC	11/1
S. No.	Name of Species	(%)	(ind./ha ⁻¹)	(m^2ha^{-1})	IVI
1	Abies spectabilis	10	20	3.00	20
2	Acer caesium	30	30	2.71	35
3	Castanea sativa	30	30	0.39	30
4	Cedrus deodara	10	10	1.99	14
5	Corylus colurna	10	20	5.18	24
6	Juglans regia	10	20	15.16	42
7	Picea smithiana	20	20	18.23	54
8	Prunus avium	10	10	3.56	17
9	Populus ciliata	10	10	0.49	11
10	Pinus wallichiana	10	40	0.51	23
11	Salix wallichiana	10	20	0.50	15
12	Ulmus wallichiana	10	20	1.33	16
			250		

Table 6.35: Community structure -Site V12 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Berberis asiatica	10	180	9
2	Berberis aristata	10	220	8
3	Clematis graveolens	10	580	18
4	Cotoneaster bacillaris	60	280	20
5	Cotoneaster microphyllus	20	320	19
6	Desmodium elegans	30	240	17
7	Deutzia staminea	20	80	8
8	Elsholtzia fruticosa	10	80	5
9	Indigofera gerardiana	10	40	41
10	Leycesteria formosa	30	440	18
11	Phytolacca acinosa	10	120	8
12	Plectranthus rugosus	10	200	9
13	Rosa macrophylla	30	200	12
14	Rubus niveus	30	340	16
15	Salvia moorcroftiana	20	160	9
16	Sorbaria tomentosa	70	100	20
17	Spiraea canescens	60	70	16
18	Viburnum nervosum	60	70	45
			3720	

Table 6.36: Community structure -Site V12 (Herbs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Pre Monsoon			

S.No.	Name of Species	Frequency	Density	IVI
	-	(%)	(ind./ha ⁻¹)	7
<u>1</u>	Adiantum lunulatum	33 13	8600 3867	7 3
3	Androsace rotundifolia			5
4	Arenaria serpyllifolia	20	7800	
4	Artemisia vulgaris	60 67	19867 8167	14 10
6	Cannabis sativa Circium wallichii	67		
<u> </u>			5667	9 12
8	Clematis vestitum	75 25	11250	4
9	Cyperus niveus		4000 32000	
10	Dioscorea deltoidea	33 33		17
11	Fagopyrum esculentum	50	2917 8167	5 8
12	Fragaria vesca	58		
	Galium aparine		3667	7
13	Geranium wallichianum	50	4833	7
14	Heliotropium strigosum	25	3833	4
15	Inula cappa	33	8083	7
16	Pedicularis hoffmeisteri	17	4667	4
17	Persicaria capitata	25	3583	4
18	Poa annua	33	13000	9
19	Polygonatum verticillatum	42	23167	14
20	Potentilla argyrophylla	58	19333	14
21	Rumex nepalensis	25	7250	6
22	Salvia lanata	42	16500	11
23	Stellaria media	25	8167	6
24	Trifolium pratense	17	3667	3
25	Viburnum nervosum	67	4833	9
			236883	
	Monsoon			
1	Aconitum violaceum	25	6667	7
2	Adiantum lunulatum	25	9167	9
3	Arenaria serpyllifolia	17	4167	5
4	Bromus japonicus	25	6667	7
5	Cannabis sativa	17	11667	8
6	Clematis vestitum	25	8333	8
7	Cyperus niveus	25	6667	7
8	Delphinium elatum	17	5833	6
9	Dioscorea deltoidea	8	5000	4
10	Eremurus himalaicus	17	5833	6
11	Fagopyrum esculentum	25	11667	10
12	Galium aparine	42	7500	11
13	Geranium wallichianum	25	10000	9
14	Impatiens balsamina	8	4167	3
15	Inula cappa	33	15000	13
16	Iris kemaonesis	33	6667	9
17	Oxytropis mollis	17	10000	8
18	Persicaria capitata	33	7500	9
19	Poa annua	17	20833	13
20	Podophyllum hexandrum	33	7500	9
21	Polygonatum verticillatum	25	6667	7
22	Rumex nepalensis	17	8333	7
23	Stellaria media	8	4167	3
24	Thymus serpyllum	33	10000	10
25	Trifolium pratense	17	5000	5
26	Viburnum nervosum	33	5833	8
20	VIDUITIUITI HEI VOSUIII	JJ	210833	O
	Winter		Z 10033	
4	Winter	25	6667	11
<u>1</u>	Aconitum violaceum	25	6667	11
Z	Adiantum lunulatum	25	9167	12

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
3	Arenaria serpyllifolia	17	4167	7
4	Bromus japonicus	25	6667	11
5	Cannabis sativa	17	11667	12
6	Clematis vestitum	25	8333	12
7	Cyperus niveus	25	6667	11
8	Delphinium elatum	17	5833	8
9	Dioscorea deltoidea	8	5000	6
10	Eremurus himalaicus	17	5833	8
11	Geranium wallichianum	25	11667	14
12	Impatiens balsamina	42	7500	15
13	Iris kemaonesis	25	10000	13
14	Persicaria capitata	8	4167	5
15	Poa annua	33	15000	19
16	Rumex nepalensis	33	6667	13
17	Thymus serpyllum	17	10000	11
18	Trifolium pratense	33	7500	13
			142500	

Site V13: Near Diversion site of Nakthan HEP- Tosh Nala

Table 6.37: Community structure -Site V13 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha ⁻¹)	IVI
1	Acer caesium	10	10	8.30	39
2	Corylus colurna	10	10	1.78	18
3	Hippophae salicifolia	10	10	0.51	14
4	Picea smithiana	10	10	7.19	35
5	Pinus roxburghii	10	10	0.89	15
6	Prunus cornuta	10	10	0.83	15
7	Sorbaria tomentosa	10	10	1.50	17
8	Ulmus villosa	10	10	4.35	26
9	Cedrus deodara	20	30	2.92	39
10	Pinus wallichiana	10	30	2.43	30
11	Populus ciliata	10	30	0.03	22
12	Salix denticulata	20	30	0.24	30
·			200		

Table 6.38: Community structure -Site V13 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Berberis asiatica	30	80	12
2	Berberis lycium	40	420	32
3	Cotoneaster bacillaris	10	40	12
4	Desmodium elegans	40	160	34
5	Elsholtzia fruticosa	10	120	11
6	Impatiens cristata	10	60	6
7	Indigofera gerardiana	30	80	76
8	Plectranthus rugosus	20	100	11
9	Rosa brunonii	90	440	44
10	Rubus niveus	30	360	24
11	Spiraea canescens	20	520	28
12	Viburnum nervosum	20	60	10
			2440	

Table 6.39: Community structure -Site V13 (Herbs)

		Frequency	Density	
S.No.	Name of Species	(%)	(ind./ha ⁻¹)	IVI
	Pre Monsoon	(70)	()	
1	Ainsliaea latifolia	27	5533	6
2	Anemone rivularis	53	19067	16
3	Arisaema intermedium	13	3600	3
4	Arthraxon lancifolius	73	18533	19
5	Cannabis sativa	20	6467	6
6	Carex filicina	40	12267	11
7	Clematis buchananiana	33	8600	9
8	Dioscorea deltoidea	13	3867	4
9	Duchesnea indica	20	7800	6
10	Fagopyrum esculentum	60	19867	17
11	Geranium nepalense	27	12267	9
12	Leonurus cardiaca	40	18933	14
13	Origanum vulgare	20	3400	4
14	Oxalis corniculata	27	2933	5
15	Plantago erosa	60	16533	16
16	Poa annua	20	3067	4
17	Roscoea alpina	13	3733	4
18	Rumex nepalensis	47	8467	10
19	Salvia moorcroftiana	53	9467	12
20	Silene conoidea	27	4200	6
21	Trifolium pratense	47	12533	12
22	Viola canescens	33	5583	7
LL	Viola cariesceris	33	206717	
	Monsoon		200717	
1	Ainsliaea latifolia	25	7500	7
2	Anemone rivularis	8	6667	4
3	Arisaema intermedium	25	8333	7
4	Arthraxon lancifolius	33	7500	8
5	Cannabis sativa	25	10833	8
6	Carex filicina	25	7500	7
7	Clematis buchananiana	25	7500	7
8	Dioscorea deltoidea	33	6667	8
9	Duchesnea indica	33	7500	8
10		33	9167	9
11	Fagopyrum esculentum Galium aparine	33	11667	10
12	Geranium nepalense	33	9167	9
13	Inula cappa	33	9167	9
14	Iris kemaonesis	42	8333	10
15	Leonurus cardiaca	25	8333	7
16	Mentha longifolia	42	10833	11
17	Origanum vulgare	33	8333	8
18		25	8333	7
19	Plantago erosa	42	9167	10
20	Poa annua	4Z 17	10000	
	Rumex nepalensis	17	9167	7
21 22	Thymus serpyllum	42	11667	7 11
23	Salvia moorcroftiana Silene conoidea	17	7500	
23		33	7500	6
25	Trifolium pratense	33	8333	8
23	Viola canescens	33		0
	Winter		216667	
4	Winter	25	6447	42
1	Anomono rivularia	25	6667	12
2	Anemone rivularis	8	5833	7
3	Arthraxon lancifolius	25	10000	15
4	Cannabis sativa	17	7500	11
5	Clematis buchananiana	25	9167	14
6	Dioscorea deltoidea	25	7500	13
7	Fagopyrum esculentum	17	5833	9

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
8	Galium aparine	17	6667	10
9	Geranium nepalense	25	7500	13
10	Iris kemaonesis	33	8333	16
11	Leonurus cardiaca	33	10833	18
12	Mentha longifolia	8	3333	5
13	Plantago erosa	17	5833	9
14	Poa annua	17	8333	11
15	Rumex nepalensis	8	2500	4
16	Salvia moorcroftiana	25	9167	14
17	Trifolium pratense	33	7500	15
			122500	

Site V14: Near Diversion site of Nakthan HEP- Parbati River

Table 6.40: Community structure - Site V14 (Trees)

S.No.	Name of Species	Frequency	Density	TBC	IVI
5.NO.	Name of Species	(%)	(ind./ha ⁻¹)	(m²ha ⁻¹)	171
1	Abies pindrow	40	70	15.2	45
2	Acer caesium	50	50	15.9	43
3	Aesculus indica	40	40	8.2	31
4	Cedrus deodara	50	50	15.2	43
5	Corylus colurna	20	30	1.1	15
6	Juglans regia	20	20	6.2	17
7	Juglans regia	20	30	2.2	16
8	Picea smithiana	30	30	49.2	60
9	Pinus wallichiana	10	20	0.5	9
10	Populus ciliata	10	10	3.3	9
11	Ulmus villosa	10	30	0.6	12
			380.0		

Table 6.41: Community structure - Site V14 (Shrubs)

S.No.	Name of Species	Frequency	Density (ind./ha ⁻¹)	IVI
		(%)	`	
1	Buddleja crispa	40	320	36
2	Cissus repanda	30	160	21
3	Cotoneaster bacillaris	20.0	220	28
4	Hedera nepalensis	20	180	22
5	Indigofera gerardiana	30	320	37
6	Lonicera angustifolia	20	200	16
7	Phytolacca acinosa	20	200	28
8	Rosa macrophylla	30	340	38
9	Staphylea emodi	40	460	39
10	Viburnum nervosum	60	240	36
			2640	

Table 6.42: Community structure - Site V14 (Herbs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Pre Monsoon			
1	Achyranthes bidentata	58	6500	10
2	Ajuga parviflora	58	8167	10
3	Apluda mutica	67	7250	11
4	Cirsium wallichii	92	15417	17
5	Conyza stricta	42	5750	7
6	Fragaria vesca	67	8167	11
7	Geranium nepalense	67	5667	10
8	Gnaphalium affine	75	11250	14

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
9	Hedera nepalensis	25	4000	5
10	Inula cappa	33	32000	19
11	Mentha longifolia	25	20250	12
12	Poa annua	33	3833	6
13	Prinsepia utilis	25	4833	5
14	Rubus ellipticus	42	15417	12
15	Rumex nepalensis	58	11917	12
16	Salvia moorcroftiana	25	4500	5
17	Trifolium pratense	33	18417	12
18	Urtica parviflora	25	9417	7
19	Viburnum nervosum	50	18583	14
- 17	Vibarriam nervosam	30	211333	•
	Monsoon		211333	
1	Achyranthes bidentata	25	6667	8
2	Ajuga parviflora	33	8333	10
3	Apluda mutica	33	8333	10
4		25	18333	14
	Arundinella nepalensis			
5	Cirsium wallichii	33	8333	10
6	Bidens bipinnata	25	10000	10
7	Desmodium caudatum	33	14167	13
8	Equisetum ramossimum	17	8333	7
9	Geranium nepalense	25	15000	13
10	Gnaphalium affine	25	4167	7
11	Gnaphalium luteo-album	25	5833	7
12	Inula cappa	33	11667	12
13	Mentha longifolia	25	3333	6
14	Poa annua	33	8333	10
15	Plantago erosa	17	3333	5 7
16	Prinsepia utilis	25	5833	7
17	Rubus ellipticus	17	6667	7
18	Rumex nepalensis	25	4167	7
19	Salvia moorcroftiana	17	5833	6
20	Trifolium pratense	25	2500	6
21	Cyperus cuspidatus	25	4167	7
22	Urtica parviflora	25	6667	8
23	Viburnum nervosum	33	8333	10
	,		178333	
	Winter		.,,,,,	
1	Achyranthes bidentata	25	6667	11
2	Ajuga parviflora	33	8333	14
3	Apluda mutica	33	8333	14
4	Arundinella nepalensis	25	18333	19
5	Desmodium caudatum	33	8333	14
6		25		13
- 6 - 7	Geranium nepalense		10000	
	Gnaphalium affine	33	14167	18
8	Inula cappa	17	8333	10
9	Mentha longifolia	25	15000	17
10	Poa annua	25	4167	9
11	Rubus ellipticus	25	4167	9
12	Rumex nepalensis	33	11667	16
13	Salvia moorcroftiana	25	3333	8
14	Trifolium pratense	33	8333	14
15	Urtica parviflora	17	3333	6
16	Viburnum nervosum	25	5833	10
			138333	

Site 15: Proposed Power House Site Nakthan HEP - Tosh Nala

Table 6.43: Community structure - Site V15 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha ⁻¹)	IVI
1	Abies pindrow	50	80	0.53	50
2	Acer caesium	50	40	0.97	38
3	Aesculus indica	30	30	4.36	29
4	Celtis australis	10	20	0.46	12
5	Hippophae salicifolia	10	10	0.78	9
6	Ilex dipyrena	10	30	0.03	14
7	Juglans regia	10	10	1.99	10
8	Picea wallichiana	10	40	60.18	85
9	Pinus roxburghii	10	20	0.27	12
10	Salix acutifolia	10	10	0.84	9
11	Ulmus villosa	10	20	19.39	33
			310		

Table 6.44: Community structure - Site V15 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind. /ha ⁻¹)	IVI
1	Berberis asiatica	20	280	22
2	Buddleja crispa	20	480	23
3	Cotoneaster bacillaris	20	160	13
4	Desmodium elegans	20	240	27
5	Elsholtzia fruticosa	10	220	13
6	Indigofera gerardiana	10	580	24
7	Plectranthus rugosus	60	280	24
8	Prinsepia utilis	30	520	25
9	Rubus ellipticus	10	280	11
10	Rubus niveus	70	100	20
11	Sorbaria tomentosa	60	70	64
12	Spiraea canescens	60	70	25
13	Viburnum nervosum	30	40	9
			3320	

Table 6.45: Community structure - Site V15 (Herbs)

S.No.	Name of Species	Frequency (%)	Density (ind. /ha ⁻¹)	IVI
	Pre Monsoon	(/	(**************************************	
1	Achyranthes aspera	58	9333	14
2	Adiantum lunulatum	50	6583	10
3	Ageratum conyzoides	33	2917	6
4	Ainsliaea latifolia	50	8167	12
5	Artemisia scoparia	58	3667	8
6	Arundinella nepalensis	50	4833	9
7	Carex filicina	42	4500	8
8	Cirsium wallichii	50	3667	8
9	Cissus himalayana	67	3833	9
10	Cyperus cuspidatus	92	7167	15
11	Dioscorea deltoidea	75	14667	20
12	Fragaria vesca	25	5500	7
13	Geranium nepalense	67	6500	12
14	Gnaphalium luteo-album	50	5667	10
15	Inula cappa	67	6250	12
16	Oplismenus burmannii	100	4833	13
17	Prinsepia utilis	92	5500	13
18	Rumex nepalensis	58	4333	9
19	Trifolium pratense	42	3167	7
			111083	
	Monsoon			

S.No.	Name of Species	Frequency	Density	
3.NO.	Name of Species	(%)	(ind. /ha ⁻¹)	IVI
1	Achyranthes aspera	25	6667	8
2	Adiantum lunulatum	33	11667	12
3	Ageratum conyzoides	33	7500	10
4	Artemisia scoparia	25	9167	9
5	Arundinella nepalensis	33	6667	9
6	Bidens bipinnata	17	5833	6
7	Cirsium wallichii	17	11667	9
8	Cyperus cuspidatus	25	15833	13
9	Dioscorea deltoidea	33	7500	10
10	Equisetum ramossimum	33	6667	9
11	Eragrostis nigra	25	4167	7
12	Fragaria vesca	17	10833	9
13	Geranium nepalense	33	7500	10
14	Gnaphalium luteo-album	33	5833	9
15	Oplismenus burmannii	17	7500	7
16	Plantago erosa	33	8333	10
17	Prinsepia utilis	33	11667	12
18	Rumex nepalensis	25	8333	9
19	Trifolium pratense	25	9167	9
20	Urena lobata	33	12500	12
21	Valeriana hardwickii	17	6667	6
22	Xanthium indicum	17	5000	6
			186667	
	Winter			
1	Achyranthes aspera	25	5833	11
2	Adiantum lunulatum	33	11667	19
3	Artemisia scoparia	25	3333	9
4	Arundinella nepalensis	33	8333	16
5	Bidens bipinnata	17	3333	7
6	Cirsium wallichii	25	10000	15
7	Cyperus cuspidatus	33	14167	21
8	Eragrostis nigra	17	8333	11
9	Geranium nepalense	25	15000	19
10	Oplismenus burmannii	25	4167	10
11	Plantago erosa	25	4167	10
12	Rumex nepalensis	25	6667	12
13	Trifolium pratense	33	8333	16
14	Urena lobata	33	5833	14
15	Xanthium indicum	17	7500	11
			116667	

Site V16: Proposed Reservoir of Parbati-II HEP- Parbati River

Table 6.46: Community structure - Site V16 (Tree)

S.No.	Name of Species	Frequency	Density	TBC	IVI
3.140.	Maine of Species	(%)	(ind./ha ⁻¹)	(m²ha ⁻¹)	1 7 1
1	Cedrus deodara	40	40	0.51	37
2	Ilex dipyrena	30	30	0.03	27
3	Juglans regia	10	10	1.99	12
4	Picea smithiana	10	10	60.18	96
5	Pinus wallichiana	30	70	0.50	43
6	Populus ciliata	10	20	0.49	14
7	Salix acutifolia	20	30	0.84	23
8	Salix wallichiana	20	20	3.56	23
9	Ulmus wallichiana	20	30	1.33	24
			260		

65

Table 6.47: Community structure - Site V16 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Boehmeria penduliflora	20	220	18
2	Brassiopsis mitis	20	280	46
3	Chromolaena odoratum	20	480	45
4	Debregeasia longifolia	10	280	17
5	Elatostema aquifolium	10	240	24
6	Leea asiatica	20	160	30
7	Maesa chisia	30	240	32
8	Melocalamus compactiflorus	20	240	18
9	Sinarundinaria falcata	20	520	27
10	Solanum surattense	30	600	43
	Total		3260	

Table 6.48: Community structure - Site V16 (Herbs)

	able 6.46. Community str	Frequency	Density	
S.No.	Name of Species	(%)	(ind./ha ⁻¹)	IVI
	Pre-Monsoon	(70)	()	
1	Adiantum lunulatum	42	6500	13
2	Artemisia nilagirica	42	7000	13
3	Arthraxon lancifolius	42	8167	15
4	Bidens bipinnata	25	5667	10
5	Capillipedium assimile	17	4667	7
6	Conyza japonica	50	4917	13
7	Cyperus rotundus	25	4000	8
8	Desmodium caudatum	33	7000	12
9	Digitaria cruciata	25	3833	8
10	Equisetum ramossimum	33	8083	13
11	Eragrostis nigra	17	4667	7
12	Hydrocotyle nepalensis	25	3583	7
13	Melilotus indica	25	3417	7
14	Oplismenus compositus	17	4750	7
15	Persicaria capitata	17	4667	7
16	Sida rhombifolia	67	7250	18
17	Urena lobata	67	5667	16
18	Valeriana hardwickii	33	3833	9
19	Xanthium indicum	25	4833	9
		625	102500	200
	Monsoon			
1	Adiantum lunulatum	25	5833	7
2	Artemisia nilagirica	42	7500	11
3	Arthraxon lancifolius	42	5000	9
4	Bidens bipinnata	25	7500	8
5	Capillipedium assimile	17	10000	9
6	Conyza japonica	50	5000	11
7	Cyperus rotundus	25	5833	7
8	Desmodium caudatum	33	9167	11
9	Digitaria cruciata	25	11667	11
10	Equisetum ramossimum	33	4167	8
11	Eragrostis nigra	17	9167	8
12	Hydrocotyle nepalensis	25	8333	9
13	Melilotus indica	25	9167	10
14	Oplismenus compositus	17	8333	8
15	Persicaria capitata	17	6667	7
16	Prinsepia utilis	67	10000	16
17	Sida rhombifolia	67	7500	15
18	Trifolium pratense	33	8333	10

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
19	Tagetes erecta	25	7500	8
20	Valeriana hardwickii	26	6667	8
21	Xanthium indicum	27	5833	8
		661	159167	200
	Winter			
1	Artemisia nilagirica	17	5833	11
2	Arthraxon lancifolius	25	9167	17
3	Bidens bipinnata	17	5833	11
4	Capillipedium assimile	17	4167	9
5	Cyperus rotundus	25	9167	17
6	Desmodium caudatum	17	5000	10
7	Equisetum ramossimum	33	7500	18
8	Eragrostis nigra	17	4167	9
9	Melilotus indica	25	6667	14
10	Persicaria capitata	17	10000	15
11	Prinsepia utilis	33	7500	18
12	Sida rhombifolia	17	5833	11
13	Tagetes erecta	17	6667	12
14	Valeriana hardwickii	25	9167	17
15	Xanthium indicum	17	7500	12
		317	104167	200

Site V17: Near Parbati-II HEP Dam Site- Parbati River

Table 6.49: Community structure - Site V17 (Tree)

Table 6.49. Community structure - Site V17 (Tree)					
S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha ⁻¹)	IVI
1	Bauhinia variegata	20	20	1.37	17
2	Populus ciliata	20	20	3.05	19
3	Prunus americana	20	20	5.05	21
4	Juglans regia	20	30	50.0	71
5	Salix tetrasperma	20	30	1.08	20
6	Toona ciliata	40	70	13.67	55
7	Celtis australis	40	70	2.89	44
8	Pinus wallichiana	20	80	17.92	52
			340		

Table 6.50: Community structure - Site V17 (Shrubs)

S.No.	Name of Species	Frequency	Density	IVI
3.110.	Maine of Species	(%)	(ind./ha ⁻¹)	1 7 1
1	Arenga saccharifera	10	240	24
2	Boehmeria penduliflora	10	220	14
3	Boehmeria macrophylla	10	180	29
4	Hydrangea robusta	10	520	38
5	Luculia pinceana	10	240	16
6	Melocalamus compactiflorus	50	280	62
7	Oxyspora paniculata	30	240	35
8	Strobilanthes extensa	60	280	43
9	Trevesia palmata	10	580	41
	Total		2780	

Table 6.51: Community structure - Site V17 (Herbs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Pre-Monsoon			
1	Artemisia nilagirica	42	9333	11
2	Athyrium angustum	75	15250	18
3	Bidens bipinnata	25	6167	7

4	Capillipedium assimile	25	6583	7
5	Carex filicina	25	4667	6
6	Cyperus rotundus	67	2917	10
7	Desmodium caudatum	33	8000	9
8	Desmodium gangeticum	25	6917	7
9	Digitaria cruciata	25	6250	7
10	Equisetum ramossimum	83	20500	22
11	Melilotus indica	58	6500	11
12	Miscanthus nudipes	58	8167	12
13	Nepeta ciliaris	67	24000	22
14	Persicaria capitata	25	7250	7
15	Selaginella indica	50	9667	12
16	Urena lobata	42	12167	12
17	Valeriana hardwickii	25	4000	5
18	Xanthium indicum	50	14000	14
10	Xuntinum maicum	30	172333	200
	Mansaan		1/2333	200
1	Monsoon	25	///7	10
1	Artemisia nilagirica	25	6667	10
2	Achyranthes asper	33	10000	14
3	Athyrium angustum	17	7500	8
4	Bidens bipinnata	17	6667	8
5	Capillipedium assimile	50	12500	19
6	Carex filicina	25	6667	10
7	Cyperus rotundus	17	5833	7
8	Desmodium gangeticum	17	12500	12
9	Digitaria cruciata	8	7500	7
10	Hydrocotyle nepalensis	17	5833	7
11	Inula cappa	25	10000	12
12	Melilotus indica	8	5000	5
13	Miscanthus nudipes	33	10000	14
14	Nepeta ciliaris	17	5000	7
15	Persicaria capitata	33	7500	12
16	Pilea scripta	17	5833	7
17	Tagetes erecta	17	8333	9
18	Urena lobata	8	6667	6
19	Valeriana hardwickii	25	15000	15
20	Xanthium indicum	25	7500	10
			162500	
	Winter			
1	Artemisia nilagirica	25	6667	13
2	Athyrium angustum	33	10000	18
3	Bidens bipinnata	17	7500	11
4	Capillipedium assimile	17	6667	10
5	Carex filicina	50	12500	25
6	Desmodium gangeticum	25	6667	13
7	Digitaria cruciata	17	5833	10
8	Inula cappa	17	12500	15
9	Melilotus indica	8	7500	9
10	Miscanthus nudipes	17	5833	10
11	Nepeta ciliaris	25	10000	16
12	Pilea scripta	8	5000	7
13	Tagetes erecta	33	10000	18
14	Urena lobata	17	5000	9
15	Xanthium indicum	33	7500	16
			119167	
	1			1

Site V 18: Parbati-II HEP near Adit I, downstream of Dam site- Parbati river

Table 6.52: Community structure -Site V18 (Trees)

S.No.	Name of Species	Frequency	Density	TBC	IVI	
-------	-----------------	-----------	---------	-----	-----	--

		(%)	(ind./ha ⁻¹)	(m²ha ⁻¹)	
1	Betula alnoides	10	20	2.16	12
2	Cedrela toona	40	40	27.38	57
3	Celtis australis	20	30	15.68	34
4	Juglans regia	10	10	0.72	8
5	Morus australis	10	10	2.00	9
6	Pinus wallichiana	60	110	33.62	92
7	Populus ciliata	10	10	1.62	9
8	Pyrus communis	10	10	2.88	10
9	Quercus leucotrichophora	40	90	0.82	43
10	Rhus succedanea	30	30	5.78	27
		·	360		

Table 6.53: Community structure -Site V18 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Boehmeria macrophylla	20	200	16
2	Debregeasia longifolia	10	280	53
3	Elatostema lineolatum	40	840	45
4	Maesa chisia	30	520	54
5	Melastoma malabathricum	10	240	18
6	Melocalamus compactiflorus	10	240	20
7	Oxyspora paniculata	80	1280	73
8	Rubus burkillii	20	160	22
	Total		3760	

Table 6.54: Community structure -Site V18 (Herbs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Pre-Monsoon	()	,	
1	Artemisia nilagirica	25	8083	8
2	Athyrium angustum	33	7250	9
3	Carex filicina	25	8167	8
4	Commelina benghalensis	33	7667	9
5	Commelina paludosa	67	7250	13
6	Crassocephalum crepidioides	17	8167	7
7	Dicentra scandens	75	3667	12
8	Elatostema platyphyllum	17	8167	7
9	Equisetum ramossimum	67	9333	14
10	Gerardinia diversifolia	50	6917	11
11	Lecanthus peduncularis	17	10750	9
12	Molineria capitulata	25	9750	9
13	Oplismenus compositus	25	15333	12
14	Persicaria chinensis	67	9667	14
15	Pilea umbrosa	17	4667	5
16	Pollia subumbellata	25	3583	5
17	Pteris wallichiana	25	4500	6
18	Setaria palmifolia	75	20083	22
19	Solanum nigrum	67	12167	16
20	Urtica parviflora	25	3417	5
			168583	
	Monsoon			
1	Artemisia nilagirica	17	5833	7
2	Athyrium angustum	17	10000	9
3	Carex filicina	33	7500	11
4	Commelina benghalensis	42	4167	11
5	Crassocephalum crepidioides	8	4167	4
6	Dicentra scandens	17	5833	7

S.No.	Name of Species	Frequency	Density	
3.NO.	Name of Species	(%)	(ind./ha ⁻¹)	IVI
7	Elatostema platyphyllum	25	7500	9
8	Fimbristylis dichotoma	33	9167	12
9	Gerardinia diversifolia	25	7500	9
10	Hydrocotyle nepalensis	17	5833	7
11	Kyllinga brevifolia	25	10000	11
12	Lecanthus peduncularis	33	8333	12
13	Molineria capitulata	25	6667	9
14	Nepeta ciliaris	25	5833	8
15	Oplismenus compositus	25	9167	10
16	Pilea umbrosa	17	7500	8
17	Pimpinella diversifolia	25	10000	11
18	Pteris wallichiana	25	6667	9
19	Senecio scandens	33	10833	13
20	Setaria palmifolia	17	5000	6
21	Solanum nigrum	17	4167	6
22	Urtica parviflora	25	9167	10
			160833	
	Winter			
1	Artemisia nilagirica	25	10000	14
2	Athyrium angustum	8	5000	6
3	Bidens bipinnata	33	10000	16
4	Commelina benghalensis	17	5000	8
5	Dicentra scandens	17	7500	10
6	Digitaria ciliaris	17	6667	9
7	Elatostema platyphyllum	50	10000	20
8	Kyllinga brevifolia	25	6667	11
9	Lecanthus peduncularis	25	7500	12
10	Molineria capitulata	17	5833	9
11	Nepeta ciliaris	25	10000	14
12	Oplismenus compositus	33	8333	15
13	Pilea umbrosa	25	6667	11
14	Pimpinella diversifolia	25	5833	11
15	Pteris wallichiana	25	9167	13
16	Setaria palmifolia	17	7500	10
17	Solanum nigrum	25	6667	11
			128333	

Site V19: Balargha HEP: Near Barrage site

Table 6.55: Community structure -Site V19 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha ⁻¹)	IVI
1	Aesculus indica	10	20	8.88	21
2	Alnus nepalensis	20	30	6.02	26
3	Betula alnoides	60	110	2.16	64
4	Cedrela toona	10	10	27.38	40
5	Celtis australis	10	10	15.68	26
6	Juglans regia	30	30	21.78	49
7	Neolitsea chinense	10	10	1.28	9
8	Phoebe lanceolata	20	20	0.98	17
9	Pinus roxburghii	40	90	1.62	48
			330		

Table 6.56: Community structure -Site V19 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Aconogonum molle	10	220	21
2	Boehmeria macrophylla	10	580	37

3	Debregeasia longifolia	60	280	45
4	Leucosceptrum canum	40	1040	90
5	Maesa chisia	30	520	52
6	Melocalamus compactiflorus	10	280	37
7	Rubus burkillii	10	240	17
	Total		3160	

Table 6.57: Community structure -Site V190 (Herbs)

Table 6.57: Community structure -Site V190 (Herbs)					
S.No.	Name of Species	Frequency	Density		
5.110.	rame of species	(%)	(ind./ha ⁻¹)	IVI	
	Pre-Monsoon				
1	Arenaria nilghiriensis	27	5533	6	
2	Artemisia nilagirica	53	19067	17	
3	Arthraxon hispidus	13	3600	4	
4	Athyrium angustum	73	18533	19	
5	Bidens bipinnata	20	6467	6	
6	Carex filicina	40	12267	12	
7	Commelina benghalensis	33	8600	9	
8	Desmodium caudatum	13	3867	4	
9	Digitaria ciliaris	20	7800	7	
10	Hedychium spicatum	60	19867	18	
11	Hydrocotyle nepalensis	27	12267	10	
12	Impatiens chinensis	40	18933	15	
13	Kyllinga brevifolia	20	3400	4	
14	Melilotus indica	27	2933	5	
15	Nepeta ciliaris	60	16533	16	
16	Persicaria capitata	20	3067	4	
17	Pilea umbrosa	13	3733	4	
18	Pimpinella diversifolia	47	8467	11	
19	Setaria glauca	53	9467	12	
20	Thysanolaena latifolia	27	4200	6	
21	Urena lobata	47	12533	13	
	Or erra tobata	.,,	201133		
	Monsoon		201133		
1	Artemisia nilagirica	33	9167	9	
2	Arthraxon hispidus	53	7500	11	
3	Athyrium angustum	13	12500	8	
4	Bidens bipinnata	73	6667	14	
5	Carex filicina	20	11667	9	
6	Commelina benghalensis	40	9167	10	
7	Desmodium caudatum	33	12500	11	
8	Digitaria ciliaris	13	9167	6	
9	Hedychium spicatum	20	15833	11	
10 11	Hydrocotyle nepalensis	60 27	8333 10833	13 9	
12	Kyllinga brevifolia			9	
	Melilotus indica	40	6667		
13	Persicaria capitata	20	10000	8	
14	Pilea umbrosa	27	8333	8	
15	Pimpinella diversifolia	60	7500	12	
16	Setaria glauca	20	10833	8	
17	Thysanolaena latifolia	13	12500	8	
18	Urena lobata	47	10833	12	
19	Solanum nigrum	53	7500	11	
20	Urtica parviflora	27	13333	10	
			200833		
	Winter				
1	Artemisia nilagirica	17	5000	7	
2	Arthraxon hispidus	53	9167	17	
3	Athyrium angustum	13	10833	11	

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
4	Bidens bipinnata	73	9167	21
5	Commelina benghalensis	20	7500	9
6	Desmodium caudatum	40	6667	13
7	Digitaria ciliaris	33	10000	14
8	Kyllinga brevifolia	13	5833	7
9	Melilotus indica	20	11667	13
10	Persicaria capitata	60	7500	17
11	Pilea umbrosa	27	10833	13
12	Setaria glauca	40	6667	13
13	Solanum nigrum	20	5833	8
14	Thysanolaena latifolia	27	10833	13
15	Urena lobata	60	5833	16
16	Xanthium indicum	20	8333	10
			131667	

Site V20: Parbati HEP- Proposed Project area of Parbati HEP

Table 6.58: Community structure -Site V20 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha ⁻¹)	IVI
1	Alnus nepalensis	30	50	13.52	61
2	Cedrela toona	30	30	3.38	39
3	Celtis australis	10	30	15.68	41
4	Ficus hispida	10	20	2.03	19
5	Juglans regia	10	10	2.16	14
6	Pinus roxburghii	40	60	6.48	64
7	Populus ciliata	10	20	35.28	61
			220		

Table 6.59: Community structure -Site V20 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Ardisia khasiana	10	80	16
2	Arenga saccharifera	10	120	29
3	Boehmeria macrophylla	20	320	24
4	Debregeasia longifolia	20	120	13
5	Hydrangea robusta	30	160	22
6	Leea asiatica	10	40	6
7	Luculia pinceana	20	80	28
8	Maesa chisia	30	240	26
9	Melocalamus compactiflorus	40	1040	71
10	Rubus burkillii	20	160	15
11	Rubus ellipticus	40	360	27
12	Strobilanthes extensa	20	360	24
	Total		3080	

Table 6.60: Community structure -Site V20 (Herbs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Pre Monsoon			
1	Achyranthes aspera	33	9167	10
2	Artemisia nilagirica	75	9333	15
3	Arthraxon lancifolius	33	3667	6
4	Capillipedium assimile	42	6833	10
5	Carex longipes	33	5333	8
6	Drymaria diandra	17	3000	4
7	Elsholtzia strobilifera	25	6000	7

		Frequency	Density	
S.No.	Name of Species	(%)	(ind./ha ⁻¹)	IVI
8	Fimbristylis dichotoma	33	7250	9
9	Girardinia diversifolia	75	9833	16
10	Hydrocotyle nepalensis	67	14833	18
11	Imperata cylindrica	25	4833	6
12	Isachne albens	42	5167	8
13	Lecanthus peduncularis	42	6333	9
14	Mimosa pudica	50	3250	8
15	Molineria capitulata	75	12167	17
16	Oplismenus compositus	33	9333	10
17	Persicaria capitata	33	10250	11
18	Senecio scandens	25	5250	7
19	Setaria glauca	25	3667	5
20	Urena lobata	67	10333	15
20	Orena tobata	07	145833	13
	Managan		143633	
4	Monsoon	25	7500	10
2	Achyranthes aspera	25	7500	10
	Arthurus Inneifalius	25	9167	11
3	Arthraxon lancifolius	8	4167	4
	Capillipedium assimile	17	14167	12
5	Carex filicina	25	6667	10
6	Desmodium caudatum	17	5000	7
7	Drymaria diandra	8	5833	5
8	Elsholtzia strobilifera	17	6667	8
9	Hydrocotyle nepalensis	8	10833	8
10	Isachne albens	25	8333	11
11	Kyllinga brevifolia	25	9167	11
12	Lecanthus peduncularis	25	7500	10
13	Molineria capitulata	25	9167	11
14	Oplismenus compositus	25	5833	9
15	Persicaria capitata	33	9167	13
16	Pilea umbrosa	33	8333	12
17	Senecio scandens	25	10000	12
18	Setaria glauca	33	8333	12
19	Thysanolaena latifolia	17	6667	8
20	Urena lobata	25	5833	9
21	Urtica parviflora	17	5000	7
			163333	
	Winter			
1	Artemisia nilagirica	8	5000	6
2	Arthraxon lancifolius	33	10000	16
3	Capillipedium assimile	17	5000	8
4	Desmodium caudatum	17	7500	10
5	Drymaria diandra	17	6667	9
6	Elsholtzia strobilifera	50	10000	20
7	Fimbristylis dichotoma	25	9167	13
8	Isachne albens	33	8333	15
9	Kyllinga brevifolia	25	6667	11
10	Lecanthus peduncularis	25	5833	11
11	Molineria capitulata	25	9167	13
12	Nepeta ciliaris	17	7500	10
13	Persicaria capitata	25	6667	11
14	Pilea umbrosa	25	5833	11
15	Setaria glauca	33	9167	15
16	Thysanolaena latifolia	33	8333	15
17	Urena lobata	8	4167	5
			125000	

Table 6.61: Community structure -Site V21 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha-1)	IVI
1	Pinus wallichiana	70	200	6.4	111
2	Alnus nepalensis	50	90	1.96	53
3	Rhododendron arboreum	30	40	0.48	25
4	Cedrus deodara	40	70	3.66	54
5	Celtis australis	20	30	3.05	33
6	Litsea umbrosa	20	30	1.77	25
			460		

Table 6.62: Community structure -Site V21 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Boehmeria platyphylla	50	320	56
2	Debregeasia longifolia	50	280	50
3	Berberis lycium	40	280	43
4	Girardinia diversifolia	30	200	26
5	Rabdosia rugosa	30	240	38
6	Rubus ellipticus	30	160	26
7	Zanthoxylum armatum	20	80	25
8	Ricinus communis	10	80	15
9	Arundinaria falconeri	20	120	23
			1760	

Table 6.63: Community structure -Site V21 (Herbs)

	,		D ha-	,
S.No.	Name of Species	F(%)	1	IVI
	Pre Monsoon			
1	Artemisia vulgaris	55	9000	23
2	Rumex hastatus	45	8000	20
3	Chrysopogon fulvus	50	7500	20
4	Anaphalis contorta	40	6500	17
5	Strobilanthes alatus	30	5000	13
6	Lindenbergia grandiflora	35	5500	15
7	Pteridium aquilinum	30	4000	12
8	Urtica dioica	35	4500	13
9	Oxalis corniculata	30	4000	12
10	Thalictrum elegans	25	3500	10
11	Achyranthes bidentata	25	4000	10
12	Centella asiatica	20	3000	8
13	Tagetes minuta	25	4000	10
14	Plantago major	20	3000	8
15	Apluda mutica	20	3500	9
	Total		75000	
	Monsoon			
1	Achyranthes bidentata	13	2667	6
2	Anaphalis contorta	20	2667	8
3	Apluda mutica	27	3333	11
4	Artemisia vulgaris	13	4000	8
5	Aster peduncularis	20	4000	10
6	Bidens pilosa	13	4000	8
7	Centella asiatica	20	3333	9
8	Chrysopogon fulvus	20	4000	10
9	Fragaria nubicola	13	4667	9
10	Gnaphalium affine	13	2667	6
11	Impatiens brachycentra	13	4667	9

			D ha-	
S.No.	Name of Species	F(%)	1	IVI
12	Plantago major	33	6000	15
13	Polygonum glabrum	20	4667	10
14	Pteridium aquilinum	27	5333	13
15	Rumex hastatus	20	3333	9
16	Strobilanthes alatus	27	6667	14
17	Thalictrum elegans	13	5333	9
18	Trifolium repens	20	8000	14
19	Urtica dioica	20	6000	12
20	Verbascum thapsus	13	4000	8
	Total		89333	
	Winter			
1	Achyranthes bidentata	17	4800	12
2	Artemisia vulgaris	25	2400	11
3	Aster peduncularis	33	2700	14
4	Bidens pilosa	25	4000	13
5	Eriophorum comosum	17	4800	12
6	Fragaria nubicola	25	4400	14
7	Gnaphalium affine	17	4200	11
8	Impatiens brachycentra	25	4400	14
9	Lindenbergia grandiflora	17	4800	12
10	Plantago major	8	7200	13
11	Pteridium aquilinum	17	5400	13
12	Rumex hastatus	33	3600	15
13	Strobilanthes alatus	25	3200	12
14	Tagetes minuta	17	3000	9
15	Thalictrum elegans	33	3300	14
16	Trifolium repens	17	4800	12
	Total		67000	

Site V22: Sarbari II HEP: Near Power House Site

Table 6.64: Community structure -Site V22 (Trees)

	rable 0.04. Community structure - Site VZZ (Trees)						
S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha ⁻¹)	IVI		
		(70)	(IIIa./IIa)	(III IIG)			
1	Celtis australis	80	220	12.1	145		
2	Alnus nepalensis	50	80	3.28	58		
3	Aesculus indica	40	60	3.54	49		
4	Pinus wallichiana	30	40	5.52	48		
			400				

Table 6.65: Community structure -Site V22 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Berberis lycium	70	640	104
2	Berberis aristata	50	320	48
3	Boehmeria platyphylla	40	280	47
4	Rubus ellipticus	40	240	32
5	Viburnum grandiflorum	30	200	28
6	Debregeasia longifolia	30	120	19
7	Desmodium elegans	30	160	23
			1960	

Table 6.66: Community structure -Site V22 (Herbs)

ומטופ	rable 6.66. Collinatility structure -site VZZ (Herbs)						
			D ha-				
S.No.	Name of Species	F(%)	1	IVI			
	Pre Monsoon						
1	Rumex hastatus	60	10500	32			
2	Anaphalis contorta	45	8000	24			

			D ha-	
S.No.	Name of Species	F(%)	1	IVI
3	Lindenbergia grandiflora	45	9000	26
4	Eriophorum comosum	35	6000	18
5	Pteridium aquilinum	30	5000	16
6	Chrysopogon fulvus	30	6000	17
7	Artemisia vulgaris	30	4500	15
8	Strobilanthes alatus	25	4000	13
9	Urtica dioica	20	3500	11
10	Oxalis corniculata	20	3000	10
11	Thalictrum elegans	15	3000	9
12	Trifolium pratens	10	1000	4
13	Plantago major	15	2000	7
_	Total		65500	
	Monsoon			
1	Anaphalis contorta	13	2667	7
2	Anemone obtusifolia	27	2667	10
3	Artemisia vulgaris	13	3333	7
4	Bergenia ciliata	13	4000	8
5	Bistorta amplexicaulis	20	5333	11
6	Centella asiatica	13	4667	9
7	Chrysopogon fulvus	13	3333	7
8	Cirsium arvense	27	5333	13
9	Eriophorum comosum	20	4000	10
10	Fagopyrum dibotrys	27	6000	14
11	Fragaria nubicola	27	4667	12
12	Gnaphalium affine	20	5333	11
13	Impatiens brachycentra	13	6000	10
14	Nepeta laevigata	13	4667	9
15	Plantago major	27	4667	12
16	Polygonum glabrum	27	5333	13
17	Pteridium aquilinum	13	4667	9
18	Rumex hastatus	13	4000	8
19	Thalictrum elegans	13	3333	7
20	Urtica dioica	20	4000	10
	Total		88000	
	Winter			
1	Anaphalis contorta	8	2500	7
2	Anemone obtusifolia	17	3333	12
3	Artemisia vulgaris	17	4167	13
4	Bergenia ciliata	8	2500	7
5	Bistorta amplexicaulis	25	6667	21
6	Chrysopogon fulvus	8	4167	10
7	Eriophorum comosum	25	5833	19
8	Gnaphalium affine	17	6667	17
9	Nepeta laevigata	25	5833	19
10	Plantago major	25	6667	21
11	Pteridium aquilinum	17	4167	13
12	Rumex hastatus	17	5833	16
13	Thalictrum elegans	33	5833	23
	Total		64167	

Site V23: Fozal HEP: Near Diversion Site

Table 6.67: Community structure -Site V23 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha ⁻¹)	IVI
1	Asculus indica	50	60	3.14	47
2	Melia azedarach	40	50	0.68	26

76

3	Toona ciliata	30	30	1.06	22
4	Bauhinia variegata	60	120	0.93	46
5	Prunus domestica	20	20	0.32	12
6	Pinus roxburghii	40	40	2.66	37
7	Juglans regia	50	80	3.68	55
8	Pinus roxburghii	60	130	2.04	56
			530		

Table 6.68: Community structure -Site V23 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Desmodium elegans	30	480	48
2	Sarcococca saligna	50	840	88
3	Rhus parviflora	10	40	7
4	Rubus foliolosus	10	120	23
5	Viburnum grandiflorum	30	160	30
6	Rubus ellipticus	20	240	44
7	Indigofera tinctoria	20	120	19
8	Prinsepia utilis	10	80	18
9	Indigofera tinctoria	10	40	24
			2120	

Table 6.69: Community structure -Site V23 (Herbs)

S.No.	Name of Species	F(%)	D ha-1	ÍVI
	Pre Monsoon	` '		· · · · · · · · · · · · · · · · · · ·
1	Fragaria vesca	40	2760	12
2	Trifolium pratense	50	5910	20
3	Stellaria media	60	6940	23
4	Plantago major	30	3600	12
5	Anaphalis busua	40	3980	14
6	Bidens pilosa	40	4770	16
7	Rumex hastatus	50	5090	18
8	Strobilanthes alatus	50	5430	19
9	Pteridium aquilinum	40	3580	14
10	Oxalis corniculata	50	4760	18
11	Arundinella nepalensis	40	4540	15
12	Arisaema jacquemontii	50	5770	19
	Total		57130	
	Monsoon			
1	Achyranthes bidentata	20	4000	9
2	Ajuga parviflora	13	2667	6
3	Anaphalis contorta	20	5333	10
4	Arisaema concinnum	27	4667	11
5	Artemisia vulgaris	33	6000	14
6	Aster peduncularis	27	6000	13
7	Bidens pilosa	20	4667	10
8	Bistorta amplexicaulis	20	6000	11
9	Chenopodium album	13	4667	8
10	Chrysopogon fulvus	27	6000	13
11	Fragaria nubicola	27	8667	15
12	Impatiens brachycentra	20	4000	9
13	Nepeta laevigata	40	8000	18
14	Plantago major	27	6000	13
15	Pteridium aquilinum	20	6667	12
16	Rumex hastatus	13	3333	7
17	Thalictrum elegans	33	4667	13
18	Trifolium repens	13	6000	9
	Total		97333	
	Winter			
1	Anaphalis busua	33	5000	17
2	Anemone obtusifolia	33	5833	18

S.No.	Name of Species	F(%)	D ha-1	IVI
3	Artemisia capillaris	33	6667	19
4	Arundinella nepalensis	33	5833	18
5	Aster peduncularis	17	4167	11
6	Bidens pilosa	33	6667	19
7	Nepeta laevigata	42	9167	25
8	Pteridium aquilinum	25	7500	18
9	Rumex hastatus	42	5000	19
10	Themeda triandra	33	5833	18
11	Trifolium pratense	25	7500	18
	Total		69167	

Site V24: Sharni HEP: Proposed project area near Sharni Village

Table 6.70: Community structure -Site V24 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha-1)	IVI
1	Pinus wallichiana	60	140	7.56	92
2	Alnus nepalensis	50	80	2.88	52
3	Cedrus deodara	40	60	2.88	44
4	Albizia lebbeck	30	50	2.2	34
5	Melia azedarach	30	50	2.1	34
6	Toona ciliata	30	60	3.96	44
		240	440	21.58	300

Table 6.71: Community structure -Site V24 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Berberis aristata	60	560	97
2	Colebrookea oppositifolia	50	360	59
3	Rabdosia rugosa	40	280	43
4	Rosa brunei	50	320	48
5	Boehmeria platyphylla	30	200	35
6	Rubus ellipticus	20	120	18
		250	1840	300

Table 6.72: Community structure -Site V24 (Herbs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha- 1)	IVI
	Pre Monsoon	()	- ,	
1	Rumex hastatus	70	11500	31
2	Anaphalis contorta	50	8500	22
3	Chrysopogon fulvus	40	8000	20
4	Lindenbergia grandiflora	40	7000	18
5	Artemisia vulgaris	35	5500	15
6	Tagetes minuta	25	4000	11
7	Strobilanthes alatus	30	4500	13
8	Urtica dioica	30	4000	12
9	Oxalis corniculata	25	4500	12
10	Eriophorum comosum	15	2500	7
11	Achyranthes bidentata	25	4000	11
12	Polygonum nepalensis	20	4000	10
13	Apluda mutica	15	3500	8
14	Pteridium aquilinum	10	2000	5
15	Thalictrum elegans	15	2500	7
		445	76000	
	Monsoon			
1	Agrostis munroan	20	3333	9
2	Anaphalis contorta	13	4000	8

S.No.	Name of Species	Frequency (%)	Density (ind./ha-	IVI
3	Apluda mutica	20	4667	10
4	Aster peduncularis	20	4000	10
5	Bergenia ciliata	20	5333	11
6	Bistorta amplexicaulis	27	6000	13
7	Chrysopogon fulvus	27	6667	14
8	Cirsium arvense	27	8000	16
9	Gnaphalium affine	20	6000	12
10	Impatiens brachycentra	27	7333	15
	Lindenbergia			
11	grandiflora	13	6000	10
12	Nepeta laevigata	20	6667	12
13	Pteridium aquilinum	13	8000	12
14	Rumex hastatus	13	6667	10
15	Tagetes minuta	20	7333	13
16	Thalictrum elegans	27	4667	12
17	Urtica dioica	33	4000	13
	Total		98667	
	Winter			
1	Agrostis munroan	25	3333	15
2	Anaphalis contorta	8	4167	10
3	Bergenia ciliata	25	5000	18
4	Bistorta amplexicaulis	25	4167	17
5	Cirsium arvense	25	5833	19
6	Gnaphalium affine	33	8333	27
	Lindenbergia			
7	grandiflora	25	5000	18
8	Nepeta laevigata	17	4167	13
9	Pteridium aquilinum	25	6667	21
10	Rumex hastatus	17	3333	12
11	Tagetes minuta	17	6667	17
12	Thalictrum elegans	17	4167	13
			60833	

Site V25: Sarsadi HEP: Proposed project area near Sarsadi Village

Table 6.73: Community structure -Site V25 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	Basal Cover (m²ha-1)	IVI
1	Pinus wallichiana	60	180	3.52	87
2	Cedrus deodara	50	80	6.72	79
3	Alnus nepalensis	40	70	1.43	41
4	Aesculus indica	30	50	2.8	41
5	Bauhinia variegata	20	30	0.35	17
6	Pinus roxburghii	30	40	2.2	35
			450		

Table 6.74: Community structure -Site V25 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha-1)	IVI
1	Sarcococca saligna	70	560	2.16	85
2	Zanthoxylum armatum	50	320	0.37	36
3	Rabdosia rugosa	40	280	0.72	38
4	Berberis aristata	40	240	0.49	32
5	Rubus ellipticus	30	200	0.31	24
6	Boehmeria platyphylla	40	240	1.01	41
7	Viburnum grandiflorum	30	120	0.31	20
8	Girardinia diversifolia	20	120	0.08	13
9	Prinsepia utilis	20	80	0.18	13
			2160		

Table 6.75: Community structure -Site V25 (Herbs)

Table 6.75: Community structure -Site V25 (Herbs)						
		Frequency	Density (ind./ha-			
S.No.	Name of Species	(%)	1)	IVI		
	Pre Monsoon					
1	Tagetes minuta	60	13000	38		
2	Anaphalis contorta	50	8000	27		
3	Rumex hastatus	45	7000	24		
4	Chrysopogon fulvus	35	5500	19		
5	Strobilanthes alatus	35	5000	18		
6	Artemisia vulgaris	30	4000	15		
	Lindenbergia	20	E000	47		
7	grandiflora	30	5000	17		
8	Pteridium aquilinum	20	2000	9		
9	Urtica dioica	15	2500	8		
10	Bidens pilosa	20	3000	11		
11	Polygonum nepalensis	15	2500	8		
12	Apluda mutica	10	1500	5		
12	Aptudu Mucieu	10	59000	-		
	Monsoon		3,000	1		
1	Ajuga parviflora	27	4000	11		
2	Anaphalis contorta	13	5333	9		
3						
	Apluda mutica	33 27	6000	14		
4	Artemisia vulgaris		4667	11		
5	Aster peduncularis	20	5333	10		
6	Bergenia ciliata	13	4667	8		
7	Bidens pilosa	27	8000	15		
8	Bistorta amplexicaulis	20	5333	10		
9	Chrysopogon fulvus	13	6667	10		
10	Cyperus rotundus	27	6000	13		
11	Heteropogon contortus	20	4667	10		
12	Poa annua	20	7333	12		
13	Polygonum nepalensis	20	4000	9		
14	Pteridium aquilinum	20	8000	13		
15	Rumex hastatus	27	4667	11		
16	Tagetes minuta	33	6000	14		
17	Thalictrum elegans	27	4000	11		
18	Urtica dioica	20	4667	10		
	Total		99333			
	Winter					
1	Ajuga parviflora	33	2700	15		
2	Anaphalis contorta	17	4800	14		
3	Artemisia vulgaris	17	3000	11		
4	Aster peduncularis	8	3600	9		
5	Bergenia ciliata	25	3200	14		
6	Bidens pilosa	8	8400	17		
	Bistorta amplexicaulis	25	3600	14		
7				17		
8	Cyperus rotundus	33	3600			
9	Heteropogon contortus	33	2700	15		
10	Poa annua	25	5200	17		
11	Pteridium aquilinum	25	4400	16		
12	Rumex hastatus	17	4200	13		
13	Tagetes minuta	25	3200	14		
14	Thalictrum elegans	17	5400	15		
			58000			

Site V26: Sarsadi II HEP: Proposed project area near Sarsadi Village

Table 6.76: Community structure -Site V20 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m ² ha ⁻¹)	IVI
1	Aesculus indica	60	140	4.84	76
2	Alnus nepalensis	50	80	2.12	46
3	Juglans regia	30	30	2.96	33
3	Cupressus torulosa	40	60	1.52	35
4	Celtis australis	30	60	3.76	43
5	Cedrus deodara	30	50	0.852	26
6	Prunus domestica	20	40	0.87	20
7	Pinus roxburghii	20	30	1.5	21
			490		

Table 6.77: Community structure -Site V26 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha-1)	IVI
1	Indigofera tinctoria	60	480	1.38	56
2	Sarcococca saligna	50	400	1.4	50
3	Berberis aristata	50	320	1.02	41
4	Boehmeria platyphylla	40	240	0.92	34
5	Rabdosia rugosa	40	200	0.41	25
6	Girardinia diversifolia	30	200	0.16	19
7	Viburnum grandiflorum	30	160	0.37	20
8	Rubus ellipticus	40	200	0.41	25
9	Ricinus communis	20	80	0.37	14
10	Prinsepia utilis	20	80	0.46	15
		380	2360	6.9	300

Table 6.78: Community structure -Site V26 (Herbs)

C No	Name of Species	Frequency	Density (ind./ha-	IVI	
S.No.	Name of Species	(%)	1)	IVI	
	Pre Monsoon	, ,	,		
1	Chenopodium album	10	2000	5	0.03
2	Plantago major	20	3500	9	0.05
3	Pteridium aquilinum	25	3500	10	0.05
4	Thalictrum elegans	25	3500	10	0.05
5	Achyranthes bidentata	25	4000	11	0.05
6	Bidens pilosa	30	4000	12	0.05
7	Oxalis corniculata	30	4000	12	0.05
8	Strobilanthes alatus	35	4500	13	0.06
9	Chrysopogon fulvus	35	5000	14	0.07
10	Artemisia vulgaris	35	5500	15	0.07
11	Rumex hastatus	45	7000	19	0.09
	Lindenbergia	45	8000	20	
12	grandiflora	43	8000	20	0.11
13	Eriophorum comosum	50	8500	22	0.11
14	Anaphalis contorta	65	11500	29	0.15
	Total		74500		
	Monsoon				
1	Achyranthes bidentata	20	4000	9	0.04
2	Ajuga parviflora	13	2667	6	0.03
3	Anaphalis contorta	20	5333	10	0.05
4	Arisaema concinnum	27	4667	11	0.05
5	Artemisia vulgaris	33	6000	14	0.06
6	Aster peduncularis	27	6000	13	0.06
7	Bidens pilosa	20	4667	10	0.05
8	Bistorta amplexicaulis	20	6000	11	0.06
9	Chenopodium album	13	4667	8	0.05
10	Chrysopogon fulvus	27	6000	13	0.06
11	Fragaria nubicola	27	8667	15	0.09
12	Impatiens brachycentra	20	4000	9	0.04
13	Nepeta laevigata	40	8000	18	0.08
14	Plantago major	27	6000	13	0.06

S.No.	Name of Species	Frequency (%)	Density (ind./ha- 1)	IVI	
15	Pteridium aquilinum	20	6667	12	0.07
16	Rumex hastatus	13	3333	7	0.03
17	Thalictrum elegans	33	4667	13	0.05
18	Trifolium repens	13	6000	9	0.06
	Total		97333		
	Winter				
1	Achyranthes bidentata	25	5000	16	0.07
2	Anaphalis contorta	17	3333	10	0.05
3	Artemisia vulgaris	25	6667	18	0.09
4	Bidens pilosa	33	5833	20	0.08
5	Bistorta amplexicaulis	42	7500	25	0.11
6	Chrysopogon fulvus	17	5000	13	0.07
7	Impatiens brachycentra	25	5833	17	0.08
8	Nepeta laevigata	25	7500	19	0.11
9	Pteridium aquilinum	17	5833	14	0.08
10	Rumex hastatus	33	7500	22	0.11
11	Thalictrum elegans	33	10833	27	0.15
			70833		

Site V27: Hurla HEP: Proposed Project area of Hurla HEP

Table 6.79: Community structure -Site V27 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha-1)	IVI
1	Aesculus indica	20	15	28.88	25
2	Alnus nepalensis	20	35	64.98	50
3	Betula alnoides	30	23	2.16	16
4	Toona ciliata	30	30	27.38	31
5	Celtis australis	20	20	15.68	20
6	Juglans regia	30	30	33.62	35
7	Morus australis	20	20	2.00	12
8	Populus ciliata	10	10	1.62	6
9	Pinus roxburghii	30	120	5.78	41
10	Pyrus communis	20	40	0.82	16
11	Quercus leucotrichophora	40	40	2.88	24
12	Rhus succedanea	40	40	0.72	23
			423		

Table 6.80: Community structure -Site V27 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Artemisia nilagirica	40	500	22
2	Berberis lycium	20	200	15
3	Cannabis sativa	60	700	27
4	Chenopodium	40	800	23
5	Desmodium gangeticum	50	500	27
6	Girardinia diversifolia	60	600	27
7	Pyracantha crenulata	40	400	21
8	Rhamnus triquetra	30	300	22
9	Rosa brunonii	30	300	19
10	Sinarundinaria falcata	50	500	30
11	Viburnum mullaha	20	200	43
12	Zanthoxylum armatum	20	200	26
			5200	

Table 6.81: Community structure -Site V27 (Herbs)

S. No.	Plants	Frequency (%)	Density (ind.ha-1)	IVI
	Pre Monsoon			

82

S. No.	Plants	Frequency (%)	Density (ind.ha-1)	IVI
1	Achyranthes asper	25	4167	7.50
2	Anaphalis contorta	30	10000	14
3	Andropogon ischaemum	50	7500	14
4	Bistorta macrophylla	80	6667	18
5	Bupleurum hamiltonii	30	9167	13
6	Fagopyrum esculentum	80	6667	18
7	Fragaria nubicola	50	9167	16
8	Gnaphalium hypoleucum	50	10833	17
9	Impatiens bicolor	80	12500	23
10	Mentha longifolia	70	6667	16
11	Poa pratensis	60	11667	20
12	Pilea scripta	80	13333	24
			108333	
	Monsoon			
1	Achyranthes asper	25	13333	18
2	Anaphalis contorta	25	4167	10
3	Andropogon ischaemum	17	8333	11
4	Bupleurum hamiltonii	25	7500	13
5	Cyperus niveus	33	10000	17
6	Fagopyrum esculentum	33	7500	15
7	Fragaria nubicola	25	9167	14
8	Gnaphalium hypoleucum	25	6667	12
9	Lilium giganteum	33	5833	14
10	Mentha longifolia	25	12500	17
11	Poa pratensis	17	10000	13
12	Potentilla nepalensis	33	6667	15
13	Rumex nepalensis	25	8333	14
14	Tagetes erecta	17	4167	8
15	Vicoa biflora	8	8333	9
	Total		122500	
	Winter			
1	Achyranthes asper	25	7500	18
2	Anaphalis contorta	25	6667	17
3	Andropogon ischaemum	17	5000	12
4	Cyperus niveus	25	7500	18
5	Fagopyrum esculentum	33	10000	24
6	Fragaria nubicola	33	8333	22
7	Gnaphalium hypoleucum	25	5833	16
8	Mentha longifolia	25	6667	17
9	Poa pratensis	33	8333	22
10	Rumex nepalensis	25	7500	18
11	Tagetes erecta	17	10000	18
		283	83333	200

Site V28: Sainj HEP: Upstream of Dam site

Table 6.82: Community structure -Site V28 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha-1)	IVI
1	Albizia julibrissin	30	30	6.48	19
2	Alnus nepalensis	40	40	35.28	51
3	Boehmeria rugulosa	50	50	6.48	27
4	Celtis australis	30	30	13.52	26
5	Ficus oligodon	30	40	0.98	15
6	Juglans regia	20	20	21.78	30
7	Morus australis	40	40	1.62	18
8	Neolitsea chinense	20	20	1.28	10
9	Phoebe lanceolata	20	20	0.98	9
10	Populus ciliata	50	50	1.28	22
11	Prunus armeniaca	40	40	1.28	18

83

12	Pyrus pashia	40	60	1.28	22
13	Pinus roxburghii	50	60	9.68	32
			500		

Table 6.83: Community structure -Site V28 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Artemisia nilagirica	60	900	27
2	Berberis lycium	50	500	26
3	Cannabis sativa	60	700	22
4	Chenopodium	70	1000	29
5	Desmodium gangeticum	60	700	30
6	Girardinia diversifolia	70	800	26
7	Rhamnus triquetra	30	400	24
8	Sinarundinaria falcata	70	1200	39
9	Solanum surattense	60	700	27
10	Viburnum mullaha	30	400	50
			7300	

Table 6.84: Community structure -Site V28 (Herbs)

	able 6.84: Community stri	Frequency	Density	
S.No.	Name of Species	(%)	(ind./ha ⁻¹)	IVI
1	Achyranthes asper	8	2500	6
2	Anaphalis contorta	33	12500	25
3	Andropogon ischaemum	33	11667	24
4	Cymbopogon martini	25	13333	23
5	Fagopyrum esculentum	25	4167	14
6	Impatiens bicolor	17	8333	15
7	Mentha longifolia	25	5833	15
8	Poa pratensis	25	9167	19
9	Pilea scripta	25	20000	30
10	Rumex nepalensis	33	8333	21
11	Tagetes erecta	17	2500	9
	3		98333	
	Monsoon			
1	Achyranthes asper	17	8333	13
2	Anaphalis contorta	33	9167	19
3	Fagopyrum esculentum	25	2500	10
4	Fragaria nubicola	25	9167	17
5	Impatiens bicolor	25	4167	12
6	Inula cappa	33	11667	22
7	Gnaphalium hypoleucum	25	8333	16
8	Mentha longifolia	17	11667	16
9	Oxalis corniculata	25	7500	15
10	Pilea scripta	17	5000	10
11	Poa pratensis	33	10833	21
12	Rumex nepalensis	17	5833	11
13	Tagetes erecta	25	10000	17
			104167	
	Winter			
1	Achyranthes asper	17	6667	15
2	Anaphalis contorta	42	9167	29
3	Fagopyrum esculentum	17	5000	13
4	Inula cappa	25	8333	21
5	Mentha longifolia	17	5833	14
6	Oxalis corniculata	42	9167	29
7	Pilea scripta	25	8333	21
8	Poa pratensis	33	10000	27

9	Rumex nepalensis	25	9167	22
10	Tagetes erecta	8	4167	9
			75833	

Site V29: Sainj HEP: Near Power House Site

Table 6.85: Community structure -Site V29 (Trees)

S.No.	Name of Cassies	Frequency	Density	TBC	IVI
	Name of Species	(%)	(ind./ha ⁻¹)	(m^2ha^{-1})	171
1	Albizia julibrissin	30	30	4.5	48
2	Toona ciliata	40	40	3.38	49
3	Ficus hispida	50	50	2.00	49
4	Juglans regia	20	20	2.16	27
5	Populus ciliata	50	50	1.62	46
6	Pinus roxburghii	50	50	1.28	44
7	Pyrus pashia	30	30	2.42	36
			270		

Table 6.86: Community structure -Site V29 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Artemisia nilagirica	70	800	26
2	Berberis lycium	20	200	17
3	Cannabis sativa	60	700	20
4	Chenopodium album	70	1100	29
5	Clematis connata	70	700	28
6	Desmodium gangeticum	60	800	31
7	Girardinia diversifolia	60	600	21
8	Hypericum patulum	40	400	17
9	Rubus ellipticus	40	500	21
10	Solanum surattense	50	700	24
11	Spermadictyon suaveolens	60	600	23
12	Zanthoxylum armatum	30	300	43
			7400	

Table 6.87: Community structure -Site V29 (Herbs)

6 11	Name of County Struc	Frequency	Density	
S.No.	Name of Species	(%)	(ind./ha ⁻¹)	IVI
	Pre Monsoon	,	, , , , , , , , , , , , , , , , , , ,	
1	Achyranthes asper	25	9167	20
2	Andropogon ischaemum	25	10000	21
3	Cymbopogon martini	33	11667	27
4	Cyprus niveus	25	7500	18
5	Cynodon dactylon	33	10000	25
6	Oxalis corniculata	33	7500	22
7	Pogonatherum sacchaoidon	25	9167	20
8	Rumex nepalensis	33	6667	21
9	Tagetes erecta	33	10833	26
			82500	
	Monsoon			
1	Achyranthes asper	25	6667	16
2	Andropogon ischaemum	33	5833	18
3	Cynodon dactylon	25	12500	22
4	Fagopyrum esculentum	17	10000	16
5	Fragaria nubicola	17	4167	10
6	Impatiens bicolor	8	8333	11
7	Oxalis corniculata	25	12500	22
8	Pilea scripta	33	6667	19
9	Pogonatherum sacchaoidon	25	8333	17
10	Rumex nepalensis	17	6667	13
11	Tagetes erecta	17	10000	16
12	Vicoa biflora	33	7500	20
			99167	
	Winter			
1	Achyranthes asper	25	8333	20
2	Andropogon ischaemum	33	10000	26
3	Fagopyrum esculentum	25	7500	19
4	Impatiens bicolor	17	5833	14
5	Pilea scripta	17	9167	18
6	Pogonatherum sacchaoidon	42	13333	33
7	Rumex nepalensis	25	14167	27
8	Tagetes erecta	33	11667	28
9	Vicoa biflora	17	5833	14
			85833	

Table 6.88: Community structure -Site V30 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha ⁻¹)	IVI
1	Aesculus indica	70	80	28.88	50
2	Alnus nepalensis	70	80	64.98	73
3	Betula alnoides	40	40	2.16	18
4	Boehmeria rugulosa	40	40	2.00	18
5	Toona ciliata	70	80	27.38	49
6	Celtis australis	60	70	15.68	38
7	Populus ciliata	30	30	13.52	21
8	Pyrus communis	20	20	0.98	9
9	Rhus succedanea	50	50	1.28	22
			490		

Table 6.89: Community structure -Site V30 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Artemisia nilagirica	40	500	22
2	Berberis lycium	20	200	15
3	Cannabis sativa	60	600	27
4	Chenopodium	40	600	23
5	Desmodium gangeticum	50	500	27
6	Girardinia diversifolia	60	600	27
7	Pyracantha crenulata	40	400	21
8	Rhamnus triquetra	30	300	22
9	Rosa brunonii	30	300	19
10	Sinarundinaria falcata	50	500	30
11	Viburnum mullaha	20	200	43
12	Zanthoxylum armatum	20	200	26
•			4900	

Table 6.90: Community structure -Site V30 (Herbs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Pre Monsoon			
1	Achyranthes asper	25	5000	10
2	Anaphalis contorta	17	4167	8
3	Andropogon ischaemum	17	7500	10
4	Bistorta macrophylla	17	5833	9
5	Bupleurum hamiltonii	8	10000	10
6	Delphinium denudatum	25	15833	19
7	Fagopyrum esculentum	33	7500	15
8	Fragaria nubicola	25	6667	12
9	Geranium nepalense	33	5833	13
10	Gnaphalium hypoleucum	25	12500	16
11	Impatiens bicolor	17	10000	12
12	Inula cappa	33	6667	14
13	Mentha longifolia	25	4167	10
14	Poa pratensis	17	10833	13
15	Pilea scripta	33	7500	15
16	Vicoa biflora	33	5833	13
			125833	
	Monsoon			
1	Achyranthes asper	25	9167	12
2	Anaphalis contorta	33	12500	16
3	Andropogon ischaemum	17	7500	9
4	Carex filicina	25	4167	9
5	Delphinium denudatum	33	12500	16

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
6	Drymaria diandra	25	5000	9
7	Fagopyrum esculentum	33	8333	13
8	Fragaria nubicola	25	5000	9
9	Conyza stricta	25	8333	11
10	Gnaphalium hypoleucum	25	5833	10
11	Impatiens bicolor	33	10833	15
12	Inula cappa	25	7500	11
13	Kyllinga brevifolia	17	10000	11
14	Mentha longifolia	25	10833	13
15	Poa pratensis	17	8333	9
16	Senecio scandens	17	6667	8
17	Tagetes erecta	8	5833	6
18	Vicoa biflora	25	10000	13
			148333	
	Winter			
1	Achyranthes asper	33	10833	19
2	Anaphalis contorta	42	13333	24
3	Carex filicina	25	9167	15
4	Conyza stricta	17	5833	10
5	Delphinium denudatum	50	12500	25
6	Fagopyrum esculentum	25	6667	13
7	Gnaphalium hypoleucum	33	10000	18
8	Impatiens bicolor	17	6667	11
9	Kyllinga brevifolia	25	10000	16
10	Mentha longifolia	25	7500	14
11	Poa pratensis	42	10833	22
12	Tagetes erecta	17	8333	12
			111667	

Site V31: Parbati III HEP: Downstream of Diversion Site

Table 6.91: Community structure -Site V31 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha ⁻¹)	IVI
1	Albizia julibrissin	30	30	6.48	26
2	Alnus nepalensis	40	40	35.28	69
3	Celtis australis	30	30	13.52	35
4	Morus australis	40	40	1.62	25
5	Neolitsea chinense	30	40	5.78	28
6	Phoebe lanceolata	20	20	0.98	13
7	Populus ciliata	50	50	1.28	30
8	Pyrus pashia	40	60	1.28	30
9	Pinus roxburghii	50	60	9.68	44
			370		

Table 6.92: Community structure -Site V31 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Artemisia nilagirica	60	900	27
2	Berberis lycium	50	500	26
3	Cannabis sativa	60	700	22
4	Chenopodium	70	200	29
5	Desmodium gangeticum	60	700	30
6	Girardinia diversifolia	70	800	26
7	Rhamnus triquetra	30	400	24
8	Sinarundinaria falcata	70	1200	39
9	Solanum surattense	60	700	27
10	Viburnum mullaha	30	400	50
			6500	

Table 6.93: Community structure -Site V31 (Herbs)

	Table 6.93: Community structure -Site V31 (Herbs)						
S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI			
	Pre Monsoon						
1	Achyranthes asper	33	10000	19			
2	Anaphalis contorta	25	10833	18			
3	Andropogon ischaemum	25	6667	14			
4	Cymbopogon citratus	17	7500	12			
5	Fagopyrum esculentum	33	8333	18			
6	Geranium nepalense	33	11667	21			
7	Impatiens bicolor	25	8333	15			
8	Mentha longifolia	17	4167	9			
9	Poa pratensis	8	8333	10			
10	Pilea scripta	25	12500	19			
11	Rumex nepalensis	33	6667	16			
12	Tagetes erecta	25	8333	15			
13	Urtica dioica	25	5833	13			
			109167				
	Monsoon						
1	Achyranthes asper	25	10000	14			
2	Andropogon ischaemum	33	9167	15			
3	Fagopyrum esculentum	17	5833	9			
4	Impatiens bicolor	33	7500	14			
5	Inula cappa	42	8333	17			
6	Mentha longifolia	33	10833	17			
7	Conyza stricta	42	9167	17			
8	Oxalis corniculata	25	6667	11			
9	Pilea scripta	33	11667	17			
10	Poa pratensis	25	10000	14			
11	Pogonatherum sacchaoidon	17	6667	9			
12	Rumex nepalensis	17	7500	10			
13	Tagetes erecta	25	9167	13			
14	Tripogon filiformis	25	7500	12			
15	Vicoa biflora	25	5833	11			
13	Vicou bijtoru	23	125833	- ' '			
	Winter		123033				
1	Achyranthes asper	25	8333	16			
2	Anaphalis contorta	33	9167	19			
3	Andropogon ischaemum	17	6667	12			
4	Conyza stricta	33	8333	18			
5	Fagopyrum esculentum	42	9167	22			
6	Impatiens bicolor	17	5833	11			
7	Inula cappa	42	9167	22			
8	Mentha longifolia	25	7500	15			
9	Oxalis corniculata	17	5833	11			
10	Pilea scripta	25	10000	18			
11	Poa pratensis	17	7500	13			
12	Rumex nepalensis	8	4167	7			
13	Tagetes erecta	25	10000	18			
13	rugetes erectu	23	101667	10			
			101007				

Site V32: Parbati III HEP: Near Power House Site

Table 6.94: Community structure -Site V32 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha-1)	IVI
1	Albizia julibrissin	30	30	4.5	49
2	Toona ciliata	20	40	3.38	42
3	Ficus hispida	50	50	2.00	50
4	Juglans regia	20	20	2.16	28

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha ⁻¹)	IVI
5	Populus ciliata	50	50	1.62	48
6	Pinus roxburghii	50	50	1.28	46
7	Pyrus pashia	30	30	2.42	37
			270		

Table 6.95: Community structure -Site V32 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Artemisia nilagirica	70	800	26
2	Berberis lycium	20	200	17
3	Cannabis sativa	60	700	20
4	Chenopodium	70	500	29
5	Viburnum mullaha	70	700	28
6	Desmodium gangeticum	60	800	31
7	Girardinia diversifolia	60	600	21
8	Hypericum patulum	40	400	17
9	Rubus ellipticus	40	500	21
10	Solanum surattense	50	700	24
11	Spermadictyon suaveolens	60	600	23
12	Zanthoxylum armatum	30	300	43
			6800	

Table 6.96: Community structure -Site V32 (Herbs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Pre Monsoon	(%)	(IIIu./IIa)	
1	Achyranthes asper	17	7500	13
2	Andropogon ischaemum	25	10833	19
3	Cymbopogon martini	25	6667	15
4	Cyprus	25	8333	17
5	Cynodon dactylon	50	14167	31
6	Ipomea nil	25	7500	16
7	Oxalis corniculata	17	6667	12
8	Pogonatherum sacchaoidon	17	10000	15
9	Rumex nepalensis	8	10833	13
10	Tagetes erecta	42	22500	35
11	Tripogon filiformis	25	6667	15
			111667	
	Monsoon			
1	Achyranthes asper	33	9167	17
2	Andropogon ischaemum	25	7500	13
3	Carex filicina	33	12500	20
4	Conyza stricta	25	6667	13
5	Cyperus squarrosus	17	11667	14
6	Ipomea nil	33	9167	17
7	Oxalis corniculata	25	8333	14
8	Pogonatherum sacchaoidon	33	7500	16
9	Rumex nepalensis	17	15000	17
10	Pilea scripta	33	8333	17
11	Tagetes erecta	25	10833	16
12	Tripogon filiformis	17	6667	10
13	Vicoa biflora	25	10000	15
			123333	
	Winter			
1	Achyranthes asper	33	9167	20
2	Andropogon ischaemum	17	7500	13
3	Carex filicina	33	11667	23

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
4	Cyperus squarrosus	25	8333	17
5	Fagopyrum esculentum	17	10833	16
6	Oxalis corniculata	33	8333	20
7	Pilea scripta	25	9167	18
8	Poa pratensis	33	11667	23
9	Rumex nepalensis	17	8333	14
10	Tagetes erecta	33	7500	19
11	Tripogon filiformis	25	10000	18
		292	102500	

Site V33: Lambadug HEP: Downstream of Diversion Site

Table 6.97: Community structure -Site V33 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha ⁻¹)	IVI
1	Salix tetrasperma	10	10	2.83	7
2	Fraxinus excelsior	20	30	12.08	18
3	Robinia pseudoacacia	10	30	3.77	11
4	Cedrus deodara	40	60	14.19	33
5	Picea smithiana	30	60	112.81	58
6	Abies pindrow	40	70	104.18	62
7	Pinus wallichiana	90	230	85.09	110
			490		

Table 6.98: Community structure -Site V33 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Berberis lycium	10	120	40
2	Rubus niveus	30	160	52
3	Juniperus communis	20	180	58
4	Rosa webbiana	30	320	84
5	Spiraea sorbifolia	30	320	66
			1100	

Table 6.99: Community structure -Site V33 (Herbs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Pre Monsoon			
1	Axyris hybrida	42	15000	36
2	Argemone mexicana	25	17500	30
3	Fragaria vasica	33	15833	32
4	Gerardiana heterophylla	42	18333	39
5	Carex obscura	33	14167	31
6	Ranunculus arvensis	33	15833	32
			96667	
	Monsoon			
1	Achyranthes bidentata	33	13333	23
2	Argemone mexicana	42	10833	23
3	Axyris hybrida	33	12500	22
4	Centella asiatica	8	11667	13
5	Chrysopogon fulvus	25	8333	16
6	Fragaria vasica	33	9167	19
7	Gerardiana heterophylla	33	7500	18
8	Gnaphalium affine	33	12500	22
9	Pteridium aquilinum	25	8333	16
10	Ranunculus arvensis	17	7500	12
11	Strobilanthes alatus	25	9167	16

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
			110833	
	Winter			
1	Achyranthes bidentata	33	12500	29
2	Argemone mexicana	8	11667	17
3	Centella asiatica	25	8333	20
4	Chrysopogon fulvus	33	9167	25
5	Fragaria vasica	33	7500	23
6	Gerardiana heterophylla	33	12500	29
7	Pteridium aquilinum	25	8333	20
8	Ranunculus arvensis	17	7500	16
9	Rumex hastatus	25	8333	20
			85833	

Site V34: Uhl I HEP: Upstream of Barrage Site

Table 6.100: Community structure -Site V34 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha ⁻¹)	IVI
1	Malus baccata	20	20	14.17	20
2	Toona ciliata	20	20	7.05	16
3	Bauhinia variegata	20	40	4.07	18
4	Cedrus deodara	30	40	23.49	33
5	Pinus wallichiana	30	40	82.13	64
6	Robinia pseudoacacia	40	60	5.36	31
7	Juglans regia	90	290	49.05	119
•			510		

Table 6.101: Community structure -Site V34 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Ephedra vulgaris	20	100	34
2	Gerardiana heterophylla	20	200	52
3	Rosa webbiana	20	200	47
4	Desmodium ovalifolium	30	240	45
5	Sorbaria tomentosa	10	320	39
6	Lonicera quinquelocularis	50	460	82
	Total		1520	

Table 6.102: Community structure -Site V34 (Herbs)

S.No.	Species	Frequency%	Density (Ha-1)	
	Monsoon			
1	Ranunculus pulchellus	25	12500	24
2	Saxifraga diversifolia	25	15833	27
3	Bromus gracillimus	17	20833	28
4	Ricinus communis	33	15000	31
5	Carex obscura	42	12500	32
6	Cotoneaster bacillaris	33	15000	31
7	Caltha palustris	25	15833	27
			107500	
	Pre Monsoon			
1	Bromus gracillimus	17	10833	16
2	Caltha palustris	33	9167	20
3	Carex obscura	33	12500	23
4	Centella asiatica	17	8333	14
5	Lindenbergia grandiflora	42	11667	26
6	Plantago major	25	13333	21
7	Pteridium aquilinum	25	8333	17
8	Ranunculus pulchellus	33	15833	27

S.No.	Species	Frequency%	Density (Ha-1)	
9	Ricinus communis	33	9167	20
10	Thalictrum elegans	17	10833	16
			110000	
	Winter			
1	Bromus gracillimus	25	11667	23
2	Carex obscura	33	11667	27
3	Centella asiatica	25	12500	24
4	Lindenbergia grandiflora	50	14167	37
5	Rumex hastatus	42	11667	30
6	Ranunculus pulchellus	25	13333	25
7	Ricinus communis	25	8333	20
8	Thalictrum elegans	17	5833	13
			89167	

Site V35: Uhl HEP: Proposed Diversion Site

Table 6.103: Community structure -Site V35 (Trees)

S.No.	Name of Species	Frequency	Density	TBC	IVI
3.NO. Name of	Name of Species	(%)	(ind./ha ⁻¹)	(m²ha ⁻¹)	171
1	Bauhinia variegata	20	20	1.37	17
2	Populus ciliata	20	20	3.05	19
3	Toona ciliata	20	20	5.05	21
4	Juglans regia	20	30	50.0	71
5	Salix tetrasperma	20	30	1.08	20
6	Pinus wallichiana	40	70	13.67	55
7	Prunus americana	40	70	2.89	44
8	Celtis australis	20	80	17.92	52
			340		

Table 6.104: Community structure -Site V35 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Juniperus communis	20	260	46
2	Berberis lycium	20	280	42
3	Viburnum cotinifolium	30	340	38
4	Sorbaria tomentosa	40	460	89
5	Rosa webbiana	30	840	86
			2180	

Table 6.105: Community structure -Site V35 (Herbs)

S.No.	Species	Frequency%	Density (Ha-1)	IVI
	Monsoon			
1	Ricinus communis	33	14167	33
2	Desmodium tiliaefolium	42	11667	34
3	Rumex hastatus	25	13333	28
4	Saxifraga diversifolia	25	24167	41
5	Cotoneaster bacillaris	50	11667	39
6	Girardinia heterophylla	25	10833	25
			85833	
	Pre Monsoon			
1	Axyris hybrida	25	10833	19
2	Caltha palustris	50	15833	32
3	Carex obscura	25	11667	20
4	Cotoneaster bacillaris	33	11667	23
5	Desmodium tiliaefolium	25	12500	20
6	Pteridium aquilinum	50	14167	31
7	Ricinus communis	17	10000	15
8	Rumex hastatus	8	10833	13
9	Saxifraga diversifolia	25	8333	17

S.No.	Species	Frequency%	Density (Ha-1)	IVI
10	Thalictrum elegans	17	5833	11
			111667	
	Winter			
1	Axyris hybrida	25	10833	20
2	Carex obscura	50	15833	34
3	Datura stramonium	25	11667	21
4	Desmodium tiliaefolium	33	11667	24
5	Pteridium aquilinum	25	12500	21
6	Ranunculus pulchellus	50	14167	33
7	Ricinus communis	17	10000	16
8	Rumex hastatus	8	10833	13
9	Thalictrum elegans	25	8333	18
			105833	

Site V36: Lower Uhl HEP: Downstream of Proposed Diversion Weir

Table 6.106: Community structure -Site V36 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha-1)	IVI
1	Robinia pseudoacacia	10	10	0.73	10
2	Bauhinia variegata	10	10	3.9	16
3	Celtis australis	10	20	22.8	55
4	Toona ciliata	20	20	2.58	22
5	Prunus americana	10	40	2.83	21
6	Platanus orientalis	10	40	0.35	16
7	Malus baccata	40	70	2.33	45
8	Salix tetrasperma	20	80	0.71	33
9	Populus ciliata	40	120	15.53	83
			410		

Table 6.107: Community structure -Site V36 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Juniperus communis	20	200	37
2	Rosa webbiana	60	220	70
3	Cotoneaster affinis	60	240	56
4	Ribes glaciale	40	320	46
5	Lonicera hypoleuca	20	360	35
6	Berberis lycium	50	460	57
			1800	

Table 6.108: Community structure -Site V36 (Herbs)

S.No.	Species	Frequency%	Density (Ha-1)	IVI
	Monsoon			
1	Potentilla nepalensis	33	18333	34
2	Corydalis crassifolia	33	15000	31
3	Datura stramonium	25	12500	24
4	Axyris hybrida	25	13333	25
5	Carex infuscata	42	14167	34
6	Ranunculus pulchellus	25	8333	20
7	Saxifraga diversifolia	33	15833	32
			97500	
	Pre Monsoon			
1	Axyris hybrida	25	9167	17
2	Carex infuscata	33	8333	19
3	Corydalis crassifolia	17	12500	17
4	Datura stramonium	33	14167	24
5	Desmodium tiliaefolium	25	8333	16
6	Mentha longifolia	25	7500	15

S.No.	Species	Frequency%	Density (Ha-1)	IVI
7	Potentilla nepalensis	25	8333	16
8	Pteridium aquilinum	33	9167	19
9	Ranunculus pulchellus	25	8333	16
10	Saxifraga diversifolia	42	13333	26
11	Thalictrum elegans	25	7500	15
			106667	
	Winter			
1	Axyris hybrida	17	9167	17
2	Carex infuscata	33	12500	27
3	Corydalis crassifolia	33	10000	25
4	Datura stramonium	25	12500	24
5	Desmodium tiliaefolium	50	14167	36
6	Mentha longifolia	17	10000	18
7	Potentilla nepalensis	8	10833	15
8	Ranunculus pulchellus	25	8333	19
9	Thalictrum elegans	33	5833	20
			93333	

Site V37: Uhl Khad HEP" Proposed Power House Site-Right bank of Beas river

Table 6.109: Community structure -Site V37 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha ⁻¹)	IVI
1	Bauhinia variegata	20	35	2.58	29
2	Bombax ceiba	30	100	11.73	80
3	Celtis australis	20	30	22.38	77
4	Grewia optiva	20	30	1.41	25
5	Mallotus philippensis	40	70	0.97	48
6	Phoenix humilis	50	30	0.79	40
			295		

Table 6.110: Community structure -Site V37(Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Artemisia capillaris	50	230	43
2	Buddleja asiatica	60	210	29
3	Caryopteris odorata	50	240	19
4	Debregeasia salicifolia	60	240	35
5	Adhatoda zeylanica	50	230	19
6	Eupatorium adenophorum	60	240	38
7	Indigofera astragalina	60	240	22
8	Myrsine africana	40	250	22
9	Rhamnus virgatus	50	320	40
10	Rhus parviflora	70	320	32
			2520	

Table 6.111: Community structure -Site V37 (Herbs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Pre Monsoon			
1	Ageratum conyzoides	25	20000	32
2	Bidens pilosa	50	12500	34
3	Cannabis sativa	30	10833	24
4	Epilobium hirsutum	40	15833	33
5	Achyranthes bidentata	30	10000	23
6	Colocasia esculenta	40	9167	26
7	Mentha longifolia	30	15000	28
			93333	

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Monsoon			
1	Ageratum conyzoides	50	15833	31
2	Bidens pilosa	25	10000	17
3	Cannabis sativa	17	9167	14
4	Epilobium hirsutum	33	12500	22
5	Achyranthes bidentata	33	15833	25
6	Colocasia esculenta	25	9167	16
7	Mentha longifolia	33	10000	20
8	Carex infuscata	33	8333	18
9	Datura stramonium	25	10833	18
10	Potentilla nepalensis	33	9167	19
	-		110833	
	Winter			
1	Achyranthes bidentata	50	15833	37
2	Ageratum conyzoides	25	10833	22
3	Bidens pilosa	17	9167	16
4	Cannabis sativa	33	12500	27
5	Carex infuscata	33	15833	30
6	Colocasia esculenta	25	9167	20
7	Datura stramonium	33	11667	26
8	Trigonella corniculata	33	8333	22
			93333	

Site V38: Uhl II HEP: Near Bassi Power House

Table 6.112: Community structure -Site V38 (Trees)

S.No.	Name of Species	Frequency	Density	TBC (m²ha ⁻¹)	IVI
	-	(%)	(ind./ha ⁻¹)	,	
1	Adina cordifolia	20	20	3.58	18
2	Bauhinia variegata	20	20	1.73	15
3	Bombax ceiba	30	30	11.38	40
4	Celtis australis	20	20	13.41	39
5	Dalbergia sissoo	30	100	10.43	53
6	Eucalyptus citriodora	20	30	1.14	15
7	Ficus palmata	40	40	2.60	27
8	Mallotus philippensis	70	150	2.96	61
9	Grewia optiva	50	60	0.93	31
			470		

Table 6.113: Community structure -Site V38 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Artemisia capillaris	60	310	28
2	Buddleja asiatica	50	200	19
3	Cannabis sativa	60	520	29
4	Adhatoda zeylanica	60	230	17
5	Colebrookea oppositifolia	50	240	19
6	Debregeasia salicifolia	70	260	37
7	Desmodium elegans	50	210	14
8	Eupatorium adenophorum	50	190	15
9	Indigofera astragalina	20	70	5
10	Inula cuspidata	50	210	19
11	Rosa brunonii	50	150	27
12	Rubus ellipticus	60	150	21
13	Urtica dioica	80	350	35
14	Zanthoxylum armatum	50	200	17
			3290	

Table 6.114: Community structure -Site V38 (Herbs)

S.No.	Name of Species	Frequency	Density	IVI
3.NO.	•	(%)	(ind./ha ⁻¹)	141
	Pre Monsoon			
1	Ageratum conyzoides	33	12500	28
2	Ajuga bracteosa	33	15833	31
3	Aster peduncularis	25	10000	22
4	Bidens pilosa	17	9167	17
5	Cannabis sativa	8	12500	16
6	Epilobium hirsutum	25	15000	27
7	Fragaria indica	25	8333	20
8	Impatiens glandulifera	25	10833	22
9	Trigonella corniculata	17	9167	17
			103333	
	Monsoon			
1	Ageratum conyzoides	25	11667	20
2	Ajuga bracteosa	33	10000	22
3	Aster peduncularis	25	7500	16
4	Bidens pilosa	33	8333	20
5	Cannabis sativa	17	10833	16
6	Epilobium hirsutum	33	7500	19
7	Euphorbia hirta	25	8333	17
8	Fragaria indica	17	11667	17
9	Potentilla gerardiana	17	8333	14
10	Rumex hastatus	17	10000	15
11	Trigonella corniculata	25	14167	22
			108333	
	Winter			
1	Ageratum conyzoides	25	8333	20
2	Aster peduncularis	33	10000	26
3	Bidens pilosa	17	9167	18
4	Cannabis sativa	33	13333	29
5	Euphorbia hirta	25	10833	23
6	Fragaria indica	33	12500	28
7	Mentha longifolia	17	7500	16
8	Rumex hastatus	25	5000	16
9	Trigonella corniculata	25	11667	24
			88333	

Site V39: Uhl III HEP: Along the Power Channel

Table 6.115: Community structure -Site V39 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha ⁻¹)	IVI
1	Bauhinia variegata	60	130	2.73	58
2	Celtis australis	50	80	14.29	60
3	Grewia optiva	20	20	2.43	16
4	Juglans regia	30	30	21.04	51
5	Mangifera indica	20	30	11.97	33
6	Lannea grandis	40	50	4.79	34
7	Morus alba	30	40	0.96	22
8	Toona hexandra	20	30	7.20	26
			410		

Table 6.116: Community structure -Site V39 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Artemisia capillaris	60	140	25
2	Berberis asiatica	50	240	41
3	Caryopteris odorata	70	200	33

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
4	Adhatoda zeylanica	50	240	34
5	Debregeasia salicifolia	50	180	18
6	Eupatorium adenophorum	60	150	29
7	Inula cuspidata	50	150	18
8	Lantana camara	60	170	27
9	Rhamnus virgatus	50	210	20
10	Rosa brunonii	40	100	16
11	Urtica dioica	70	280	41
			2060	

Table 6.117: Community structure -Site V39 (Herbs)

Table 6.117: Community structure -Site V39 (Herbs)				
S.No.	Name of Species	Frequency	Density	IVI
	•	(%)	(ind./ha ⁻¹)	
	Pre Monsoon	25	42222	24
1	Achyranthes bidentata	25	13333	21
2	Ageratum conyzoides	33	11667	22
3	Ajuga parviflora	25	9167	17
4	Andropogon contortus	33	10000	21
5	Bidens pilosa	33	8333	19
6	Colocasia esculenta	25	10833	19
7	Echinops niveus	25	8333	16
8	Mentha longifolia	17	12500	17
9	Podophyllum hexandrum	33	9167	20
10	Rumex hastatus	25	8333	16
11	Thalictrum foliolosum	17	5833	11
			107500	
	Monsoon			
1	Achyranthes bidentata	33	11667	20
2	Ageratum conyzoides	42	12500	23
3	Ajuga parviflora	25	6667	13
4	Bidens pilosa	33	8333	17
5	Cannabis sativa	17	7500	11
6	Carex infuscata	33	14167	22
7	Colocasia esculenta	25	8333	15
8	Datura stramonium	17	7500	11
9	Epilobium hirsutum	25	10833	17
10	Euphorbia hirta	25	7500	14
11	Mentha longifolia	17	8333	12
12	Rumex hastatus	33	6667	16
13	Thalictrum foliolosum	17	5833	10
			115833	
	Winter			
1	Ageratum conyzoides	42	13333	28
2	Bidens pilosa	33	10000	22
3	Cannabis sativa	42	12500	27
4	Carex infuscata	17	3333	9
5	Colocasia esculenta	25	7500	16
6	Datura stramonium	17	2500	8
7	Euphorbia hirta	33	12500	24
8	Mentha longifolia	33	8333	20
9	Rumex hastatus	25	10833	20
10	Thalictrum foliolosum	42	12500	27
	,		93333	

Site V40: Uhl III HEP: Near Balancing reservoir along Rana Khad

Table 6.118: Community structure -Site V40 (Trees)

S.No.	Name of Species	Frequency	Density	TBC	IVI
3.NO.	Name of species	(%)	(ind./ha ⁻¹)	(m²ha ⁻¹)	141

1	Bauhinia variegata	20	20	1.73	22
2	Bombax ceiba	20	20	9.38	45
3	Celtis australis	30	30	12.41	62
4	Grewia optiva	20	20	2.73	25
5	Mangifera indica	20	30	2.43	28
6	Lannea grandis	40	50	2.97	46
7	Morus alba	30	40	1.04	32
8	Toona hexandra	40	50	0.97	40
			260		

Table 6.119: Community structure -Site V40 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Artemisia capillaris	60	180	34
2	Berberis asiatica	40	120	24
3	Caryopteris odorata	50	180	28
4	Adhatoda zeylanica	70	240	44
5	Eupatorium adenophorum	50	240	44
6	Lantana camara	50	170	33
7	Myrsine africana	40	140	20
8	Rhus parviflora	50	210	31
9	Urtica dioica	60	220	42
			1700	

Table 6.120: Community structure -Site V40 (Herbs)

		Frequency	Density	
S.No.	Name of Species	(%)	(ind./ha ⁻¹)	IVI
	Pre Monsoon	(70)	()	
1	Ageratum conyzoides	25	12500	18
2	Ajuga parviflora	40	11667	21
3	Aster peduncularis	40	8333	18
4	Cannabis sativa	50	10000	22
5	Cassia obtusifolia	20	7500	12
6	Delphinium vestitum	40	12500	22
7	Euphorbia hirta	40	9167	18
8	Fragaria indica	60	10833	25
9	Mentha longifolia	50	17500	29
10	Potentilla gerardiana	40	6667	16
		405	106667	200
	Monsoon			
1	Achyranthes bidentata	17	9167	14
2	Ageratum conyzoides	33	10833	21
3	Ajuga parviflora	25	8333	16
4	Bidens pilosa	17	9167	14
5	Cannabis sativa	33	12500	23
6	Carex infuscata	33	11667	22
7	Cassia obtusifolia	25	13333	21
8	Datura stramonium	33	6667	17
9	Delphinium vestitum	25	9167	17
10	Mentha longifolia	17	7500	12
11	Potentilla gerardiana	17	6667	12
12	Thalictrum foliolosum	17	5833	11
			110833	
	Winter			
1	Achyranthes bidentata	25	10833	20
2	Ageratum conyzoides	33	9167	20
3	Bidens pilosa	42	13333	28
4	Cannabis sativa	17	5000	11
5	Cassia obtusifolia	50	14167	31
6	Datura stramonium	25	8333	17

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
7	Delphinium vestitum	25	5833	14
8	Mentha longifolia	58	15000	35
9	Thalictrum foliolosum	33	13333	25
			95000	

Site V41: Beas Satluj Link: Right Bank of Reservoir

Table 6.121: Community structure -Site V41 (Trees)

S.No.	Name of Species	Frequency	Density	TBC	IVI
3.110.	Mairie or species	(%)	(ind./ha ⁻¹)	(m²ha ⁻¹)	1 7 1
1	Albizia chinensis	10	20	2.73	28
2	Boehmeria rugulosa	10	20	0.90	19
3	Cedrela toona	20	30	2.29	36
4	Celtis australis	10	30	3.43	35
5	Dalbergia sissoo	20	20	2.83	34
6	Ficus palmata	10	10	3.66	28
7	Morus alba	30	40	0.97	40
8	Populus ciliata	20	40	0.85	33
9	Syzygium cumini	30	40	2.71	48
			250		

Table 6.122: Community structure -Site V41 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Artemisia capillaris	30	700	31
2	Buddleja asiatica	30	500	31
3	Caryopteris odorata	10	400	24
4	Debregeasia salicifolia	30	500	41
5	Adhatoda zeylanica	20	500	47
6	Colebrookea oppositifolia	50	800	46
7	Debregeasia salicifolia	30	600	49
8	Eupatorium adenophorum	20	800	31
			4800	

Table 6.123: Community structure -Site V41 (Herbs)

S. No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Pre Monsoon			
1	Ageratum conyzoides	25	10000	15
2	Ajuga parviflora	25	4167	10
3	Bidens pilosa	8	11667	11
4	Cannabis sativa	17	12500	14
5	Cuscuta reflexa	33	8333	16
6	Datura stramonium	25	12500	16
7	Epilobium hirsutum	17	9167	12
8	Euphorbia hirta	25	11667	16
9	Fragaria indica	17	14167	15
10	Impatiens glandulifera	33	6667	15
13	Oxalis acetosella	25	8333	13
14	Rumex hastatus	17	10000	12
15	Solanum nigrum	33	6667	15
16	Xanthium indicum	42	11667	21
			137500	
	Monsoon			
1	Ageratum conyzoides	25	9167	12
2	Ajuga parviflora	25	7500	11
3	Artemisia nilagirica	25	12500	15
4	Arundo donax	17	5833	8
5	Bidens pilosa	33	10000	15

S. No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
6	Thysanolaena maxima	17	7500	9
7	Cannabis sativa	17	6667	9
8	Chenopodium album	50	12500	21
9	Cymbopogon martini	25	7500	11
10	Cyprus niveus	17	5833	8
13	Datura stramonium	25	6667	11
14	Impatiens glandulifera	33	10000	15
15	Ipomea nil	25	5833	10
16	Parthenium hysterophorus	33	7500	13
17	Rumex hastatus	25	8333	12
18	Solanum nigrum	25	9167	12
19	Xanthium indicum	17	5833	8
17	Xuntinam marcam	17	138333	0
	Winter		130333	
1	Ageratum conyzoides	33	10000	19
2	Ajuga parviflora	25	7500	14
3	Artemisia nilagirica	33	12500	21
4	Bidens pilosa	17	6667	11
5	Cannabis sativa	33	10000	19
6	Chenopodium album	17	7500	12
7	Datura stramonium	25	6667	13
8	Parthenium hysterophorus	50	12500	26
9	Rumex hastatus	25	8333	15
10	Solanum nigrum	17	5833	10
13	Xanthium indicum	25	6667	13
14	Nasturtium officinale	17	5833	10
15	Thysanolaena maxima	25	10833	17
			110833	

Site V42: Beas Satluj Link: Upstream of Dam Site

Table 6.124: Community structure -Site V42 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha-1)	IVI
1	Acacia modesta	20	30	0.98	25
2	Albizia lebbeck	20	20	6.48	43
3	Bombax ceiba	10	30	0.98	20
4	Dalbergia sissoo	20	20	1.62	23
5	Delonix regia	40	30	5.78	53
6	Ficus palmata	40	30	3.92	46
7	Sapium insigne	20	20	0.72	20
8	Pinus roxburghii	50	80	3.92	70
			260		

Table 6.125: Community structure -Site V42 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Artemisia capillaris	20	600	28
2	Caryopteris odorata	30	500	50
3	Adhatoda zeylanica	20	400	25
4	Debregeasia salicifolia	20	300	34
5	Eupatorium adenophorum	30	500	41
6	Lantana camara	20	400	31
7	Rhamnus virgatus	20	400	43
8	Myrsine africana	30	500	47
			3600	

Table 6.126: Community structure -Site V42 (Herbs)

		(%)	(ind./ha ⁻¹)	
	Pre Monsoon			
1	Artemisia nilagirica	33	12500	20
2	Arundo donax	17	6667	10
3	Bidens pilosa	25	11667	17
4	Cannabis sativa	25	1667	8
5	Chenopodium album	25	10833	16
6	Cymbopogon martini	25	7500	13
7	Cynodon dactylon	25	6667	12
8	Cyperus rotundus	33	9167	17
9	Cyprus niveus	25	5000	11
10	Parthenium hysterophorus	33	5833	14
11	Poa annua	25	7500	13
12	Solanum nigrum	33	10000	18
13	Urginea indica	25	8333	14
14	Xanthium indicum	25	12500	17
			115833	
	Monsoon			
1	Artemisia nilagirica	33	9167	15
2	Bidens pilosa	17	6667	9
3	Cannabis sativa	17	5833	9
4	Cynodon dactylon	50	13333	22
5	Cyperus rotundus	25	6667	11
6	Datura stramonium	33	10833	16
7	Eulaliopsis binata	25	7500	12
8	Ipomea nil	17	5833	9
9	Nasturtium officinale	25	10000	14
10	Parthenium hysterophorus	33	8333	14
11	Poa annua	25	11667	15
12	Rumex hastatus	25	1667	7
13	Solanum nigrum	33	9167	15
14	Thysanolaena maxima	25	5000	10
15	Urginea indica	33	5833	12
16	Xanthium indicum	17	7500	10
			125000	
	Winter			
1	Artemisia nilagirica	33	9167	19
2	Cannabis sativa	17	6667	12
3	Cyperus rotundus	17	5833	11
4	Datura stramonium	50	13333	28
5	Eulaliopsis binata	25	6667	14
6	Nasturtium officinale	33	10833	21
7	Parthenium hysterophorus	25	7500	15
8	Poa annua	17	5833	11
9	Rumex hastatus	25	10000	17
10	Solanum nigrum	33	8333	18
11	Thysanolaena maxima	25	11667	19
12	Xanthium indicum	25	6667	14
			102500	

Site V43: Beas Satluj Link : Downstream of Dam Site

Table 6.127: Community structure -Site V43 (Trees)

S.No.	Name of Species	Frequency	Density	TBC	IVI
	•	(%)	(ind./ha ⁻¹)	(m²ha ⁻¹)	
1	Acacia modesta	30	70	1.03	58
2	Bombax ceiba	30	60	3.54	71
3	Dalbergia sissoo	20	30	2.73	46
4	Ficus palmata	20	20	1.14	31
5	Ougenia oojeinensis	10	20	3.66	41
6	Pinus roxburghii	20	50	2.48	52
7			250		

102

Table 6.128: Community structure -Site V43 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Inula cuspidata	20	500	30
2	Rosa brunonii	10	400	23
3	Adhatoda zeylanica	10	200	39
4	Lantana camara	30	700	43
5	Myrsine africana	30	600	43
6	Urtica dioica	20	500	34
7	Caryopteris odorata	30	700	62
8	Rhamnus virgatus	20	500	26
		170	4100	

Table 6.129: Community structure -Site V43 (Herbs)

	able 6, 129; Community Stru	Frequency	Density	
S.No.	Name of Species	(%)	(ind./ha ⁻¹)	IVI
	Pre Monsoon	()	,	
1	Achyranthes aspera	33	10833	18
2	Ageratum conyzoides	33	6667	14
3	Ajuga parviflora	25	7500	13
4	Argemone mexicana	25	8333	13
5	Bidens bipinnata	25	6667	12
6	Cannabis sativa	25	11667	16
7	Cassia tora	17	5000	8
8	Chenopodium album	33	9167	16
9	Cymbopogon martini	42	10833	20
10	Cynodon dactylon	50	9167	20
11	Fragaria indica	58	12500	25
12	Impatiens balsamina	25	3333	9
13	Solanum nigrum	33	9167	16
	5		110833	
	Monsoon			
1	Achyranthes aspera	33	7500	13
2	Ageratum conyzoides	42	8333	15
3	Ajuga parviflora	33	10833	16
4	Argemone mexicana	42	9167	16
5	Bidens bipinnata	25	6667	11
6	Cannabis sativa	33	11667	16
7	Cassia tora	33	9167	14
8	Chenopodium album	25	7500	11
9	Cymbopogon martini	33	12500	17
10	Fragaria indica	25	6667	11
11	Impatiens balsamina	17	11667	12
12	Solanum nigrum	33	9167	14
13	Datura stramonium	25	8333	12
14	Thalictrum foliolosum	33	7500	13
15	Parthenium hysterophorus	25	5000	9
			131667	
	Winter			
1	Ageratum conyzoides	17	4167	9
2	Argemone mexicana	33	8333	18
3	Bidens bipinnata	25	10000	17
4	Cannabis sativa	33	10833	21
5	Cassia tora	42	14167	26
6	Chenopodium album	17	7500	12
7	Datura stramonium	25	6667	14
8	Parthenium hysterophorus	33	10000	20
9	Rumex hastatus	25	8333	16
10	Solanum nigrum	25	7500	15

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
11	Thalictrum foliolosum	17	9167	14
12	Urginea indica	33	7500	17
			104167	

Site V44: Larji HEP: Right Bank of the Reservoir

Table 6.130: Community structure -Site V44 (Trees)

S.No.	Name of Species	Frequency	Density	TBC	IVI
3.NO.	Name of Species	(%)	(ind./ha ⁻¹)	(m²ha ⁻¹)	141
1	Adina cordifolia	20	30	0.86	20
2	Bauhinia variegata	30	60	0.73	30
3	Bombax ceiba	20	40	1.38	26
4	Celtis australis	20	30	2.41	30
5	Dalbergia sissoo	40	50	2.43	42
6	Eucalyptus citriodora	20	40	1.14	24
7	Grewia optiva	30	60	0.93	32
8	Mallotus philippensis	50	70	2.96	54
9	Pinus roxburghii	20	50	3.60	42
			430		

Table 6.131: Community structure -Site V44 (Shrubs)

S.No.	Name of Species	Frequency	Density	IVI
3. 1(3.	•	(%)	(ind./ha ⁻¹)	
1	Artemisia capillaris	50	1100	51
2	Berberis asiatica	70	800	32
3	Caryopteris odorata	50	900	29
4	Adhatoda zeylanica	50	600	28
5	Debregeasia salicifolia	60	500	33
6	Lantana camara	50	400	30
7	Rhamnus virgatus	60	600	28
8	Rosa brunonii	10	300	17
9	Urtica dioica	40	300	52
			5500	

Table 6.132: Community structure -Site V44 (Herbs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Pre Monsoon			
1	Ageratum conyzoides	33	11667	18
2	Apluda mutica	25	5833	11
3	Artemisia capillaries	33	9167	16
4	Bidens bipinnata	17	6667	10
5	Cassia tora	17	5833	9
6	Colocasia esculenta	50	13333	24
7	Commelina benghalensis	25	6667	12
8	Datura stramonium	17	5000	8
9	Gnaphalium hypoleucum	25	5833	11
10	Poa annua	33	10833	18
11	Taraxacum officinale	25	7500	13
12	Thalictrum foliolosum	17	5833	9
13	Thamnocalamus falconeri	25	10000	15
14	Urginea indica	33	8333	16
15	Viola pilosa	17	5833	9
			118333	
	Monsoon			
1	Ageratum conyzoides	25	9167	14
2	Apluda mutica	8	5000	6
3	Artemisia capillaries	17	11667	14
4	Bidens bipinnata	25	6667	12
5	Cannabis sativa	17	5000	9

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
6	Cassia tora	8	5833	7
7	Commelina benghalensis	17	6667	10
8	Datura stramonium	33	10000	17
9	Gnaphalium hypoleucum	25	7500	13
10	Impatiens balsamina	33	9167	16
11	Rumex hastatus	25	7500	13
12	Solanum nigrum	17	9167	12
13	Taraxacum officinale	25	5833	11
14	Thalictrum foliolosum	33	10000	17
15	Urginea indica	33	8333	16
16	Viola pilosa	25	7500	13
			125000	
	Winter			
1	Ageratum conyzoides	25	8333	17
2	Artemisia capillaries	8	10000	13
3	Bidens bipinnata	17	9167	15
4	Cannabis sativa	33	10833	22
5	Cassia tora	17	8333	14
6	Datura stramonium	33	7500	19
7	Impatiens balsamina	8	5833	9
8	Rumex hastatus	33	9167	20
9	Solanum nigrum	42	10833	25
10	Thalictrum foliolosum	33	8333	20
11	Urginea indica	25	7500	16
12	Viola pilosa	17	5833	11
			101667	

Site V45: Larji HEP : Downstream of Dam Site

Table 6.133: Community structure -Site V45 (Trees)

S.No.	Name of Species	Frequency	Density	TBC	IVI
		(%)	(ind./ha ⁻¹)	(m²ha ⁻¹)	- • •
1	Adina cordifolia	20	20	1.73	37
2	Bombax ceiba	20	20	2.38	42
3	Dalbergia sissoo	30	30	1.41	45
4	Eucalyptus citriodora	10	40	2.43	45
5	Lannea grandis	20	40	0.96	39
6	Mallotus philippensis	20	30	1.14	36
7	Mangifera indica	30	50	1.60	56
			230		

Table 6.134: Community structure -Site V45 (Shrubs)

S.No.	Name of Species	Frequency	Density	ТВС	IVI
3.110.	•	(%)	(ind./ha ⁻¹)	(m²ha ⁻¹)	
1	Artemisia capillaris	30	600	1.32	61
2	Buddleja asiatica	30	800	0.12	34
3	Cannabis sativa	30	500	0.23	30
4	Desmodium elegans	40	700	0.72	52
5	Eupatorium adenophorum	40	400	0.32	34
6	Urtica dioica	30	500	0.12	27
7	Lantana camara	40	800	1.03	62
			4300		

Table 6.135: Community structure -Site V45 (Herbs)

Table 0.155. Community structure -5ite v+5 (fierbs)					
S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI	
	Pre Monsoon				
1	Achyranthes aspera	17	9167	11	
2	Ageratum conyzoides	25	11667	15	
3	Ajuga parviflora	17	14167	15	

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
4	Apluda mutica	33	6667	13
5	Argemone mexicana	17	6667	9
6	Artemisia capillaries	25	11667	15
7	Bidens bipinnata	25	1667	7
8	Cannabis sativa	33	9167	15
9	Cassia tora	25	5000	10
10	Chenopodium album	33	5833	13
11	Commelina benghalensis	25	7500	12
12	Datura stramonium	25	7500	12
13	Gnaphalium hypoleucum	25	8333	13
14	Poa annua	25	6667	11
15	Solanum nigrum	8	2500	4
16	Taraxacum officinale	17	4167	7
17	Urginea indica	8	2500	4
18	Xanthium indicum	33	5833	13
	/ Automain marcain	33	126667	
	Monsoon		120007	
1	Achyranthes aspera	17	10833	14
2	Ageratum conyzoides	25	9167	15
3	Ajuga parviflora	17	12500	15
4	Argemone mexicana	17	9167	12
5	Artemisia capillaries	25	10833	16
6	Cannabis sativa	33	9167	18
7	Cassia tora	25	5833	12
8	Chenopodium album	33	7500	16
9	Commelina benghalensis	17	6667	10
10	Datura stramonium	8	5833	7
11	Gnaphalium hypoleucum	25	8333	14
12	Solanum nigrum	8	5000	7
13	Taraxacum officinale	25	8333	14
14	Urginea indica	25	9167	15
15	Xanthium indicum	25	7500	14
13	Autemant mateum	23	125833	17
	Winter		123033	
1	Ageratum conyzoides	42	6667	16
2	Argemone mexicana	33	10000	17
3	Artemisia capillaries	17	8333	12
4	Cannabis sativa	33	12500	20
5		58	13333	27
6	Cassia tora Commelina benghalensis	33		
7	Datura stramonium	58	10000	17 22
8	Solanum nigrum	17	8333 3333	7
9		25	9167	15
	Taraxacum officinale	25		12
10	Urginea indica	33	6667	
11	Xanthium indicum		7500	15
12	Parthenium hysterophorus	42	10000	19
			105833	1

Site V46: Patikari HEP: Upstream of Power House site

Table 6.136: Community structure -Site V46 (Trees)

S.No.	Name of Species	Frequency	Density	TBC	IVI	
3.11,01	-	(%)	(ind./ha ⁻¹)	(m²ha ⁻¹)		
1	Albizia lebbeck	40	30	0.77	35	
2	Alnus nepalensis	50	70	3.40	74	
3	Bauhinia variegata	40	50	0.79	42	
4	Celtis australis	40	50	1.01	44	
5	Juglans regia	10	20	3.12	36	
6	Pinus roxburghii	30	70	3.90	68	

| 290 | |

Table 6.137: Community structure -Site V46 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Berberis asiatica	20	700	44
2	Buddleja crispa	20	300	17
3	Elsholtzia fruticosa	30	500	28
4	Maesa chisia	20	300	17
5	Rosa brunonii	10	300	21
6	Sinarundinaria falcata	20	500	48
7	Solanum surattense	10	300	20
8	Spiraea canescens	30	500	28
9	Trevesia palmata	40	700	43
10	Vitex negundo	20	600	33
			4700	

Table 6.138: Community structure -Site V46 (Herbs)

	Name of Species	Frequency	Density	11/1
S.No.	Name of Species	(%)	(ind./ha ⁻¹)	IVI
	Pre Monsoon	, ,		
1	Achyranthes asper	8	4167	6
2	Anaphalis contorta	25	10000	15
3	Andropogon ischaemum	33	9167	17
4	Impatiens bicolor	17	8333	12
5	Mentha longifolia	25	15000	19
6	Poa pratensis	33	11667	19
7	Bistorta macrophylla	25	13333	18
8	Bupleurum hamiltonii	25	9167	14
9	Delphinium denudatum	25	7500	13
10	Fagopyrum esculentum	33	8333	16
11	Fragaria nubicola	33	4167	12
12	Mentha longifolia	25	6667	12
13	Tagetes erecta	33	1667	10
14	Urtica dioica	42	6667	17
			115833	
S. No.	Name of the Species			
1	Achyranthes asper	33	8333	16
2	Anaphalis contorta	17	7500	11
3	Bistorta macrophylla	25	9167	14
4	Bupleurum hamiltonii	17	7500	11
5	Commelina benghalensis	25	8333	14
6	Delphinium denudatum	17	5833	9
7	Duchesnea indica	17	7500	11
8	Fagopyrum esculentum	25	5000	11
9	Fragaria nubicola	33	8333	16
10	Impatiens bicolor	17	5833	9
11	Mentha longifolia	17	6667	10
12	Pogostemon benghalense	33	8333	16
13	Rumex hastatus	25	7500	13
14	Solanum nigrum	17	6667	10
15	Tagetes erecta	8	5833	7
16	Taraxacum officinale	17	7500	11
17	Urena lobata	17	9167	12
			125000	
S. No.	Name of the Species			
1	Anaphalis contorta	42	9167	20
2	Bistorta macrophylla	33	11667	20
3	Bupleurum hamiltonii	42	10000	21
4	Delphinium denudatum	33	7500	17
5	Duchesnea indica	33	10000	19

107

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
6	Fagopyrum esculentum	25	7500	14
7	Mentha longifolia	33	9167	18
8	Pogostemon benghalense	25	7500	14
9	Rumex hastatus	17	9167	13
10	Solanum nigrum	17	10833	15
11	Taraxacum officinale	17	6667	11
12	Urena lobata	33	8333	17
			107500	

Site V47: Khauli Khad HEP: Near Diversion Wier

Table 6.139: Community structure -Site V47 (Trees)

S.No.	Name of Species	Frequency	Density (ind./ha ⁻¹)	TBC (m ² ha ⁻¹)	IVI
		(%)	`		47
1	Aesculus indica	50	60	3.14	47
2	Melia azedarach	40	50	0.68	26
3	Toona ciliata	30	30	1.06	22
4	Bauhinia variegata	60	120	0.93	46
5	Prunus domestica	20	20	0.32	12
6	Pinus roxburghii	40	40	2.66	37
7	Juglans regia	50	80	3.68	55
8	Quercus baloot	60	130	2.04	56
			530		

Table 6.140: Community structure -Site V47 (Shrubs)

S.No.	I Name of Species I ' ' I		Density (ind./ha ⁻¹)	IVI
1	Desmodium elegans	30	480	56
2	Sarcococca saligna	50	840	83
3	Rhus parviflora	10	40	8
4	Rubus foliolosus	10	120	33
5	Viburnum grandiflorum	30	160	36
6	Rubus ellipticus	20	240	24
7	Indigofera tinctoria	20	120	21
8	Prinsepia utilis	10	80	25
9	Indigofera tinctoria	10	40	15
			2120	

Table 6.141: Community structure -Site V47 (Herbs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Pre Monsoon		,	
1	Fragaria vesca	33	14167	28
2	Trifolium pratense	17	8333	15
3	Stellaria media	8	2500	6
4	Plantago major	33	12500	26
5	Anaphalis busua	25	4167	14
6	Bidens pilosa	33	6667	20
7	Rumex hastatus	25	5833	16
8	Strobilanthes alatus	25	8333	18
9	Pteridium aquilinum	17	11667	19
10	Oxalis corniculata	17	3333	10
11	Arundinella nepalensis	8	4167	8
12	Arisaema jacquemontii	25	10000	20
			91667	
	Monsoon			
1	Arisaema jacquemontii	33	7500	16
2	Artemisia nilagirica	25	6667	13
3	Arundinella nepalensis	17	5833	10

4	Arundo donax	17	9167	13
5	Bidens pilosa	33	6667	16
6	Chenopodium album	25	8333	15
7	Cymbopogon martini	17	5833	10
8	Cyperus rotundus	25	7500	14
9	Fragaria vesca	25	6667	13
10	Ipomea nil	25	7500	14
11	Oxalis corniculata	25	5833	12
12	Parthenium hysterophorus	25	7500	14
13	Pteridium aquilinum	25	5000	12
14	Solanum nigrum	25	9167	16
15	Stellaria media	17	7500	12
			106667	
	Winter			
1	Anaphalis busua	33	8333	22
2	Artemisia nilagirica	25	5833	16
3	Arundinella nepalensis	17	6667	14
4	Bidens pilosa	17	8333	16
5	Chenopodium album	33	7500	21
6	Cymbopogon martini	25	9167	20
7	Cyperus rotundus	17	5000	12
8	Parthenium hysterophorus	25	8333	19
9	Pteridium aquilinum	25	5833	16
10	Rumex hastatus	25	9167	20
11	Solanum nigrum	25	6667	17
12	Trifolium pratense	8	4167	8
			85000	

Table 6.142: Community structure -Site V48 (Trees)

C No	Name of Species	Frequency	Density	TBC	11/1
S.No.	Name of Species	(%)	(ind./ha ⁻¹)	(m²ha ⁻¹)	IVI
1	Broussonetia papyrifera	10	20	16	16
2	Cassine glauca	10	20	15	15
3	Dalbergia sissoo	10	10	29	29
4	Ficus palmata	30	40	32	32
5	Grewia optiva	10	10	14	14
6	Holoptelea integrifolia	20	30	39	39
7	Kydia calycina	20	20	29	29
8	Moringa oleifera	20	20	24	24
9	Naringi crenulata	40	60	43	43
10	Ougenia oojeinensis	10	10	21	21
11	Sapium insigne	30	40	38	38
	Total	210	280	300	

Table 6.143: Community structure -Site V48 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Adhatoda zeylanica	20	300	38
2	Carissa spinarum	30	400	44
3	Murraya koenigii	40	500	53
4	Ziziphus jujuba	20	200	42
5	Lantana camara	60	700	58
6	Mimosa himalayana	30	300	26
7	Caryopteris odorata	20	200	20
8	Vitex negundo	20	200	18
	Total	240	2800	300

Table 6.144: Community structure -Site V48 (Herbs)

S.No.		Frequency	Density	IVI
5.NO.	Name of Species	(%)	(ind./ha ⁻¹)	141
	Pre Monsoon			
1	Ageratum conyzoides	42	11667	26
2	Cenchrus cilaris	33	10000	21
3	Cynodon dactylon	33	12500	24
4	Cyperus rotundus	50	15000	32
5	Duchesnea indica	25	10000	18
6	Eulaliopsis binata	33	12500	24
7	Poa annua	42	20000	34
8	Solanum nigrum	33	10833	22
	Total		102500	
	Monsoon			
1	Achyranthes bidentata	33	6667	18
2	Ageratum conyzoides	25	12500	20
3	Cenchrus cilaris	17	10000	15
4	Centella asiatica	33	7500	19
5	Chrysopogon fulvus	17	9167	14
6	Cyperus rotundus	17	7500	13
7	Duchesnea indica	17	9167	14
8	Eulaliopsis binata	33	8333	20
9	Euphorbia hirta	25	9167	17
10	Nasturtium officinale	17	6667	12
11	Pilea umbrosa	17	9167	14
12	Ranunculus arvensis	17	7500	13
13	Solanum nigrum	8	6667	9
			110000	
	Winter			
1	Achyranthes bidentata	17	9167	17

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
2	Ageratum conyzoides	33	12500	27
3	Centella asiatica	17	7500	15
4	Chrysopogon fulvus	33	8333	23
5	Duchesnea indica	25	9167	20
6	Eulaliopsis binata	17	6667	14
7	Euphorbia hirta	17	11667	20
8	Nasturtium officinale	33	9167	24
9	Ranunculus arvensis	17	8333	16
10	Solanum nigrum	33	10000	25
			92500	

Site V49: Neogal HEP: Upstream of Power House site

Table 6.145: Community structure -Site V49 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha-1)	IVI
1	Alnus nepalensis	50	70	14.16	30
2	Bauhinia variegata	10	20	10.01	15
3	Cedrus deodara	40	70	42.41	29
4	Celtis australis	20	20	8.70	13
5	Juglans regia	10	20	11.79	27
6	Pinus wallichiana	30	40	3.90	20
7	Pyrus pashia	10	30	2.29	24
8	Quercus semecarpifolia	30	40	14.01	20
		200	310	107.27	300

Table 6.146: Community structure -Site V49 (Shrubs)

S.No.	Name of Species	Frequency	Density	
3.NO.		(%)	(ind./ha ⁻¹)	IVI
1	Adhatoda zeylanica	30	400	25
2	Berberis aristata	50	700	35
3	Cotoneaster microphyllus	10	300	10
4	Debregeasia salicifolia	20	400	40
5	Desmodium elegans	10	200	8
6	Indigofera heterantha	10	500	13
7	Indigofera tinctoria	20	300	39
8	Prinsepia utilis	30	700	30
9	Rhamnus virgatus	20	600	19
10	Rosa brunonii	30	500	42
11	Sarcococca saligna	30	400	20
12	Viburnum grandiflorum	20	600	18
		280	5600	300

Table 6.147: Community structure -Site V49 (Herbs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Pre Monsoon			
1	Artemisia capillaris	25	6667	17
2	Berberis asiatica	17	5833	12
3	Buddleja asiatica	33	15000	28
4	Cannabis sativa	25	12500	22
5	Colebrookea oppositifolia	25	4167	14
6	Begonia picta	8	11667	15
7	Eupatorium adenophorum	17	12500	19
8	Inula cuspidata	33	8333	22
9	Lantana camara	25	5833	16
10	Rhus parviflora	25	13333	23
11	Urtica dioica	17	5000	12
			100833	

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Monsoon			
1	Artemisia capillaris	25	10833	17
2	Aster peduncularis	17	8333	13
3	Begonia picta	25	10000	17
4	Buddleja asiatica	17	7500	12
5	Cannabis sativa	33	10000	19
6	Chenopodium album	25	8333	15
7	Colebrookea oppositifolia	17	5833	10
8	Eragrostis pilosa	25	8333	15
9	Eupatorium adenophorum	25	10833	17
10	Inula cuspidata	25	6667	14
11	Lantana camara	33	9167	18
12	Rhus parviflora	33	7500	17
13	Urtica dioica	25	9167	16
			112500	
	Winter			
1	Artemisia capillaris	25	8333	17
2	Begonia picta	17	10833	16
3	Buddleja asiatica	33	8333	20
4	Cannabis sativa	25	9167	18
5	Colebrookea oppositifolia	33	11667	23
6	Eragrostis pilosa	17	8333	14
7	Eupatorium adenophorum	33	13333	25
8	Inula cuspidata	25	10000	19
9	Rumex hastatus	25	10833	19
10	Trigonella corniculata	50	11667	29
			102500	

Site V50: Binwa HEP: Near Power House Site

Table 6.148: Community structure -Site V50 (Trees)

S.No.	Name of Species	Frequency	Density	TBC	IVI
3.140.	Mairie of Species	(%)	(ind./ha ⁻¹)	(m²ha ⁻¹)	-
1	Bombax ceiba	20	20	2.40	17
2	Pyrus pashia	20	30	0.48	16
3	Toona hexandra	20	20	3.66	19
4	Populus ciliata	10	30	1.03	14
5	Grewia optiva	30	40	0.54	23
6	Morus alba	20	20	0.56	14
7	Bauhinia variegata	30	40	5.01	30
8	Juglans regia	30	20	24.41	58
9	Celtis australis	30	50	7.98	38
10	Pinus roxburghii	30	50	12.28	45
11	Alnus nepalensis	40	40	0.77	27
			360		

Table 6.149: Community structure -Site V50 (Shrubs)

S.No.	Name of Species	Frequency	Density	
3.NO.	•	(%)	(ind./ha ⁻¹)	IVI
1	Artemisia capillaris	30	600	34
2	Buddleja asiatica	20	500	20
3	Debregeasia salicifolia	10	300	22
4	Indigofera tinctoria	30	500	36
5	Inula cuspidata	20	600	23
7	Rhus parviflora	30	500	26
8	Rosa brunonii	20	400	25
9	Rubus ellipticus	40	600	35
10	Sarcococca saligna	60	500	40

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
11	Urtica dioica	20	400	22
12	Zanthoxylum armatum	20	300	17
			5200	

Table 6.150: Community structure -Site V50 (Herbs)

S.No.	Name of Species	Frequency	Density	
5.NO.	Name of Species	(%)	(ind./ha ⁻¹)	IVI
	Pre Monsoon	. ,		
1	Ageratum conyzoides	25	5833	14
2	Amaranthus hybridus	8	12500	14
3	Apluda mutica	33	6667	17
4	Aster peduncularis	17	8333	13
5	Begonia picta	25	5000	13
6	Cannabis sativa	25	12500	20
7	Chenopodium album	17	9167	14
8	Datura stramonium	25	11667	19
9	Desmodium microphyllum	17	5833	11
10	Eragrostis pilosa	33	12500	22
11	Fragaria indica	25	10000	17
12	Oxalis acetosella	17	5000	10
13	Polygonum plebeium	25	8333	16
			113333	
	Monsoon			
1	Ageratum conyzoides	25	5833	12
2	Apluda mutica	8	12500	13
3	Aster peduncularis	33	6667	16
4	Begonia picta	17	8333	12
5	Cannabis sativa	25	5000	12
6	Chenopodium album	25	12500	18
7	Datura stramonium	17	9167	13
8	Desmodium microphyllum	25	11667	17
9	Eragrostis pilosa	17	5833	10
10	Polygonum plebeium	33	12500	20
11	Bidens pilosa	25	10000	16
12	Impatiens glandulifera	17	5000	9
13	Rumex hastatus	25	8333	14
14	Stellaria media	33	9167	18
			122500	
	Winter			
1	Ageratum conyzoides	25	5833	15
2	Apluda mutica	8	12500	15
3	Aster peduncularis	33	6667	19
4	Begonia picta	17	8333	14
5	Bidens pilosa	25	5000	14
6	Colebrookea oppositifolia	25	12500	21
7	Datura stramonium	17	9167	15
8	Eragrostis pilosa	25	11667	20
9	Parthenium hysterophorus	17	5833	12
10	Polygonum plebeium	33	12500	24
11	Rumex hastatus	25	10000	19
12	Stellaria media	17	5000	11
		-	105000	

Site V51: Baner I: Upstream of Power House Site

Table 6.151: Community structure -Site V51 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha-1)	IVI
1	Alnus nepalensis	40	60	11.38	52
2	Juglans regia	40	20	13.41	46

3	Populus ciliata	20	20	10.43	34
4	Olea ferruginea	40	30	1.14	22
5	Pinus roxburghii	50	130	2.73	54
6	Morus alba	50	50	2.43	33
7	Ficus palmata	60	20	2.97	29
8	Quercus leucotrichophora	40	60	1.04	29
			390		

Table 6.152: Community structure -Site V51 (Shrubs)

C No	Name of Species	Frequency	Density	
S.No.	Name of Species	(%)	(ind./ha ⁻¹)	IVI
1	Myrsine africana	30	400	19
2	Rosa brunonii	40	700	32
3	Cannabis sativa	30	300	29
4	Debregeasia salicifolia	40	600	36
5	Rubus ellipticus	20	300	27
6	Colebrookea oppositifolia	40	800	25
7	Viburnum grandiflorum	20	300	11
8	Inula cuspidata	30	500	16
9	Berberis aristata	40	400	33
10	Indigofera tinctoria	20	400	14
11	Rhamnus virgatus	30	500	16
12	Sarcococca saligna	40	700	25
13	Zanthoxylum armatum	20	300	17
			6200	

Table 6.153: Community structure -Site V51 (Herbs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Pre Monsoon			
1	Ageratum conyzoides	17	7500	13
2	Achyranthes bidentata	17	14167	20
3	Ajuga parviflora	33	10000	22
4	Artemisia vulgaris	25	8333	17
5	Bidens pilosa	33	6667	19
6	Colocasia esculenta	25	16667	25
7	Cannabis sativa	17	8333	14
8	Fragaria vesca	33	9167	21
9	Impatiens glandulifera	25	10000	19
10	Rumex hastatus	25	4167	13
11	Stellaria media	25	6667	16
			101667	
	Monsoon			
1	Ageratum conyzoides	25	9167	16
2	Ajuga parviflora	33	10833	20
3	Artemisia vulgaris	17	8333	13
4	Aster peduncularis	25	10000	17
5	Bidens pilosa	25	8333	15
6	Cannabis sativa	25	5000	12
7	Datura stramonium	33	9167	18
8	Desmodium microphyllum	25	10833	18
9	Eragrostis pilosa	17	8333	13
10	Impatiens glandulifera	33	9167	18
11	Polygonum plebeium	25	7500	14
12	Rumex hastatus	25	5000	12
13	Stellaria media	25	6667	14
			108333	
	Winter			
1	Ageratum conyzoides	33	14167	30
2	Artemisia vulgaris	17	9167	17

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻	IVI
3	Aster peduncularis	17	5833	13
4	Bidens pilosa	17	9167	17
5	Cannabis sativa	25	10000	22
6	Datura stramonium	8	4167	8
7	Eragrostis pilosa	17	8333	16
8	Impatiens glandulifera	17	6667	14
9	Parthenium hysterophorus	17	15000	23
10	Rumex hastatus	33	5833	21
11	Stellaria media	25	7500	19
			95833	

Site V52: Baner HEP: Downstream of Diversion Weir

Table 6.154: Community structure -Site V52 (Trees)

S.No.	Name of Species	Frequency	Density	ТВС	IVI
3.110.		(%)	(ind./ha ⁻¹)	(m²ha ⁻¹)	
1	Alnus nepalensis	30	40	11.38	44
2	Bauhinia variegata	30	20	13.41	43
3	Toona hexandra	20	20	10.43	33
4	Celtis australis	40	30	1.14	23
5	Pinus roxburghii	50	130	2.73	57
6	Populus ciliata	50	50	2.73	35
7	Dalbergia sissoo	40	20	2.43	23
8	Naringi crenulata	20	20	2.97	18
9	Ougeinia oojeinensis	40	30	1.04	23
			360		

S.No.	Name of Species	Frequency	Density	
3.NO.	Name of Species	(%)	(ind./ha ⁻¹)	IVI
1	Artemisia capillaris	20	400	30
2	Berberis asiatica	20	500	36
3	Buddleja asiatica	20	300	20
4	Cannabis sativa	20	500	26
5	Colebrookea oppositifolia	10	300	22
6	Debregeasia salicifolia	30	500	40
7	Eupatorium adenophorum	20	600	38
8	Inula cuspidata	60	500	37
9	Lantana camara	20	400	33
10	Urtica dioica	20	300	17
			4300	

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Pre Monsoon	, ,		
1	Ageratum conyzoides	33	8333	16
2	Ajuga parviflora	33	8333	16
3	Apluda mutica	25	10000	15
4	Aster peduncularis	33	14167	20
5	Cannabis sativa	17	8333	11
6	Colocasia esculenta	25	15000	19
7	Datura stramonium	25	4167	10
8	Eragrostis pilosa	17	6667	10
9	Fragaria indica	17	8333	11
10	Geranium ocellatum	25	15000	19
11	Girardinia heterophylla	25	4167	10
12	Micromeria biflora	33	14167	20

S.No.	Name of Species	Frequency	Density	
5.NO.	Name of Species	(%)	(ind./ha ⁻¹)	IVI
13	Polygonum plebeium	25	4167	10
14	Rumex hastatus	33	6667	14
		367	127500	
	Monsoon			
1	Ageratum conyzoides	25	7500	12
2	Ajuga parviflora	17	8333	10
3	Aster peduncularis	25	5000	10
4	Cannabis sativa	25	12500	15
5	Colocasia esculenta	17	9167	11
6	Datura stramonium	33	10000	16
7	Echinops niveus	25	8333	12
8	Eragrostis pilosa	33	6667	14
9	Euphorbia hirta	25	16667	18
10	Fragaria indica	17	8333	10
11	Geranium ocellatum	33	9167	15
12	Impatiens glandulifera	33	14167	19
13	Polygonum plebeium	17	8333	10
14	Rumex hastatus	25	15000	17
15	Trigonella corniculata	25	4167	10
			143333	
	Winter			
1	Ageratum conyzoides	33	12500	24
2	Aster peduncularis	17	6667	12
3	Cannabis sativa	25	10000	18
4	Datura stramonium	8	5833	8
5	Eragrostis pilosa	17	10000	15
6	Euphorbia hirta	25	13333	21
7	Fragaria indica	17	5833	12
8	Geranium ocellatum	8	7500	10
9	Begonia picta	25	10833	19
10	Rumex hastatus	17	11667	17
11	Stellaria media	33	14167	25
12	Trigonella corniculata	25	10000	18
	-		118333	

Site V53: Kilhi Bahl HEP: Proposed Project Area of Kilhi Bahl HEP

Table 6.157: Community structure -Site V53 (Trees)

C No	Name of Species	Frequency	Density	TBC	IVI
S.No.		(%)	(ind./ha ⁻¹)	(m²ha ⁻¹)	171
1	Alnus nepalensis	30	40	1.60	28
2	Bombax ceiba	10	30	2.43	19
3	Cupressus torulosa	20	30	1.84	22
4	Grevillea robusta	20	20	1.97	19
5	Lyonia ovalifolia	10	30	2.12	18
6	Pinus roxburghii	30	40	5.52	39
7	Prunus cerasoides	20	20	3.76	24
8	Pyrus pashia	40	70	3.79	46
9	Quercus leucotrichophora	20	30	6.90	36
10	Symplocos paniculata	30	30	2.01	26
11	Toona hexandra	20	20	3.12	22
			360		

Table 6.158: Community structure -Site V53 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Artemisia roxburghii	10	300	18
2	Cannabis sativa	40	700	41

3	Cotoneaster acuminatus	10	100	19
4	Debregeasia salicifolia	40	700	41
5	Desmodium elegans	30	300	29
6	Colebrookea oppositifolia	30	300	17
7	Debregeasia longifolia	30	400	18
8	Eupatorium adenophorum	40	800	32
9	Inula cuspidata	30	500	31
10	Rubus ellipticus	20	500	31
11	Urtica dioica	30	500	24
			5100	

Table 6.159: Community structure -Site V53 (Herbs)

	Table 6, 159; Community Stru	Frequency	Density	IVI
S.No.	Name of Species	(%)	(ind./ha ⁻¹)	IVI
	Pre Monsoon	, ,	,	
1	Ageratum conyzoides	25	6667	14
2	Apluda mutica	33	8333	19
3	Colocasia esculenta	33	8333	19
4	Datura stramonium	25	18333	25
5	Geranium ocellatum	25	10000	18
6	Fragaria indica	33	12500	23
7	Oxalis acetosella	25	4167	12
8	Polygonum plebeium	33	15000	25
9	Sonchus asper	25	10833	18
10	Polygonum plebeium	33	5000	16
11	Rumex hastatus	17	6667	12
			105833	
	Monsoon			
1	Ageratum conyzoides	25	6667	14
2	Apluda mutica	33	8333	19
3	Colocasia esculenta	33	8333	19
4	Datura stramonium	25	18333	25
5	Geranium ocellatum	25	10000	18
6	Polygonum plebeium	33	12500	23
7	Parthenium hysterophorus	25	4167	12
8	Rumex hastatus	33	15000	25
9	Bidens pilosa	25	10833	18
10	Desmodium microphyllum	33	5000	16
11	Eragrostis pilosa	17	6667	12
			105833	
	Winter			
1	Ageratum conyzoides	25	9167	18
2	Apluda mutica	33	10000	22
3	Bidens pilosa	17	6667	13
4	Colocasia esculenta	25	10000	19
5	Datura stramonium	50	8333	26
6	Eragrostis pilosa	25	13333	23
7	Euphorbia hirta	17	7500	14
8	Parthenium hysterophorus	33	10833	23
9	Trigonella corniculata	33	12500	25
10	Rumex hastatus	25	8333	17
			96667	

Site V54: Pong HEP: Right Bank of Reservoir

Table 6.160: Community structure -Site V54 (Trees)

Table 6.160. Community structure -5ite v54 (Trees)						
S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha-1)	IVI	
1	Acacia modesta	20	30	8.00	47	
2	Albizia lebbeck	20	30	9.70	51	
3	Bombax ceiba	20	20	13.50	54	

4	Dalbergia sissoo	20	20	5.40	36
5	Ficus palmata	20	20	1.00	26
6	Grewia optiva	10	10	1.60	16
7	Mallotus philippensis	30	50	2.90	53
8	Punica granatum	10	10	2.00	16
	Total		190		

Table 6.161: Community structure -Site V54 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Adhatoda zeylanica	20	300	41
2	Ampelocissus latifolia	20	200	33
3	Arundinella nepalensis	10	100	13
4	Asparagus adscendens	20	200	20
5	Carissa spinarum	30	400	35
6	Caryopteris odorata	20	200	35
7	Lantana camara	50	700	73
8	Solanum erianthum	20	200	24
9	Ziziphus jujuba	20	200	26
	Total		2500	

Table 6.162: Community structure -Site V54 (Herbs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Pre Monsoon	, ,	,	
1	Ageratum conyzoides	33	14167	29
2	Cynodon dactylon	25	10833	22
3	Cyperus rotundus	33	8333	23
4	Nasturtium officinale	25	12500	23
5	Parthenium hysterophorus	17	20000	27
6	Poa annua	33	15833	30
7	Solanum nigrum	33	10000	25
8	Urginea indica	25	10833	22
	Total		102500	
	Monsoon			
1	Ageratum conyzoides	25	9167	16.64
2	Cyperus rotundus	50	12500	27.84
3	Curcuma aromatica	25	10000	17.41
4	Eulaliopsis binata	17	10000	14.71
5	Nasturtium officinale	33	7500	17.79
6	Parthenium hysterophorus	17	10833	15.48
7	Solanum nigrum	33	10000	20.11
8	Urena lobata	33	12500	22.44
9	Urginea indica	50	15000	30.17
10	Xanthium indicum	25	10000	17.41
			107500	
	Winter			
1	Ageratum conyzoides	42	14167	31
2	Artemisia nilagirica	25	10000	20
3	Eulaliopsis binata	8	5000	8
4	Bidens pilosa	17	7500	14
5	Nasturtium officinale	33	9167	22
6	Parthenium hysterophorus	17	10833	18
7	Solanum nigrum	50	18333	38
8	Urginea indica	50	15000	35
9	Xanthium indicum	17	6667	13
			96667	

Site V55: Pong HEP: Left Bank of Reservoir

Table 6.163: Community structure -Site V55 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha-1)	IVI
1	Acacia catechu	20	30	6.48	88
2	Lannea coromandelica	40	50	1.62	74
3	Prunus persica	10	10	0.72	20
4	Sapium insigne	20	20	1.28	38
5	Syzygium cumini	40	60	1.62	80
	Total		170		

Table 6.164: Community structure -Site V55 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Adhatoda zeylanica	20	200	38
2	Asparagus adscendens	20	200	30
3	Boehmeria macrophylla	40	600	53
4	Carissa spinarum	40	400	47
5	Mimosa himalayana	20	300	30
6	Murraya koenigii	40	500	43
7	Solanum erianthum	20	200	36
8	Ziziphus jujuba	20	200	23
	Total		2600	

Table 6.165: Community structure -Site V55 (Herbs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Pre Monsoon	, ,	,	
1	Ageratum conyzoides	25	15000	23
2	Curculingo orchioides	17	15833	21
3	Curcuma aromatica	25	9167	18
4	Cuscuta reflexa	50	12500	31
5	Cynodon dactylon	25	10000	19
6	Eulaliopsis binata	17	10833	16
7	Oxalis corniculata	33	13333	25
8	Poa annua	17	10000	16
9	Urena lobata	25	7500	17
10	Xanthium indicum	17	8333	14
	Monsoon			
1	Ageratum conyzoides	25	11667	19.5
2	Bidens pilosa	17	9167	14.3
3	Curculingo orchioides	8	10000	12
4	Curcuma aromatica	33	10833	21.8
5	Cymbopogon martini	25	8333	16.6
6	Eulaliopsis binata	25	10000	18
7	Nasturtium officinale	17	10833	15.8
8	Oxalis corniculata	25	11667	19.5
9	Poa annua	25	10833	18.8
10	Urena lobata	50	10000	27.1
11	Xanthium indicum	25	8333	16.6
			111667	
	Winter			
1	Ageratum conyzoides	33	15000	28
2	Bidens pilosa	42	7500	24
3	Curcuma aromatica	25	9167	19
4	Cymbopogon martini	17	10833	17
5	Eulaliopsis binata	25	9167	19
6	Nasturtium officinale	25	8333	18
7	Parthenium hysterophorus	33	13333	26
8	Poa annua	17	8333	15
9	Urena lobata	25	10833	20
10	Xanthium indicum	17	8333	15

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
			100833	

Site V56: Thana Palun I: Near Proposed Dam Site

Table 6.166: Community structure -Site V56 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha-1)	IVI
1	Bombax ceiba	50	800	2.14	64
2	Bombax ceiba	30	400	2.43	47
3	Grewia optiva	40	500	1.04	40
4	Lannea grandis	40	600	1.97	52
5	Mallotus philippensis	40	500	0.60	36
6	Toona hexandra	60	700	1.79	61
			3500		

Table 6.167: Community structure -Site V56 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Artemisia capillaris	30	400	46
2	Buddleja asiatica	40	700	38
3	Eupatorium adenophorum	30	300	25
4	Indigofera astragalina	20	300	29
5	Myrsine africana	30	500	44
6	Colebrookea oppositifolia	40	800	39
7	Urtica dioica	20	300	21
8	Lantana camara	70	800	58
			4100	

Table 6.168: Community structure -Site V56 (Herbs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Pre Monsoon			
1	Ageratum conyzoides	25	11667	20
2	Anaphalis adnata	17	9167	15
3	Apluda mutica	25	12500	21
4	Bidens bipinnata	17	5833	12
5	Cassia tora	17	9167	15
6	Colocasia affinis	8	10000	12
7	Cynodon dactylon	25	20000	27
8	Euphorbia hirta	25	4167	14
9	Fragaria nubicola	17	6667	13
10	Hedychium spicatum	17	10833	16
11	Malva parviflora	25	11667	20
12	Oxalis corniculata	17	12500	17
		233	124167	1.54
	Monsoon			
1	Ageratum conyzoides	42	8333	17
2	Anaphalis adnata	25	5000	10
3	Bidens bipinnata	33	6667	14
4	Cassia tora	25	5833	11
5	Colocasia affinis	33	10000	16
6	Curculingo orchioides	33	11667	18
7	Duchesnea indica	42	10000	18
8	Euphorbia hirta	33	7500	14
9	Fragaria nubicola	33	10000	16
10	Malva parviflora	25	7500	12
11	Oxalis corniculata	33	9167	16
12	Solanum nigrum	25	7500	12
13	Urena lobata	17	9167	12

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
14	Gnaphalium hypoleucum	17	10833	13
		417	119167	200
	Winter			
1	Ageratum conyzoides	42	8333	21
2	Bidens bipinnata	25	5000	12
3	Cassia tora	33	6667	17
4	Duchesnea indica	25	5833	13
5	Eragrostis pilosa	33	10000	20
6	Euphorbia hirta	33	11667	22
7	Fragaria nubicola	42	10000	23
8	Malva parviflora	33	7500	17
9	Parthenium hysterophorus	33	10000	20
10	Solanum nigrum	25	7500	15
11	Urena lobata	33	9167	19
			91667	

Site V57: Thana Palun II: Downstream of Proposed Dam Site

Table 6.169: Community structure -Site V57 (Trees)

S.No.	Name of Species	Frequency	Density	TBC	IVI
3.110.	Name of Species	e of species (%)		(m²ha ⁻¹)	1 7 1
1	Azadirachta indica	30	50	0.85	40
2	Eucalyptus citriodora	30	50	1.52	45
3	Lannea grandis	20	40	3.76	52
4	Mallotus philippensis	20	60	4.84	66
5	Phoenix humilis	30	50	2.12	49
6	Populus deltoides	40	60	0.87	49
			310		

Table 6.170: Community structure -Site V57 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	D. J.	` '	,	20
1	Boehmeria macrophylla	30	500	29
2	Carissa spinarum	20	400	25
3	Buddleja crispa	20	300	19
4	Ziziphus jujuba	10	300	31
5	Carissa spinarum	20	500	24
6	Murraya koenigii	10	300	17
7	Ziziphus jujuba	40	700	44
8	Mimosa himalayana	30	300	37
9	Caryopteris odorata	30	300	24
10	Vitex negundo	10	200	20
12	Urtica dioica	30	800	32
			4600	

Table 6.171: Community structure -Site V57 (Herbs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Pre Monsoon			
1	Achyranthes asper	25	7500	12
2	Ajuga parviflora	33	8333	14
3	Andropogon ischaemum	25	6667	11
4	Artemisia capillaries	33	1667	8
5	Bidens bipinnata	42	8333	16
6	Cynodon dactylon	25	5000	9
7	Euphorbia hirta	33	6667	13
8	Gnaphalium hypoleucum	25	5833	10

S.No.	Name of Species	Frequency	Density	IVI
9	Malya parviflora	(%) 33	(ind./ha ⁻¹) 10000	16
10	Malva parviflora Pilea scripta	33	11667	17
11	Pogostemon benghalense	42	10000	17
12	Rumex nepalensis	33	7500	13
13	•	42	9167	16
14	Tagetes erecta Thalictrum foliolosum	25	6667	11
15	Urtica dioica	50	7500	17
10	Urtica aioica	30	112500	17
	Managan		112500	
4	Monsoon	25	7500	42
1	Achyranthes asper			12
2	Andropogon ischaemum	33	9167	15
3	Artemisia capillaries	42	8333	16
4	Bidens bipinnata	25	6667	11
5	Commelina benghalensis	25	9167	13
6	Duchesnea indica	25	8333	12
7	Euphorbia hirta	17	6667	9
8	Gnaphalium hypoleucum	17	7500	10
9	Pilea scripta	33	10000	16
10	Pogostemon benghalense	42	8333	16
11	Rumex hastatus	17	7500	10
12	Solanum nigrum	25	9167	13
13	Tagetes erecta	33	8333	14
14	Taraxacum officinale	17	5833	8
15	Thalictrum foliolosum	33	7500	14
16	Urena lobata	17	9167	11
			129167	
	Winter			
1	Achyranthes asper	17	8333	13
2	Artemisia capillaries	33	12500	21
3	Bidens bipinnata	58	13333	28
4	Euphorbia hirta	33	10000	19
5	Gnaphalium hypoleucum	58	8333	23
6	Malva parviflora	17	3333	8
7	Rumex hastatus	25	5833	12
8	Solanum nigrum	33	10000	19
9	Taraxacum officinale	33	11667	20
10	Urena lobata	42	10000	21
11	Xanthium indicum	33	7500	16
			100833	

Site V58: Trivani Mahadev HEP: Upstream of Proposed Dam Site

Table 6.172: Community structure -Site V58 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha-1)	IVI
1	Acacia catechu	20	30	6.48	27
2	Albizia lebbeck	20	20	7.22	26
3	Bombax ceiba	20	20	11.52	36
4	Bridelia retusa	20	30	2.42	18
5	Cassia fistula	10	10	1.62	9
6	Emblica officinalis	50	60	1.62	33
7	Ficus semicordata	10	20	1.28	10
8	Ficus religiosa	10	10	2.88	12
9	Flacourtia indica	20	40	1.28	18
10	Lannea coromandelica	20	40	1.28	18
11	Litsea glutinosa	40	60	0.82	28
12	Mallotus philippensis	30	40	2.88	25
13	Pyrus pashia	10	10	0.50	6
14	Sapium insigne	20	30	3.08	20

122

ĺ	15	Syzygium cumini	20	20	1.28	14	ì
	16	Total		440			ì

Table 6.173: Community structure -Site V58 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Adhatoda zeylanica	20	300	32
2	Asparagus adscendens	30	400	30
3	Boehmeria macrophylla	50	600	61
4	Carissa spinarum	40	400	47
5	Mimosa himalayana	30	300	20
6	Murraya koenigii	100	1200	69
7	Solanum erianthum	20	200	18
8	Ziziphus jujuba	20	200	24
	Total		3600	

Table 6.174: Community structure -Site V58 (Herbs)

S.No.	Plants	F	D	IVI
	Pre Monsoon			
1	Ageratum conyzoides	33	9167	23
2	Curculigo orchioides	33	6667	20
3	Curcuma aromatica	25	15833	26
4	Cuscuta reflexa	17	10000	16
5	Cynodon dactylon	33	7500	21
6	Eulaliopsis binata	17	10833	17
7	Oxalis corniculata	25	11667	22
8	Poa annua	25	14167	24
9	Urena lobata	17	8333	15
10	Xanthium indicum	17	10000	16
	Total	242	104167	200
	Monsoon			
1	Ageratum conyzoides	33	10833	22
2	Bidens pilosa	25	10000	18
3	Curcuma aromatica	25	11667	20
4	Duchesnea indica	25	8333	17
5	Eulaliopsis binata	17	9167	14
6	Nasturtium officinale	25	5833	14
7	Parthenium hysterophorus	25	8333	17
8	Poa annua	17	9167	14
9	Pteridium aquilinum	17	6667	12
10	Solanum nigrum	17	9167	14
11	Urena lobata	33	8333	20
12	Xanthium indicum	25	9167	17
			106667	
	Winter			
1	Ageratum conyzoides	33	12500	27
2	Bidens pilosa	25	10000	21
3	Duchesnea indica	33	11667	27
4	Nasturtium officinale	17	14167	22
5	Parthenium hysterophorus	17	14167	22
6	Poa annua	17	10000	17
7	Pteridium aquilinum	25	13333	25
8	Solanum nigrum	17	5000	12
9	Xanthium indicum	42	8333	27
			99167	

Site V59: Dhaulasidh HEP I: Upstream of Proposed Dam Site

Table 6.175: Community structure -Site V59 (Trees)

S.No.	Name of Species	Frequency	Density	TBC	IVI	
3.110.	Name of Species	(%)	(ind./ha ⁻¹)	(m²ha ⁻¹)	1 7 1	

1	Acacia catechu	50	50	7.22	46
2	Acacia modesta	40	50	8.01	45
3	Albizia lebbeck	20	20	9.68	33
4	Cassia fistula	40	40	5.12	36
5	Dalbergia sissoo	30	50	5.38	36
6	Delonix regia	30	30	6.48	32
7	Euphorbia royleana	50	50	1.28	34
8	Flacourtia indica	30	30	1.28	21
9	Lannea coromandelica	20	20	2.42	17
	Total		340		

Table 6.176: Community structure -Site V59 (Shrubs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
1	Datura stramonium	20	200	29
2	Ipomea fistulosa	30	400	46
3	Jatropha curcas	20	200	29
4	Lantana camara	50	700	68
5	Murraya koenigii	40	500	53
6	Woodfordia fruticosa	40	500	53
7	Yucca aloifolia	10	100	21
	Total		2600	

Table 6.177: Community structure -Site V59 (Herbs)							
S.No.	Name of Species	Frequency	Density	IVI			
3.110.	•	(%)	(ind./ha ⁻¹)				
	Pre Monsoon						
1	Artemisia nilagirica	33	11667	22			
2	Arundo donax	33	10000	21			
3	Bidens pilosa	25	3333	12			
4	Cannabis sativa	17	9167	14			
5	Cyprus niveus	8	10000	12			
6	Chenopodium album	33	9167	20			
7	Cymbopogon martini	25	8333	16			
8	Cynodon dactylon	17	3333	9			
9	Cyperus rotundus	33	8333	19			
10	Ipomea nil	17	8333	14			
11	Parthenium hysterophorus	25	11667	20			
12	Solanum nigrum	25	13333	21			
	Total		106667				
	Monsoon						
1	Artemisia nilagirica	25	8333	15			
2	Arundo donax	33	10833	19			
3	Bidens pilosa	25	10000	16			
4	Cannabis sativa	33	8333	17			
5	Cymbopogon martini	17	7500	11			
6	Cyperus rotundus	33	10000	18			
7	Fragaria vesca	25	8333	15			
8	Ipomea nil	33	6667	15			
9	Nasturtium officinale	17	5000	9			
10	Oxalis corniculata	17	7500	11			
11	Parthenium hysterophorus	33	9167	18			
12	Pteridium aquilinum	17	6667	11			
13	Solanum nigrum	25	5833	12			
14	Urginea indica	17	7500	11			
			111667				
	Winter						
1	Artemisia nilagirica	33	9167	20			
2	Bidens pilosa	17	5000	11			
3	Cannabis sativa	17	5833	11			
4	Cymbopogon martini	33	8333	19			

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
5	Cyperus rotundus	17	6667	12
6	Fragaria vesca	33	10833	22
7	Ipomea nil	25	9167	17
8	Nasturtium officinale	17	5833	11
9	Chenopodium album	17	7500	13
10	Parthenium hysterophorus	25	9167	17
11	Pteridium aquilinum	25	8333	17
12	Solanum nigrum	17	9167	15
13	Urginea indica	25	5833	14
			100833	

Site V60: Dhaulasidh HEP II: Near Proposed Dam Site

Table 6.178: Community structure -Site V60 (Trees)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	TBC (m²ha-1)	IVI
1	Acacia catechu	20	40	6.48	32
2	Albizia lebbeck	30	30	8.00	35
3	Bombax ceiba	20	20	13.52	38
4	Cedrela toona	20	20	2.00	18
5	Dalbergia sissoo	40	60	5.12	44
6	Delonix regia	20	20	6.48	26
7	Flacourtia indica	10	10	1.28	9
8	Lannea coromandelica	40	60	1.28	37
9	Mallotus philippensis	20	30	3.92	24
10	Phoenix humilis	10	10	2.00	11
11	Pinus roxburghii	10	30	8.00	27
	Total		330		

Table 6.179: Community structure -Site V60 (Shrubs)

Table 6.179. Collinative structure -Site voo (Siliabs)									
S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI					
1	Adhatoda zeylanica	20	300	45					
2	Ampelocissus latifolia	20	200	31					
3	Arundinella nepalensis	10	100	12					
4	Asparagus adscendens	30	400	30					
5	Carissa spinarum	30	400	32					
6	Caryopteris odorata	20	200	38					
7	Lantana camara	60	700	55					
8	Solanum erianthum	20	200	19					
9	Ziziphus jujuba	20	200	39					
	Total		2700						

Table 6.180: Community structure -Site V60 (Herbs)

S.No.	Name of Species	Frequency (%)	Density (ind./ha ⁻¹)	IVI
	Pre Monsoon			
1	Ageratum conyzoides	25	10000	22
2	Cynodon dactylon	25	15833	28
3	Cyperus rotundus	33	17500	34
4	Nasturtium officinale	25	15833	28
5	Parthenium hysterophorus	33	14167	30
6	Poa annua	17	8333	16
7	Solanum nigrum	25	10000	22
8	Urginea indica	25	7500	20
	Total		99167	
	Monsoon			
1	Ageratum conyzoides	33	9167	21
2	Curcuma aromatica	33	13333	25
3	Cuscuta reflexa	25	13333	22
4	Cyperus rotundus	17	9167	15

5	Nasturtium officinale	33	8333	20
6	Parthenium hysterophorus	42	13333	28
7	Poa annua	17	10833	16
8	Solanum nigrum	33	8333	20
9	Urginea indica	17	9167	15
10	Xanthium indicum	25	10833	19
			105833	
	Winter			
1	Ageratum conyzoides	33	10833	25
2	Curcuma aromatica	33	11667	26
3	Cyperus rotundus	17	10000	18
4	Nasturtium officinale	33	9167	24
5	Parthenium hysterophorus	42	13333	32
6	Poa annua	17	10833	19
7	Solanum nigrum	33	9167	24
8	Xanthium indicum	17	4167	11
9	Urginea indica	25	10000	21
			89167	

Annexure IV

<u>Distribution and conservation status of mammalian fauna in different sub basins</u>

			Distribution Range (in m)	Conservation status		Sub basins										
Family	Common Name	Scientific Name		IUCN	IWPA	BSI	BS II	MIN	PVI	PVII	SK	тт	BSIII	Uhl	BSIV	BSV
Cercopithetidae	Rhesus Macaque	Macaca mulatta	Up to 3100	LC	П	+	+	+	+	+	+	+	+	+	+	+
	Hanuman Langur	Semnopithecus entellus	1800-3200	LC	П	+	+	+	+	+	+	+	+	+	+	+
Felidae	Common Leopard	Panthera pardus	up to 3000	VU	I	+	+	+	+	+	+	+	+	+	+	+
	Leopard Cat	Prionailurus bengalensis	up to 1400	LC	I		+			+	+	+	+	+	+	+
	Snow Leopard	Panthera uncia	above 3000	EN	I	+	+	+	+		+	+		+	+	
	Jungle Cat	Felis chaus	up to 3000	LC	П	+	+	+	+	+	+	+	+	+	+	+
Viverridae	Small Civet	Viverricula indica	Foothills	LC	П										+	+
	Common Palm Civet	Paradoxurus hermaphroditus	Lower Reaches	LC	II								+	+	+	+
Herpestidae	Common Mongoose	Herpestes edwardsii	Foothills	LC	IV										+	+
Hyaenidae	Striped Hyaena	Hyaena hyaena	Foothills	NT	Ш										+	+
Canidae	Jackal	Canis aureus	up to 3500	LC	П	+	+	+	+	+	+	+	+	+	+	+
	Indian Fox	Vulpes bengalensis	Foothills	LC	П										+	+
Ursidae	Asiatic Black Bear	Ursus thibetanus	1500-3500	VU	П	+	+	+	+	+	+	+	+	+	+	+
	Brown Bear	Ursus arctos	above 3000	LC	I	+	+	+	+	+	+	+		+	+	
Mustelidae	Common Otter	Lutra lutra	up to 3600	NT	П	+	+	+	+	+	+	+	+	+	+	+
	Stone Marten	Martes foina	above 1500	LC	П	+	+	+	+	+	+	+	+	+	+	+
	Yellow-thrioated Marten	Martes flavigula	1200-2700	LC	II	+	+	+	+	+	+	+	+	+	+	+
	Himalayan Weasal	Mustela sibirica	1500-4800	LC	П	+	+	+	+	+	+	+	+	+	+	+
Bovidae	Blue Sheep	Pseudois nayaur	above 3500	LC	ı	+	+	+	+	+	+	+		+	+	+
	Siberian Ibex	Capra sibirica	3800-4400	LC	I			+	+	+	+	+		+	+	
	Himalayan Tahr	Hemitragus jemlahicus	2000-3800	NT	I	+	+	+	+	+	+	+	+	+	+	

	Serow	Capricornis sumatraensis	1800-3400	VU	1	+	+	+	+	+	+	+	+	+	+	+
	Goral	Naemorhedus goral		NT	III	+	+	+	+	+	+	+	+	+	+	+
Cervidae	Sambar	Cervus unicolor	Foothills	VU	Ш										+	+
	Barking Deer	Muntiacus muntjak	500-2500	LC	Ш	+	+	+	+	+	+	+	+	+	+	+
	Musk Deer	Moschus chrysogaster	above 2400	EN	1	+	+	+	+	+	+	+	+	+	+	
	Indian Wild Boar	Sus scrofa	up to 1500	LC	Ш		+			+	+	+	+	+	+	+
Hystricidae	Indian Porcupine	Hystrix indica	1300-2700	LC	IV	+	+	+	+	+	+	+	+	+	+	+
Leporidae	Black-naped Hare	Lepus nigricollis	up to 1200	LC	IV		+			+	+	+	+	+	+	+
Pteropodidae	Flying Fox	Pteropus giganteus	up to 2100	LC		+	+	+	+	+	+	+	+	+	+	+
	Fulvous Fruit Bat	Rousettus leschenaulti	upto 2100	LC	٧	+	+	+	+	+	+	+	+	+	+	+
Rhinopomoatidae	Common Yellow Bat	Scotophilus hardwickii	up to 2100	LC	V	+	+	+	+	+	+	+	+	+	+	+
Sciuridae	Kashmir Flying Squirrel	Eoglaucomys fimbriatus	1800-3000	LC	II	+	+	+	+	+	+	+	+	+	+	+
	Red Flying Squirrel	Petaurista Petaurista	up to 3500	LC	П	+	+	+	+	+	+	+	+	+	+	+
Muridae	House Rat	Rattus rattus	all human settlement	LC	V	+	+	+	+	+	+	+	+	+	+	+
	House Mouse	Mus musculus	all human settlement	LC	٧	+	+	+	+	+	+	+	+	+	+	+
	Lesser Bandicoo rat	Bandicota bengalensis	all human settlement	LC		+	+	+	+	+	+	+	+	+	+	+
Cricetidae	Royle's Vole	Alticola roylei	1700-2800	NT		+	+	+	+	+	+	+	+	+	+	+
Soricidae	Himalayan Water Shrew	Chimarrogale himalayica	above 3000	LC	٧	+	+	+	+	+	+	+	+	+	+	
	House Shrew	Suncus murinus RSIV = Reas IV RSV = Reas IV	up to 3000	LC	٧	+	+	+	+	+	+	+	+	+	+	

BSI = Beas I, BSII = Beas II, BSIII = Beas III, BSIV = Beas IV, BSV = Beas V, MLN = Malana, PVI= Pavati I, PVII = Parvati II, SK = Sainj Khad, TT= Tirthan, Uhl = Uhl; LC = least concerned, NT = near threatened, VU = vulnerable, EN = endangered

Annexure-V

<u>List of Avi-fauna reportedly found in Beas basin based upon secondary data</u>

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
1	Accipitriformes	Accipitridae	Accipiter badius	Shikra	LC
2	Accipitriformes	Accipitridae	Accipiter gentilis	Northern Goshawk	LC
3	Accipitriformes	Accipitridae	Accipiter nisus	Eurasian Sparrowhawk	LC
4	Accipitriformes	Accipitridae	Accipiter virgatus	Besra	LC
5	Accipitriformes	Accipitridae	Aegypius monachus	Cinereous Vulture	NT
6	Accipitriformes	Accipitridae	Aquila chrysaetos	Golden Eagle	LC
7	Accipitriformes	Accipitridae	Aquila fasciata	Bonelli's Eagle	LC
8	Accipitriformes	Accipitridae	Aquila heliaca	Eastern Imperial Eagle	VU
9	Accipitriformes	Accipitridae	Aquila nipalensis	Steppe Eagle	EN
10	Accipitriformes	Accipitridae	Aquila rapax	Tawny Eagle	LC
11	Accipitriformes	Accipitridae	Butastur teesa	White-eyed Buzzard	LC
12	Accipitriformes	Accipitridae	Buteo buteo	Eurasian Buzzard	LC
13	Accipitriformes	Accipitridae	Buteo hemilasius	Upland Buzzard	LC
14	Accipitriformes	Accipitridae	Buteo rufinus	Long-legged Buzzard	LC
15	Accipitriformes	Accipitridae	Circaetus gallicus	Short-toed Eagle	LC
16	Accipitriformes	Accipitridae	Circus aeruginosus	Western Marsh Harrier	LC
17	Accipitriformes	Accipitridae	Circus cyaneus	Hen Harrier	LC
18	Accipitriformes	Accipitridae	Circus hudsonius	Northern Harrier	LC
19	Accipitriformes	Accipitridae	Circus macrourus	Pallid Harrier	NT
20	Accipitriformes	Accipitridae	Circus melanoleucos	Pied Harrier	LC
21	Accipitriformes	Accipitridae	Circus pygargus	Montagu's Harrier	LC
22	Accipitriformes	Accipitridae	Clanga clanga	Greater Spotted Eagle	VU
23	Accipitriformes	Accipitridae	Clanga hastata	Indian Spotted Eagle	VU

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
24	Accipitriformes	Accipitridae	Clanga pomarina	Lesser Spotted Eagle	LC
25	Accipitriformes	Accipitridae	Elanus caeruleus	Black-winged Kite	LC
26	Accipitriformes	Accipitridae	Gypaetus barbatus	Bearded Vulture/ Lammergeier	NT
27	Accipitriformes	Accipitridae	Gyps bengalensis	White-rumped Vulture	CR
28	Accipitriformes	Accipitridae	Gyps fulvus	Griffon Vulture	LC
29	Accipitriformes	Accipitridae	Gyps himalayensis	Himalayan Griffon	NT
30	Accipitriformes	Accipitridae	Gyps tenuirostris	Slender-billed Vulture	CR
31	Accipitriformes	Accipitridae	Haliaeetus albicilla	White-tailed Sea Eagle	LC
32	Accipitriformes	Accipitridae	Haliaeetus leucoryphus	Pallas fishing eagle	VU
33	Accipitriformes	Accipitridae	Haliastur indus	Brahminy Kite	LC
34	Accipitriformes	Accipitridae	Hieraaetus pennatus	Booted Eagle	LC
35	Accipitriformes	Accipitridae	Icthyophaga humilis	Lesser Fish Eagle	NT
36	Accipitriformes	Accipitridae	Icthyophaga ichthyaetus	Grey-headed Fish Eagle	NT
37	Accipitriformes	Accipitridae	Ictinaetus malayensis	Black Eagle	LC
38	Accipitriformes	Accipitridae	Milvus migrans	Black Kite	LC
39	Accipitriformes	Accipitridae	Neophron percnopterus	Egyptian Vulture	EN
40	Accipitriformes	Accipitridae	Nisaetus cirrhatus	Changeable Hawk Eagle	LC
41	Accipitriformes	Accipitridae	Nisaetus nipalensis	Mountain Hawk Eagle	LC
42	Accipitriformes	Accipitridae	Pernis ptilorhynchus	Oriental Honey Buzzard	LC
43	Accipitriformes	Accipitridae	Sarcogyps calvus	Red-headed Vulture	CR
44	Accipitriformes	Accipitridae	Spilornis cheela	Crested Serpent Eagle	LC
45	Accipitriformes	Pandionidae	Pandion haliaetus	Osprey	LC
46	Anseriformes	Anatidae	Anas acuta	Northern Pintail	LC
47	Anseriformes	Anatidae	Anas crecca	Common Teal	LC
48	Anseriformes	Anatidae	Anas platyrhynchos	Mallard	LC
49	Anseriformes	Anatidae	Anas poecilorhyncha	Indian Spot-billed Duck	LC
50	Anseriformes	Anatidae	Anas strepera	Gadwal	LC

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
51	Anseriformes	Anatidae	Anser albifrons	Greater White-fronted Goose	LC
52	Anseriformes	Anatidae	Anser anser	Greylag Goose	LC
53	Anseriformes	Anatidae	Anser indicus	Bar-headed Goose	LC
54	Anseriformes	Anatidae	Aythya ferina	Common Pochard	LC
55	Anseriformes	Anatidae	Aythya fuligula	Tufted Duck	LC
56	Anseriformes	Anatidae	Aythya marila	Greater Scaup	LC
57	Anseriformes	Anatidae	Aythya nyroca	Ferruginous Duck	NT
58	Anseriformes	Anatidae	Dendrocygna bicolor	Fulvous Whistling Duck	LC
59	Anseriformes	Anatidae	Dendrocygna javanica	Lesser Whistling Duck	LC
60	Anseriformes	Anatidae	Mareca falcata	Falcated Duck	NT
61	Anseriformes	Anatidae	Mareca penelope	Eurasian Wigeon	LC
62	Anseriformes	Anatidae	Mareca strepera	Gadwall	LC
63	Anseriformes	Anatidae	Marmaronetta angustirostris	Marbled Teal	LC
64	Anseriformes	Anatidae	Mergus merganser	Goosander	LC
65	Anseriformes	Anatidae	Netta rufina	Red-crested Pochard	LC
66	Anseriformes	Anatidae	Nettapus coromandelianus	Asian Pygmy Goose	LC
67	Anseriformes	Anatidae	Sarkidiornis melanotos	Comb Duck	LC
68	Anseriformes	Anatidae	Spatula clypeata	Northern Shoveler	LC
69	Anseriformes	Anatidae	Spatula querquedula	Garganey	LC
70	Anseriformes	Anatidae	Tadorna ferruginea	Ruddy shelduck	LC
71	Anseriformes	Anatidae	Tadorna tadorna	Common shelduck	LC
72	Apodiformes	Apodidae	Tachornis squamata	Fork-tailed Swift	LC
73	Bucerotiformes	Bucerotidae	Anthracoceros albirostris	Oriental Pied Hornbill	LC
74	Bucerotiformes	Bucerotidae	Ocyceros birostris	Indian Grey Hornbill	LC
75	Bucerotiformes	Upupidae	Upupa epops	Common Hoopoe	LC
76	Caprimulgiformes	Apodidae	Aerodramus brevirostris	Himalayan Swiftlet	LC
77	Caprimulgiformes	Apodidae	Apus affinis	Little Swift	LC

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
78	Caprimulgiformes	Apodidae	Apus apus	Common Swift	LC
79	Caprimulgiformes	Apodidae	Apus pacificus	Pacific Swift	LC
80	Caprimulgiformes	Apodidae	Cypsiurus balasiensis	Asian Palm Swift	LC
81	Caprimulgiformes	Apodidae	Hirundapus caudacutus	White-throated Needletail	LC
82	Caprimulgiformes	Apodidae	Tachymarptis melba	Alpine Swift	LC
83	Caprimulgiformes	Caprimulgidae	Caprimulgus affinis	Savanna Nightjar	LC
84	Caprimulgiformes	Caprimulgidae	Caprimulgus asiaticus	Indian Nightjar	LC
85	Caprimulgiformes	Caprimulgidae	Caprimulgus indicus	Grey Nightjar	LC
86	Caprimulgiformes	Caprimulgidae	Caprimulgus macrurus	Large-tailed Nightjar	LC
87	Caprimulgiformes	Caprimulgidae	Caprimulgus mahrattensis	Sykes's Nightjar	LC
88	Charadriiformes	Burhinidae	Burhinus oedicnemus	Eurasian Thick-knee	LC
89	Charadriiformes	Burhinidae	Esacus recurvirostris	Great Thick-knee	NT
90	Charadriiformes	Charadriidae	Charadrius alexandrinus	Kentish Plover	LC
91	Charadriiformes	Charadriidae	Charadrius dubius	Little Ringed Plover	LC
92	Charadriiformes	Charadriidae	Charadrius hiaticula	Common Ringed Plover	LC
93	Charadriiformes	Charadriidae	Charadrius mongolus	Lesser Sand Plover	LC
94	Charadriiformes	Charadriidae	Pluvialis fulva	Pacific Golden Plover	LC
95	Charadriiformes	Charadriidae	Pluvialis squatarola	Grey Plover	LC
96	Charadriiformes	Charadriidae	Vanellus cinereus	Grey-headed Lapwing	LC
97	Charadriiformes	Charadriidae	Vanellus duvaucelii	River Lapwing	NT
98	Charadriiformes	Charadriidae	Vanellus gregarius	Sociable Lapwing	CR
99	Charadriiformes	Charadriidae	Vanellus indicus	Red-wattled Lapwing	LC
100	Charadriiformes	Charadriidae	Vanellus leucurus	White-tailed Lapwing	LC
101	Charadriiformes	Charadriidae	Vanellus malabaricus	Yellow-wattled Lapwing	LC
102	Charadriiformes	Charadriidae	Vanellus vanellus	Northern Lapwing	NT
103	Charadriiformes	Glareolidae	Cursorius coromandelicus	Indian Courser	LC
104	Charadriiformes	Glareolidae	Glareola lactea	Little Pratincole	LC

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
105	Charadriiformes	Glareolidae	Glareola maldivarum	Oriental Pratincole	LC
106	Charadriiformes	Haematopodidae	Haematopus ostralegus	Eurasian Oystercatcher	NT
107	Charadriiformes	Jacanidae	Hydrophasianus chirurgus	Pheasant-tailed Jacana	NA
108	Charadriiformes	Jacanidae	Metopidius indicus	Bronze-winged Jacana	LC
109	Charadriiformes	Laridae	Chlidonias hybrida	Whiskered Tern	NA
110	Charadriiformes	Laridae	Chroicocephalus brunnicephalus	Brown-headed Gull	NA
111	Charadriiformes	Laridae	Chroicocephalus genei	Slender-billed Gull	NA
112	Charadriiformes	Laridae	Chroicocephalus ridibundus	Black-headed Gull	NA
113	Charadriiformes	Laridae	Gelochelidon nilotica	Gull-billed Tern	NA
114	Charadriiformes	Laridae	Hydrocoloeus minutus	Little Gull	NA
115	Charadriiformes	Laridae	Hydroprogne caspia	Caspian Tern	LC
116	Charadriiformes	Laridae	Ichthyaetus ichthyaetus	Pallas's Gull	NA
117	Charadriiformes	Laridae	Larus cachinnans	Caspian Gull	NA
118	Charadriiformes	Laridae	Larus canus	Mew Gull	NA
119	Charadriiformes	Laridae	Larus ridibundus	Black Headed Gull	LC
120	Charadriiformes	Laridae	Rynchops albicollis	Indian Skimmer	NA
121	Charadriiformes	Laridae	Sterna acuticauda	Black-bellied Tern	NA
122	Charadriiformes	Laridae	Sterna aurantia	River Tern	NA
123	Charadriiformes	Laridae	Sterna hirundo	Common Tern	NA
124	Charadriiformes	Laridae	Sternula albifrons	Little Tern	NA
125	Charadriiformes	Recurvirostridae	Himantopus himantopus	Black Winged Stilt	LC
126	Charadriiformes	Recurvirostridae	Recurvirostra avosetta	Pied avocet	LC
127	Charadriiformes	Rostratulidae	Rostratula benghalensis	Greater Painted-snipe	LC
128	Charadriiformes	Scolopacidae	Actitis hypoleucos	Common Sandpiper	LC
129	Charadriiformes	Scolopacidae	Arenaria interpres	Ruddy Turnstone	LC
130	Charadriiformes	Scolopacidae	Calidris alpina	Dunlin	LC

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
131	Charadriiformes	Scolopacidae	Calidris ferruginea	Curlew Sandpiper	NT
132	Charadriiformes	Scolopacidae	Calidris minuta	Little Stint	LC
133	Charadriiformes	Scolopacidae	Calidris pugnax	Ruff	LC
134	Charadriiformes	Scolopacidae	Calidris temminckii	Temminck's Stint	LC
135	Charadriiformes	Scolopacidae	Gallinago gallinago	Common Snipe	LC
136	Charadriiformes	Scolopacidae	Gallinago nemoricola	Wood Snipe	VU
137	Charadriiformes	Scolopacidae	Gallinago solitaria	Solitary Snipe	LC
138	Charadriiformes	Scolopacidae	Gallinago stenura	Pintail Snipe	LC
139	Charadriiformes	Scolopacidae	Limosa limosa	Black-tailed Godwit	NT
140	Charadriiformes	Scolopacidae	Lymnocryptes minimus	Jack Snipe	LC
141	Charadriiformes	Scolopacidae	Numenius arquata	Eurasian Curlew	NT
142	Charadriiformes	Scolopacidae	Numenius phaeopus	Whimbrel	LC
143	Charadriiformes	Scolopacidae	Phalaropus lobatus	Red-necked Phalarope	LC
144	Charadriiformes	Scolopacidae	Scolopax rusticola	Eurasian Woodcock	LC
145	Charadriiformes	Scolopacidae	Tringa erythropus	Spotted Redshank	LC
146	Charadriiformes	Scolopacidae	Tringa glareola	Wood Sandpiper	LC
147	Charadriiformes	Scolopacidae	Tringa nebularia	Common Greenshank	LC
148	Charadriiformes	Scolopacidae	Tringa ochropus	Green Sandpiper	LC
149	Charadriiformes	Scolopacidae	Tringa stagnatilis	Marsh Sandpiper	LC
150	Charadriiformes	Scolopacidae	Tringa totanus	Common Redshank	LC
151	Charadriiformes	Scolopacidae	Xenus cinereus	Terek Sandpiper	LC
152	Charadriiformes	Turnicidae	Turnix suscitator	Barred Buttonquail	LC
153	Charadriiformes	Turnicidae	Turnix sylvaticus	Common Buttonquail	LC
154	Charadriiformes	Turnicidae	Turnix tanki	Yellow-legged Buttonquail	LC
155	Ciconiiformes	Ardeidae	Ardeola grayii	Indian Pond Heron	LC
156	Ciconiiformes	Ardeidae	Bubulcus ibis	Cattle Egret	LC
157	Ciconiiformes	Ardeidae	Egretta garzetta	Little Egret	LC

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
158	Ciconiiformes	Ciconiidae	Leptoptilos dubius	Greater Adjutant	EN
159	Ciconiiformes	Ciconiidae	Leptoptilos javanicus	Lesser Adjutant	VU
160	Ciconiiformes	Ciconiidae	Mycteria leucocephala	Painted Stork	NT
161	Columbiformes	Columbidae	Chalcophaps indica	Emerald Dove	LC
162	Columbiformes	Columbidae	Columba eversmanni	Pale-backed Pigeon	VU
163	Columbiformes	Columbidae	Columba hodgsonii	Speckled Wood Pigeon	LC
164	Columbiformes	Columbidae	Columba leuconota	Snow Pigeon	LC
165	Columbiformes	Columbidae	Columba livia	Rock Pigeon	LC
166	Columbiformes	Columbidae	Columba palumbus	Wood Pigeon	LC
167	Columbiformes	Columbidae	Streptopelia chinensis	Spotted Dove	LC
168	Columbiformes	Columbidae	Streptopelia decaocto	Eurasian Collared Dove	LC
169	Columbiformes	Columbidae	Streptopelia orientalis	Oriental Turtle Dove	LC
170	Columbiformes	Columbidae	Streptopelia senegalensis	Laughing Dove	LC
171	Columbiformes	Columbidae	Streptopelia tranquebarica	Red Collared Dove	LC
172	Columbiformes	Columbidae	Treron phoenicopterus	Yellow-legged Green Pigeon	LC
173	Columbiformes	Columbidae	Treron sphenurus	Wedge Tailed Green Pigeon	LC
174	Coraciiformes	Alcedinidae	Alcedo atthis	Small Blue Kingfisher	LC
175	Coraciiformes	Alcedinidae	Ceryle rudis	Pied Kingfisher	LC
176	Coraciiformes	Alcedinidae	Halcyon albiventris	Brown headed Kingfisher	LC
177	Coraciiformes	Alcedinidae	Halcyon smyrnensis	White Breasted Kingfisher	LC
178	Coraciiformes	Alcedinidae	Megaceryle lugubris	Crested Kingfisher	LC
179	Coraciiformes	Coraciiae	Coracias benghalensis	Indian Roller	LC
180	Coraciiformes	Coraciidae	Coracias garrulus	European Roller	LC
181	Coraciiformes	Meropidae	Merops leschenaulti	Chestnut-headed Bee-eater	NA
182	Coraciiformes	Meropidae	Merops orientalis	Small Bee Eater	LC
183	Coraciiformes	Meropidae	Merops persicus	Blue-cheeked Bee-eater	NA
184	Coraciiformes	Meropidae	Merops philippinus	Blue-tailed Bee-eater	NA

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
185	Cuculiformes	Cuculidae	Cacomantis passerinus	Grey-bellied Cuckoo	LC
186	Cuculiformes	Cuculidae	Cacomantis sonneratii	Banded Bay Cuckoo	LC
187	Cuculiformes	Cuculidae	Centropus sinensis	Greater Coucal	LC
188	Cuculiformes	Cuculidae	Clamator coromandus	Chestnut-winged Cuckoo	LC
189	Cuculiformes	Cuculidae	Clamator jacobinus	Jacobin Cuckoo/ Pied Cuckoo	LC
190	Cuculiformes	Cuculidae	Cuculus canorus	Common Cuckoo	LC
191	Cuculiformes	Cuculidae	Cuculus micropterus	Indian Cuckoo	LC
192	Cuculiformes	Cuculidae	Cuculus poliocephalus	Lesser Cuckoo	LC
193	Cuculiformes	Cuculidae	Cuculus saturatus	Oriental Cuckoo	LC
194	Cuculiformes	Cuculidae	Eudynamys scolopacea	Asian Koel	LC
195	Cuculiformes	Cuculidae	Eudynamys scolopaceus	Common Koel	LC
196	Cuculiformes	Cuculidae	Hierococcyx sparverioides	Large Hawk-cuckoo	LC
197	Cuculiformes	Cuculidae	Hierococcyx varius	Common Hawk Cuckoo	LC
198	Cuculiformes	Cuculidae	Surniculus lugubris	Drongo Cuckoo	LC
199	Cuculiformes	Cuculidae	Taccocua leschenaultii	Sirkeer Malkoha	LC
200	Falconiformes	Falconidae	Falco amurensis	Amur Falcon	LC
201	Falconiformes	Falconidae	Falco cherrug	Saker Falcon	EN
202	Falconiformes	Falconidae	Falco chicquera	Red-necked Falcon	EN
203	Falconiformes	Falconidae	Falco jugger	Laggar Falcon	NT
204	Falconiformes	Falconidae	Falco naumanni	Lesser Kestrel	LC
205	Falconiformes	Falconidae	Falco peregrinus	Peregrine Falcon	LC
206	Falconiformes	Falconidae	Falco severus	Oriental Hobby	LC
207	Falconiformes	Falconidae	Falco subbuteo	Eurasian Hobby	LC
208	Falconiformes	Falconidae	Falco tinnunculus	Common Kestrel	LC
209	Galliformes	Phasianidae	Alectoris chukar	Chukar Partridge	LC
210	Galliformes	Phasianidae	Arborophila torqueola	Hill Partridge	LC
211	Galliformes	Phasianidae	Catreus wallichii	Cheer Pheasant	VU

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
212	Galliformes	Phasianidae	Coturnix coromandelica	Rain Quail	LC
213	Galliformes	Phasianidae	Coturnix coturnix	Common Quail	LC
214	Galliformes	Phasianidae	Francolinus francolinus	Black Francolin	LC
215	Galliformes	Phasianidae	Francolinus pictus	Painted Francolin	LC
216	Galliformes	Phasianidae	Francolinus pondicerianus	Grey Francolin	LC
217	Galliformes	Phasianidae	Galloperdix lunulata	Painted Spurfowl	LC
218	Galliformes	Phasianidae	Gallus gallus	Red Junglefowl	LC
219	Galliformes	Phasianidae	Lerwa lerwa	Snow Partridge	LC
220	Galliformes	Phasianidae	Lophophorus impejanus	Monal	LC
221	Galliformes	Phasianidae	Lophura leucomelana	Kalij	NA
222	Galliformes	Phasianidae	Lophura leucomelanos	Kalij Pheasant	LC
223	Galliformes	Phasianidae	Pavo cristatus	Indian Peafowl	LC
224	Galliformes	Phasianidae	Perdicula asiatica	Jungle Bush Quail	LC
225	Galliformes	Phasianidae	Pucrasia macrolopha	Koklas	LC
226	Galliformes	Phasianidae	Synoicus chinensis	Blue-breasted Quail	LC
227	Galliformes	Phasianidae	Tetraogallus himalayensis	Himalayan Snowcock	LC
228	Galliformes	Phasianidae	Tragopan melanocephalus	Western Tragopan	VU
229	Gruiformes	Gruidae	Antigone antigone	Sarus Crane	VU
230	Gruiformes	Gruidae	Grus grus	Common Crane	LC
231	Gruiformes	Gruidae	Grus virgo	Demoiselle Crane	LC
232	Gruiformes	Rallidae	Amaurornis phoenicurus	White-breasted Waterhen	LC
233	Gruiformes	Rallidae	Amaurornis phoenicurus	White breasted Waterhen	LC
234	Gruiformes	Rallidae	Fulica atra	Coots	LC
235	Gruiformes	Rallidae	Gallicrex cinerea	Watercock	LC
236	Gruiformes	Rallidae	Gallinula chloropus	Waterhen	LC
237	Gruiformes	Rallidae	Porphyrio porphyrio	Purple Swamphen	LC
238	Gruiformes	Rallidae	Rallus aquaticus	Western Water Rail	LC

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
239	Gruiformes	Rallidae	Zapornia akool	Brown Crake	LC
240	Gruiformes	Rallidae	Zapornia fusca	Ruddy-breasted Crake	LC
241	Gruiformes	Rallidae	Zapornia pusilla	Baillon's Crake	LC
242	Otidiformes	Otididae	Ardeotis nigriceps	Great Indian Bustard	CR
243	Otidiformes	Otididae	Sypheotides indicus	Lesser Florican	EN
244	Passeriformes	Acrocephalidae	Acrocephalus agricola	Paddyfield Warbler	LC
245	Passeriformes	Acrocephalidae	Acrocephalus dumetorum	Blyth's Reed Warbler	LC
246	Passeriformes	Acrocephalidae	Acrocephalus melanopogon	Moustached Warbler	LC
247	Passeriformes	Acrocephalidae	Acrocephalus stentoreus	Clamorous Reed Warbler	LC
248	Passeriformes	Acrocephalidae	Iduna caligata	Booted Warbler	NA
249	Passeriformes	Acrocephalidae	Phylloscopus humei	Hume's Warbler	LC
250	Passeriformes	Acrocephalidae	Phylloscopus xanthoschistos	Grey-hooded Warbler	LC
251	Passeriformes	Aegithalidae	Aegithalos concinnus	Black Throated Tit	LC
252	Passeriformes	Aegithalidae	Aegithalos niveogularis	White Throated Tit	LC
253	Passeriformes	Aegithinidae	Aegithina nigrolutea	White Tailed Lora	LC
254	Passeriformes	Aegithinidae	Aegithina tiphia	Common Iora	LC
255	Passeriformes	Alaudidae	Alauda arvensis	Eurasian Sky Lark	LC
256	Passeriformes	Alaudidae	Alauda gulgula	Oriental Sky Lark	LC
257	Passeriformes	Alaudidae	Ammomanes phoenicura	Rufous-tailed Lark	LC
258	Passeriformes	Alaudidae	Calandrella acutirostris	Hume's Short-toed Lark	LC
259	Passeriformes	Alaudidae	Calandrella brachydactyla	Greater Short-toed Lark	LC
260	Passeriformes	Alaudidae	Calandrella raytal	Indian sand lark	LC
261	Passeriformes	Alaudidae	Eremophila alpestris	Horned Lark	LC
262	Passeriformes	Alaudidae	Eremopterix griseus	Ashy-crowned Sparrow Lark	LC
263	Passeriformes	Alaudidae	Galerida cristata	Crested Lark	LC
264	Passeriformes	Alaudidae	Galerida deva	Sykes's Lark	LC
265	Passeriformes	Alaudidae	Melanocorypha bimaculata	Bimaculated Lark	LC

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
266	Passeriformes	Alaudidae	Mirafra assamica	Bengal Lark	LC
267	Passeriformes	Alaudidae	Mirafra erythroptera	Indian Bush Lark	LC
268	Passeriformes	Campephagidae	Coracina javensis	Large Cuckooshrike	LC
269	Passeriformes	Campephagidae	Coracina melanoptera	Black-winged Cuckooshrike	LC
270	Passeriformes	Campephagidae	Lalage melanoptera	Black-headed Cuckooshrike	LC
271	Passeriformes	Campephagidae	Pericrocotus cinnamomeus	Small Minivet	LC
272	Passeriformes	Campephagidae	Pericrocotus erythropygius	White-bellied Minivet	LC
273	Passeriformes	Campephagidae	Pericrocotus ethologus	Long-tailed Minivet	LC
274	Passeriformes	Campephagidae	Pericrocotus roseus	Rosy Minivet	LC
275	Passeriformes	Certhiidae	Certhia familiaris	Eurasian Treecreeper	LC
276	Passeriformes	Certhiidae	Certhia himalayana	Bar-tailed Tree Creeper	LC
277	Passeriformes	Certhiidae	Salpornis spilonotus	Spotted Treecreeper	LC
278	Passeriformes	Chloropseidae	Chloropsis jerdoni	Jerdon's Leafbird	LC
279	Passeriformes	Cinclidae	Cinclus pallasii	Brown Dipper	LC
280	Passeriformes	Cisticolidae	Cisticola juncidis	Zitting Cisticola	LC
281	Passeriformes	Cisticolidae	Prinia buchanani	Rufous-fronted Prinia	LC
282	Passeriformes	Cisticolidae	Prinia burnesii	Long-tailed Grass Babbler	NT
283	Passeriformes	Cisticolidae	Prinia burnesii	Rufous-vented prinia	NT
284	Passeriformes	Cisticolidae	Prinia flaviventris	Yellow-bellied Prinia	LC
285	Passeriformes	Cisticolidae	Prinia gracilis	Graceful Prinia	LC
286	Passeriformes	Cisticolidae	Prinia hodgsonii	Grey-breasted Prinia	LC
287	Passeriformes	Corvidae	Corvus corax	Common Raven	LC
288	Passeriformes	Corvidae	Corvus macrorhynchos	Large-billed Crow	LC
289	Passeriformes	Corvidae	Corvus splendens	House Crow	LC
290	Passeriformes	Corvidae	Dendrocitta formosae	Grey Treepie	LC
291	Passeriformes	Corvidae	Dendrocitta vagabunda	Indian Treepie	LC
292	Passeriformes	Corvidae	Garrulus glandarius	Eurasian Jay	LC

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
293	Passeriformes	Corvidae	Garrulus lanceolatus	Black-headed Jay	LC
294	Passeriformes	Corvidae	Nucifraga caryocatactes	Eurasian Nutcracker	LC
295	Passeriformes	Corvidae	Pyrrhocorax graculus	Alpine Chough	LC
296	Passeriformes	Corvidae	Urocissa erythrorhyncha	Red-billed Blue Magpie	LC
297	Passeriformes	Corvidae	Urocissa flavirostris	Yellow-billed Blue Magpie	LC
298	Passeriformes	Dicaeidae	Dicaeum agile	Thick-billed Flowerpecker	LC
299	Passeriformes	Dicaeidae	Dicaeum erythrorhynchos	Pale-billed Flowerpecker	LC
300	Passeriformes	Dicaeidae	Dicaeum ignipectus	Fire-breasted Flowerpecker	LC
301	Passeriformes	Dicruridae	Dicrurus caerulescens	White-bellied Drongo	LC
302	Passeriformes	Dicruridae	Dicrurus hottentottus	Spangled Drongo	LC
303	Passeriformes	Dicruridae	Dicrurus leucophaeus	Ashy Drongo	LC
304	Passeriformes	Dicruridae	Dicrurus macrocercus	Black Drongo	LC
305	Passeriformes	Dicuridae	Dicrurus paradiseus	Greater Racket-tailed Drongo	LC
306	Passeriformes	Emberizidae	Emberiza bruniceps	Red-headed Bunting	LC
307	Passeriformes	Emberizidae	Emberiza buchanani	Grey-necked Bunting	LC
308	Passeriformes	Emberizidae	Emberiza cia	Rock Bunting	LC
309	Passeriformes	Emberizidae	Emberiza citrinella	Yellowhammer	LC
310	Passeriformes	Emberizidae	Emberiza fucata	Chestnut-eared Bunting	LC
311	Passeriformes	Emberizidae	Emberiza leucocephalos	Pine Bunting	LC
312	Passeriformes	Emberizidae	Emberiza melanocephala	Black-headed Bunting	LC
313	Passeriformes	Emberizidae	Emberiza pusillus	Little Bunting	LC
314	Passeriformes	Emberizidae	Emberiza stewarti	White-capped Bunting	LC
315	Passeriformes	Emberizidae	Melophus lathami	Crested Bunting	LC
316	Passeriformes	Estrildidae	Amandava amandava	Red munia/ Red Avadavat	LC
317	Passeriformes	Estrildidae	Lonchura malabarica	Indian Silverbill	LC
318	Passeriformes	Estrildidae	Lonchura punctulata	Scaly-breasted Munia	LC
319	Passeriformes	Fringillidae	Callacanthis burtoni	Spectacled Finch	LC

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
320	Passeriformes	Fringillidae	Carduelis cannabina	Common Linnet	LC
321	Passeriformes	Fringillidae	Carduelis carduelis	European Goldfinch	LC
322	Passeriformes	Fringillidae	Carduelis grandis	Blyth's Rosefinch	NA
323	Passeriformes	Fringillidae	Carduelis spinoides	Yellow-breasted Greenfinch	LC
324	Passeriformes	Fringillidae	Carpodacus erythrinus	Common Rose Finch	LC
325	Passeriformes	Fringillidae	Carpodacus nipalensis	Dark-breasted Rosefinch	LC
326	Passeriformes	Fringillidae	Carpodacus puniceus	Red-fronted Rosefinch	LC
327	Passeriformes	Fringillidae	Carpodacus rodochroa	Pink-browed Rosefinch	LC
328	Passeriformes	Fringillidae	Carpodacus thura	Himalayan White-browed Rosefinch	LC
329	Passeriformes	Fringillidae	Fringilla coelebs	Common Chaffinch	LC
330	Passeriformes	Fringillidae	Fringilla montifringilla	Brambling	LC
331	Passeriformes	Fringillidae	Leucosticte nemoricola	Plain Mountain Finch	LC
332	Passeriformes	Fringillidae	Mycerobas affinis	Collared Grosbeak	LC
333	Passeriformes	Fringillidae	Mycerobas carnipes	White-winged Grosbeak	LC
334	Passeriformes	Fringillidae	Mycerobas icterioides	Black-and-yellow Grosbeak	LC
335	Passeriformes	Fringillidae	Mycerobas melanozanthos	Spot-winged Grosbeak	LC
336	Passeriformes	Fringillidae	Pyrrhula aurantiaca	Orange Bullfinch	LC
337	Passeriformes	Fringillidae	Pyrrhula erythrocephala	Red-headed Bullfinch	LC
338	Passeriformes	Fringillidae	Pyrrhula nipalensis	Brown Bullfinch	LC
339	Passeriformes	Fringillidae	Serinus pusillus	Red-fronted Serin	LC
340	Passeriformes	Hirundinidae	Delichon dasypus	Asian House Martin	LC
341	Passeriformes	Hirundinidae	Delichon urbicum	House Martin	LC
342	Passeriformes	Hirundinidae	Hirundo daurica	Red-rumped Swallow	LC
343	Passeriformes	Hirundinidae	Hirundo rustica	Barn Swallow	LC
344	Passeriformes	Hirundinidae	Hirundo smithii	Wire-tailed Swallow	LC
345	Passeriformes	Hirundinidae	Petrochelidon fluvicola	Streak-throated Swallow	NA
346	Passeriformes	Hirundinidae	Ptyonoprogne concolor	Dusky Crag Martin	NA

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
347	Passeriformes	Hirundinidae	Ptyonoprogne rupestris	Eurasian Crag Martin	NA
348	Passeriformes	Hirundinidae	Riparia diluta	Pale Martin	NA
349	Passeriformes	Hirundinidae	Riparia paludicola	Plain Martin	NA
350	Passeriformes	Hirundinidae	Riparia riparia	Sand Martin	NA
351	Passeriformes	Laniidae	Lanius collurio	Red-backed Shrike	LC
352	Passeriformes	Laniidae	Lanius cristatus	Brown Shrike	NA
353	Passeriformes	Laniidae	Lanius excubitor	Great Grey Shrike	NA
354	Passeriformes	Laniidae	Lanius isabellinus	Isabelline Shrike	NA
355	Passeriformes	Laniidae	Lanius schach	Long-tailed Shrike	LC
356	Passeriformes	Laniidae	Lanius tephronotus	Grey-backed Shrike	NA
357	Passeriformes	Laniidae	Lanius vittatus	Bay-backed Shrike	NA
358	Passeriformes	Leiothrichidae	Garrulax albogularis	White-throated Laughing-thrush	NA
359	Passeriformes	Leiothrichidae	Garrulax erythrocephalus	Chestnut-crowned Laughing Thrush	LC
360	Passeriformes	Leiothrichidae	Garrulax leucolophus	White-crested Laughing-thrush	NA
361	Passeriformes	Leiothrichidae	Garrulax striata	Striated Laughing-thrush	LC
362	Passeriformes	Leiothrichidae	Garrulax variegatus	Variegated Laughing Thrush	LC
363	Passeriformes	Leiothrichidae	Heterophasia capistrata	Rufous Sibia	LC
364	Passeriformes	Leiothrichidae	Leiothrix lutea	Red-billed Leiothrix	NA
365	Passeriformes	Leiothrichidae	Trochalopteron erythrocephalum	Chestnut-crowned Laughing-thrush	NA
366	Passeriformes	Leiothrichidae	Trochalopteron lineatum	Streaked Laughing-thrush	NA
367	Passeriformes	Leiothrichidae	Trochalopteron variegatum	Variegated Laughing-thrush	NA
368	Passeriformes	Locustellidae	Locustella naevia	Grasshopper Warbler	NA
369	Passeriformes	Monarchidae	Hypothymis azurea	Black-naped Monarch	LC
370	Passeriformes	Monarchidae	Terpsiphone paradisi	Asian Paradise flycatcher	LC
371	Passeriformes	Motacillidae	Anthus campestris	Tawny Pipit	LC
372	Passeriformes	Motacillidae	Anthus cervinus	Red-throated Pipit	NA

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
373	Passeriformes	Motacillidae	Anthus godlewskii	Blyth's Pipit	LC
374	Passeriformes	Motacillidae	Anthus hodgsoni	Olive-backed Pipit	NA
375	Passeriformes	Motacillidae	Anthus richardi	Richard's Pipit	LC
376	Passeriformes	Motacillidae	Anthus roseatus	Rosy Pipit	NA
377	Passeriformes	Motacillidae	Anthus rufulus	Paddyfield Pipit	NA
378	Passeriformes	Motacillidae	Anthus similis	Long-billed Pipit	NA
379	Passeriformes	Motacillidae	Anthus spinoletta	Water Pipit	NA
380	Passeriformes	Motacillidae	Anthus sylvanus	Upland Pipit	NA
381	Passeriformes	Motacillidae	Anthus trivialis	Tree Pipit	NA
382	Passeriformes	Motacillidae	Motacilla alba	Indian white wagtail	LC
383	Passeriformes	Motacillidae	Motacilla cinerea	Grey Wagtail	LC
384	Passeriformes	Motacillidae	Motacilla citreola	Citrine Wagtail	NA
385	Passeriformes	Motacillidae	Motacilla flava	Yellow wagtail	LC
386	Passeriformes	Motacillidae	Motacilla maderaspatensis	Large pied wagtail	NA
387	Passeriformes	Muscicapidae	Brachypteryx montana	White-browed Shortwing	LC
388	Passeriformes	Muscicapidae	Cercomela fusca	Brown Rock Chat	LC
389	Passeriformes	Muscicapidae	Chaimarrornis leucocephalus	White-capped Water Redstart	LC
390	Passeriformes	Muscicapidae	Copsychus saularis	Oriental Magpie Robin	LC
391	Passeriformes	Muscicapidae	Culicicapa ceylonensis	Grey-headed Canary Flycatcher	LC
392	Passeriformes	Muscicapidae	Cyornis rubeculoides	Blue-throated Blue Flycatcher	LC
393	Passeriformes	Muscicapidae	Cyornis tickelliae	Tickell's Blue Flycatcher	LC
394	Passeriformes	Muscicapidae	Enicurus maculatus	Spotted Forktail	LC
395	Passeriformes	Muscicapidae	Enicurus scouleri	Little Forktail	LC
396	Passeriformes	Muscicapidae	Eumyias thalassinus	Asian Verditer Flycatcher	LC
397	Passeriformes	Muscicapidae	Ficedula albicilla	Taiga Flycatcher	LC
398	Passeriformes	Muscicapidae	Ficedula parva	Red-breasted Flycatcher	LC
399	Passeriformes	Muscicapidae	Ficedula strophiata	Rufous-gorgetted Flycatcher	LC

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
400	Passeriformes	Muscicapidae	Ficedula subrubra	Kashmir Flycatcher	VU
401	Passeriformes	Muscicapidae	Ficedula superciliaris	Ultramarine Flycatcher	LC
402	Passeriformes	Muscicapidae	Ficedula tricolor	Slaty blue Flycatcher	LC
403	Passeriformes	Muscicapidae	Ficedula westermanni	Little Pied Flycatcher	LC
404	Passeriformes	Muscicapidae	Hodgsonius phaenicuroides	White-bellied Redstart	LC
405	Passeriformes	Muscicapidae	Luscinia brunnea	Indian Blue Robin	LC
406	Passeriformes	Muscicapidae	Luscinia calliope	Siberian Rubythroat	LC
407	Passeriformes	Muscicapidae	Luscinia pectoralis	White-tailed Rubythroat	LC
408	Passeriformes	Muscicapidae	Luscinia svecica	Bluethroat	LC
409	Passeriformes	Muscicapidae	Monticola cinclorhynchus	Blue-capped Rock Thrush	LC
410	Passeriformes	Muscicapidae	Monticola rufiventris	Chestnut-bellied Rock Thrush	LC
411	Passeriformes	Muscicapidae	Monticola solitarius	Blue Rock Thrush	LC
412	Passeriformes	Muscicapidae	Muscicapa dauurica	Asian Brown Flycatcher	LC
413	Passeriformes	Muscicapidae	Muscicapa ruficauda	Rusty-tailed Flycatcher	LC
414	Passeriformes	Muscicapidae	Muscicapa sibirica	Dark-sided Flycatcher	LC
415	Passeriformes	Muscicapidae	Myophonus caeruleus	Blue Whistling Thrush	LC
416	Passeriformes	Muscicapidae	Niltava sundara	Rufous-bellied Niltava	LC
417	Passeriformes	Muscicapidae	Oenanthe deserti	Desert Wheatear	LC
418	Passeriformes	Muscicapidae	Oenanthe isabellina	Isabelline Wheatear	LC
419	Passeriformes	Muscicapidae	Oenanthe picata	Variable Wheatear	LC
420	Passeriformes	Muscicapidae	Oenanthe pleschanka	Pied Wheatear	LC
421	Passeriformes	Muscicapidae	Orthotomus sutorius	Common Tailorbird	LC
422	Passeriformes	Muscicapidae	Phoenicurus caeruleocephalus	Blue-capped Redstart	LC
423	Passeriformes	Muscicapidae	Phoenicurus erythrogastrus	Guldenstadt's Redstart	LC
424	Passeriformes	Muscicapidae	Phoenicurus erythronota	Rufous-backed Redstart	LC
425	Passeriformes	Muscicapidae	Phoenicurus frontalis	Blue-fronted Redstart	LC
426	Passeriformes	Muscicapidae	Phoenicurus ochruros	Black Redstart	LC

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
427	Passeriformes	Muscicapidae	Prinia crinigera	Striated Prinia	LC
428	Passeriformes	Muscicapidae	Prinia inornata	Plain Prinia	LC
429	Passeriformes	Muscicapidae	Prinia socialis	Ashy Prinia	LC
430	Passeriformes	Muscicapidae	Prinia sylvatica	Jungle Prinia	LC
431	Passeriformes	Muscicapidae	Rhyacornis fuliginosa	Plumbeous Water Redstart	LC
432	Passeriformes	Muscicapidae	Saxicola caprata	Pied Bushchat	LC
433	Passeriformes	Muscicapidae	Saxicola ferreus	Grey Bush Chat	LC
434	Passeriformes	Muscicapidae	Saxicola leucurus	White-tailed Stonechat	LC
435	Passeriformes	Muscicapidae	Saxicola maurus	Eastern Stonechat	NA
436	Passeriformes	Muscicapidae	Saxicola torquata	Collared Bushchat	LC
437	Passeriformes	Muscicapidae	Saxicoloides fulicatus	Indian Robin	LC
438	Passeriformes	Muscicapidae	Tarsiger chrysaeus	Golden Bush Robin	LC
439	Passeriformes	Muscicapidae	Turdoides caudatus	Common Babbler	LC
440	Passeriformes	Nectariniidae	Aethopyga nipalensis	Green-tailed Sunbird	LC
441	Passeriformes	Nectariniidae	Aethopyga siparaja	Crimson sunbird	LC
442	Passeriformes	Nectariniidae	Nectarinia asiatica	Purple Sunbird	LC
443	Passeriformes	Oriolidae	Oriolus kundoo	Indian Golden Oriole	NA
444	Passeriformes	Oriolidae	Oriolus oriolus	Eurasian Golden Oriole	LC
445	Passeriformes	Oriolidae	Oriolus traillii	Maroon Oriole	LC
446	Passeriformes	Oriolidae	Oriolus xanthornus	Black-hooded Oriole	LC
447	Passeriformes	Paridae	Baeolophus atricristatus	Black Crested Tit	LC
448	Passeriformes	Paridae	Lophophanes dichrous	Fulvous Tit	NA
449	Passeriformes	Paridae	Parus cinereus	Cinereous Tit	NA
450	Passeriformes	Paridae	Parus dichrous	Grey Crested Tit	LC
451	Passeriformes	Paridae	Parus major	Great Tit	LC
452	Passeriformes	Paridae	Parus monticolus	Green Backed Tit	LC
453	Passeriformes	Paridae	Parus rubidiventris	Rufous-vented Tit	LC

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
454	Passeriformes	Paridae	Parus rufonuchalis	Dark Grey Tit	LC
455	Passeriformes	Paridae	Parus spilonotus	Yellow-cheeked Tit	LC
456	Passeriformes	Paridae	Periparus ater	Coal Tit	NA
457	Passeriformes	Paridae	Periparus rufonuchalis	Rufous-naped Tit	NA
458	Passeriformes	Paridae	Sylviparus modestus	Yellow Browed Tit	LC
459	Passeriformes	Passeridae	Passer domesticus	House Sparrow	LC
460	Passeriformes	Passeridae	Passer rutilans	Russet Sparrow	LC
461	Passeriformes	Passeridae	Petronia xanthocollis	Chestnut shouldered petronia	LC
462	Passeriformes	Pellorneidae	Pellorneum ruficeps	Puff-throated Babbler	LC
463	Passeriformes	Phylloscopidae	Phylloscopus affinis	Tickell's leaf warbler	LC
464	Passeriformes	Pittidae	Pitta brachyura	Indian Pitta	LC
465	Passeriformes	Ploceidae	Ploceus benghalensis	Black-breasted Weaver	LC
466	Passeriformes	Ploceidae	Ploceus manyar	Streaked Weaver	LC
467	Passeriformes	Ploceidae	Ploceus philippinus	Baya Weaver	LC
468	Passeriformes	Prunellidae	Prunella atrogularis	Black-throated Accentor	LC
469	Passeriformes	Prunellidae	Prunella collaris	Alpine Accentor	LC
470	Passeriformes	Prunellidae	Prunella himalayana	Rufous-streaked accentor	LC
471	Passeriformes	Prunellidae	Prunella strophiata	Rufous-breasted Accentor	LC
472	Passeriformes	Pycnonotidae	Hypsipetes leucocephalus	Black Bulbul	LC
473	Passeriformes	Pycnonotidae	Pycnonotus cafer	Red-vented Bulbul	LC
474	Passeriformes	Pycnonotidae	Pycnonotus leucogenys	Himalayan Bulbul	LC
475	Passeriformes	Reguliidae	Regulus regulus	Gold Crest	LC
476	Passeriformes	Remizidae	Cephalopyrus flammiceps	Fire Capped tit	LC
477	Passeriformes	Rhipiduridae	Rhipidura albicollis	White-throated Fantail	LC
478	Passeriformes	Rhipiduridae	Rhipidura aureola	White-browed Fantail	LC
479	Passeriformes	Scotocercidae	Horornis fortipes	Brown-flanked Bush Warbler	NA
480	Passeriformes	Sittidae	Sitta carolinensis	White breasted Nuthatch	LC

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
481	Passeriformes	Sittidae	Sitta cashmirensis	Kashmir Nuthatch	LC
482	Passeriformes	Sittidae	Sitta cinnamoventris	Chestnut-bellied nuthatch	LC
483	Passeriformes	Sittidae	Sitta himalayensis	White Tailed Nuthatch	LC
484	Passeriformes	Sittidae	Sitta leucopsis	White-cheeked Nuthatch	LC
485	Passeriformes	Sittidae	Tichodroma muraria	Wall Creeper	LC
486	Passeriformes	Stenostiridae	Rhipidura hypoxantha	Yellow bellied Fantail	LC
487	Passeriformes	Sturnidae	Acridotheres fuscus	Jungle Myna	LC
488	Passeriformes	Sturnidae	Acridotheres ginginianus	Bank Myna	LC
489	Passeriformes	Sturnidae	Acridotheres tristis	Common Myna	LC
490	Passeriformes	Sturnidae	Agropsar sturninus	Purple-backed Starling	NA
491	Passeriformes	Sturnidae	Gracupica contra	Asian Pied Starling	NA
492	Passeriformes	Sturnidae	Pastor roseus	Rosy Starling	NA
493	Passeriformes	Sturnidae	Saroglossa spiloptera	Spot-winged Starling	LC
494	Passeriformes	Sturnidae	Sturnia malabarica	Chestnut-tailed Starling	NA
495	Passeriformes	Sturnidae	Sturnus pagodarum	Brahminy starling	LC
496	Passeriformes	Sturnidae	Sturnus vulgaris	Common Starling	LC
497	Passeriformes	Sylvidae	Cettia brunnifrons	Grey-sided Bush-warbler	LC
498	Passeriformes	Sylvidae	Cettia fortipes	Brownish Flanked Bush Warbler	LC
499	Passeriformes	Sylvidae	Megalurus palustris	Stariated marsh warbler/ Striated Grassbird	LC
500	Passeriformes	Sylvidae	Phylloscopus chloronotus	Pale rumped Warbler	LC
300	i assernormes	Sytvidae	T Hyttoscopus Chioronotus	Inornate Warbler/ Yellow Browed	
501	Passeriformes	Sylvidae	Phylloscopus inornatus	Warbler	LC
502	Passeriformes	Sylvidae	Phylloscopus maculipennis	Ashy Throated Warbler	LC
503	Passeriformes	Sylvidae	Phylloscopus occipitalis	Western Crowned Warbler	LC
504	Passeriformes	Sylvidae	Phylloscopus pulcher	Buff-barred Warbler	LC
505	Passeriformes	Sylvidae	Phylloscopus trochiloides	Greenish Warbler	LC

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
506	Passeriformes	Sylvidae	Seicercus burkii	Green Crowned Warbler	LC
507	Passeriformes	Sylvidae	Tesia castaneocoronata	Chestnut Headed Tesia	LC
508	Passeriformes	Sylviidae	Acrocephalus aedon	Thick-billed Warbler	LC
509	Passeriformes	Sylviidae	Chrysomma sinense	Yellow-eyed Babbler	LC
510	Passeriformes	Sylviidae	Hippolais rama	Sykes's Warbler	LC
511	Passeriformes	Sylviidae	Phylloscopus collybita	Common Chiffchaff	LC
512	Passeriformes	Sylviidae	Phylloscopus griseolus	Sulphur-bellied Warbler	LC
513	Passeriformes	Sylviidae	Phylloscopus magnirostris	Large-billed Leaf Warbler	LC
514	Passeriformes	Sylviidae	Phylloscopus reguloides	Blyth's Leaf Warbler	LC
515	Passeriformes	Sylviidae	Phylloscopus sindianus	Kashmir Chiffchaff	LC
516	Passeriformes	Sylviidae	Phylloscopus subviridis	Brooks's Leaf Warbler	LC
517	Passeriformes	Sylviidae	Phylloscopus tytleri	Tytler's Leaf Warbler	NT
518	Passeriformes	Sylviidae	Sylvia curruca	Lesser Whitethroat	LC
519	Passeriformes	Sylviidae	Sylvia nana	Asian Desert Warbler	LC
520	Passeriformes	Sylviidae	Sylvia crassirostris	Eastern Orphean Warbler	NA
521	Passeriformes	Timaliidae	Alcippe vinipectus	White-browed Fulvetta	LC
522	Passeriformes	Timaliidae	Dumetia hyperythra	Tawny-bellied Babbler	LC
523	Passeriformes	Timaliidae	Minla strigula	Chestnut-tailed Minla	LC
524	Passeriformes	Timaliidae	Pnoepyga albiventer	Scaly-breasted Wren-babbler	LC
525	Passeriformes	Timaliidae	Pomatorhinus erythrogenys	Rusty cheeked Scimitar babbler	LC
526	Passeriformes	Timaliidae	Pteruthius flaviscapis	White Browed Shrike Babbler	LC
527	Passeriformes	Timaliidae	Pteruthius xanthochlorus	Green Shrike-babbler	LC
528	Passeriformes	Timaliidae	Stachyris pyrrhops	Black-chinned Babbler	LC
529	Passeriformes	Timaliidae	Turdoides earlei	Striated babbler	LC
530	Passeriformes	Timaliidae	Turdoides malcolmi	Large Grey Babbler	LC
531	Passeriformes	Troglodytidae	Troglodytes troglodytes	Winter Wren	LC
532	Passeriformes	Turdidae	Grandala coelicolor	Grandala	LC

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
533	Passeriformes	Turdidae	Turdus albocinctus	White-collared Blackbird	LC
534	Passeriformes	Turdidae	Turdus boulboul	Grey-winged Blackbird	LC
535	Passeriformes	Turdidae	Turdus rubrocanus	Chestnut Thrush	LC
536	Passeriformes	Turdidae	Turdus ruficollis	Red-throated Thrush	LC
537	Passeriformes	Turdidae	Turdus simillimus	Indian Blackbird	NA
538	Passeriformes	Turdidae	Turdus unicolor	Tickell's Thrush	LC
539	Passeriformes	Turdidae	Turdus viscivorus	Mistle Thrush	LC
540	Passeriformes	Turdidae	Zoothera citrina	Orange-headed Thrush	LC
541	Passeriformes	Turdidae	Zoothera dixoni	Long-tailed Thrush	LC
542	Passeriformes	Turdidae	Zoothera mollissima	Plain-backed Thrush	LC
543	Passeriformes	Turdidae	Zoothera monticola	Long-billed Thrush	LC
544	Passeriformes	Vangidae	Tephrodornis pondicerianus	Common Woodshrike	LC
545	Passeriformes	Vireonidae	Pteruthius ripleyi	Himalayan Shrike-babbler	NA
546	Passeriformes	Zosteropidae	Yuhina flavicollis	Whiskered Yuhina	LC
547	Passeriformes	Zosteropidae	Zosterops palpebrosus	Oriental white-eye	LC
548	Pelecaniformes	Anhingidae	Anhinga melanogaster	Oriental Darter	NT
549	Pelecaniformes	Ardeidae	Ardea alba	Large Egret	LC
550	Pelecaniformes	Ardeidae	Ardea cinerea	Grey Heron	LC
551	Pelecaniformes	Ardeidae	Ardea intermedia	Intermediate Egret	LC
552	Pelecaniformes	Ardeidae	Ardea purpurea	Purple heron	LC
553	Pelecaniformes	Ardeidae	Botaurus stellaris	Eurasian Bittern	LC
554	Pelecaniformes	Ardeidae	Butorides striata	Striated Heron	LC
555	Pelecaniformes	Ardeidae	Ixobrychus cinnamomeus	Cinnamon Bittern	LC
556	Pelecaniformes	Ardeidae	Ixobrychus flavicollis	Black Bittern	LC
557	Pelecaniformes	Ardeidae	Ixobrychus sinensis	Yellow Bittern	LC
558	Pelecaniformes	Ardeidae	Nycticorax nycticorax	Black-crowned Night Heron	LC
559	Pelecaniformes	Ciconiidae	Anastomus oscitans	Asian Openbill	LC

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
560	Pelecaniformes	Ciconiidae	Ciconia ciconia	European White Stork	LC
561	Pelecaniformes	Ciconiidae	Ciconia episcopus	White necked strock	VU
562	Pelecaniformes	Ciconiidae	Ciconia nigra	Black Stork	LC
563	Pelecaniformes	Ciconiidae	Ephippiorhynchus asiaticus	Black-necked Stork	NT
564	Pelecaniformes	Pelecanidae	Pelecanus crispus	Dalmatian Pelican	VU
565	Pelecaniformes	Pelecanidae	Pelecanus onocrotalus	Great White Pelican	LC
566	Pelecaniformes	Pelecanidae	Pelecanus philippensis	Spot-billed Pelican	NT
567	Pelecaniformes	Threskiornithidae	Platalea leucorodia	Eurasian spoonbill	LC
568	Pelecaniformes	Threskiornithidae	Plegadis falcinellus	Glossy Ibis	LC
569	Pelecaniformes	Threskiornithidae	Pseudibis papillosa	Red-naped Ibis	LC
570	Pelecaniformes	Threskiornithidae	Threskiornis melanocephalus	Oriental white ibis	NT
571	Phoenicopteriformes	Phoenicopteridae	Phoenicopterus roseus	Greater Flamingo	LC
572	Piciformes	Capitonidae	Megalaima virens	Great barbet	LC
573	Piciformes	Indicatoridae	Indicator xanthonotus	Yellow-rumped Honeyguide	NA
574	Piciformes	Megalaimidae	Psilopogon asiaticus	Blue-throated Barbet	LC
575	Piciformes	Megalaimidae	Psilopogon haemacephalus	Coppersmith Barbet	LC
576	Piciformes	Megalaimidae	Psilopogon zeylanicus	Brown-headed Barbet	LC
577	Piciformes	Picidae	Dendrocopos auriceps	Brown-fronted Woodpecker	LC
578	Piciformes	Picidae	Dendrocopos canicapillus	Grey-capped Pygmy Woodpecker	LC
579	Piciformes	Picidae	Dendrocopos hyperythrus	Rufous-bellied Woodpecker	LC
580	Piciformes	Picidae	Dendrocopos macei	Fulvous-breasted Woodpecker	LC
581	Piciformes	Picidae	Dendrocopos mahrattensis	Yellow-crowned Woodpecker	LC
582	Piciformes	Picidae	Dendrocopos moluccensis	Brown-capped Woodpecker	LC
583	Piciformes	Picidae	Dinopium benghalense	Black-rumped Flameback	LC
584				Himalayan Flame-backed	
504	Piciformes	Picidae	Dinopium shorii	Woodpecker	LC
585	Piciformes	Picidae	Jynx torquilla	Northern Wryneck	LC

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
586	Piciformes	Picidae	Leiopicus auriceps	Brown Fronted Woodpecker	LC
587	Piciformes	Picidae	Picumnus innominatus	Speckled Piculet	LC
588	Piciformes	Picidae	Picus canus	Grey-headed Woodpecker	LC
589	Piciformes	Picidae	Picus chlorolophus	Lesser Yellow-naped Woodpecker	LC
590	Piciformes	Picidae	Picus squamatus	Scaly Bellied Woodpecker	LC
591	Piciformes	Picidae	Picus xanthopygaeus	Little scaly bellied green Woodpecker	LC
592	Piciformes	Ramphastidae	Psilopogon virens	Great Himalayan Barbets	LC
593	Podicipediformes	Podicipedidae	Podiceps auritus	Slavonian Grebe	VU
594	Podicipediformes	Podicipedidae	Podiceps cristatus	Great Crested Grebe	LC
595	Podicipediformes	Podicipedidae	Podiceps grisegena	Red-necked Grebe	LC
596	Podicipediformes	Podicipedidae	Podiceps nigricollis	Black-necked Grebe	LC
597	Podicipediformes	Podicipedidae	Tachybaptus ruficollis	Little Grabe	LC
598	Psittaciformes	Psittacidae	Psittacula cyanocephala	Plum-headed Parakeet	LC
599	Psittaciformes	Psittacidae	Psittacula eupatria	Alexandrine Parakeet	NT
600	Psittaciformes	Psittacidae	Psittacula himalayana	Slaty-headed Parakeet	LC
601	Psittaciformes	Psittacidae	Psittacula krameri	Rose-ringed Parakeet	LC
602	Pterocliformes	Pteroclidae	Pterocles exustus	Chestnut-bellied Sandgrouse	LC
603	Pterocliformes	Pteroclidae	Pterocles indicus	Painted Sandgrouse	LC
604	Pterocliformes	Pteroclidae	Pterocles senegallus	Spotted Sandgrouse	LC
605	Strigiformes	Strigidae	Asio flammeus	Short-eared Owl	LC
606	Strigiformes	Strigidae	Asio otus	Northern Long-eared Owl	LC
607	Strigiformes	Strigidae	Athene brama	Spotted Owlet	LC
608	Strigiformes	Strigidae	Bubo bengalensis	Rock Eagle Owl	LC
609	Strigiformes	Strigidae	Bubo bubo	Eurasian Eagle Owl	LC
610	Strigiformes	Strigidae	Bubo coromandus	Dusky Eagle Owl	LC
611	Strigiformes	Strigidae	Bubo nipalensis	Forest eagle Owl	LC

S.No.	Order	Family	Scientific Name	Common Name	Conservation Status IUCN Red List
612	Strigiformes	Strigidae	Glaucidium brodiei	Collared Owlet	LC
613	Strigiformes	Strigidae	Glaucidium cuculoides	Asian Barred Owlet	LC
614	Strigiformes	Strigidae	Glaucidium radiatum	Jungle Owlet	LC
615	Strigiformes	Strigidae	Ketupa flavipes	Tawny Fish Owl	LC
616	Strigiformes	Strigidae	Ketupa zeylonensis	Brown Fish Owl	LC
617	Strigiformes	Strigidae	Otus bakkamoena	Collared Scops Owl	LC
618	Strigiformes	Strigidae	Otus spilocephalus	Mountain Scops Owl	LC
619	Strigiformes	Strigidae	Otus sunia	Oriental Scops Owl	LC
620	Strigiformes	Strigidae	Strix aluco	Tawny Wood-Owl	LC
621	Strigiformes	Strigidae	Strix ocellata	Mottled Wood Owl	LC
622	Strigiformes	Tytonidae	Tyto alba	Barn owl	LC
623	Suliformes	Phalacrocoracidae	Microcarbo niger	Little Cormorant	LC
624	Suliformes	Phalacrocoracidae	Phalacrocorax carbo	Great Cormorant	LC
625	Suliformes	Phalacrocoracidae	Phalacrocorax fuscicollis	Indian Cormorant	LC

CR= Critically Endangered, EN = Endangered, NT = Near Threatened, VU = Vulnerable, LC = Least Concern

Annexure VI

Sub basin wise distribution of butterflies and their habit and conservation status in Beas Basin

				Conser	vation											
			Distribution	Status	1				1	Sul	basi	ns		I		
Family	Common Name	Scientific Name	Range (in m)	IUICN	IWPA	BSI	BSII	MLN	PVI	PVII	SK	TT	BSIII	UHL	BSIV	BSV
Papilionidae	Common Peacock	Papilio polyctor	up to 800										+	+	+	
	Blue Peacock	Papilio arcturus	up to 2500			+	+	+	+	+	+	+	+	+	+	+
	Krishna Peacok	Papilio krishna	up to 2500			+	+	+	+	+	+	+	+	+	+	+
	Common Mormon	Papilio polytes	up to 2500				+	+	+	+	+	+	+	+	+	+
	Common Yellow Swallowtail	Papilio machaon	up to 3500		П		+	+	+	+	+	+	+	+	+	
	Spangle	Papilio protenor	up to 800										+	+	+	+
	Common blue bottle	Graphium sarpedon	up to 2800			+	+	+	+	+	+	+	+	+	+	+
	Bluebottle	Graphium cloanthus	up to 2500			+	+	+	+	+	+	+	+	+	+	+
	Common Lime	Papilio demoleus	up to 2500			+	+	+	+	+	+	+	+	+	+	+
	Tawny Mime	Chilasa agestor	up to 800										+	+	+	+
	Common Mime	Chilasa clytia	up to 800										+	+	+	+
	Common Windmill	Byasa polyeuctes	up to 2500					+	+	+	+	+			+	
	Great Windmill	Byasa dasarada	up to 2800										+	+	+	+
	Regal Apollo	Parnassius charltonius	above 3000		II	+	+	+	+		+	+		+	+	
	Common Blue Apollo	Parnassius hardwickei	above 3000					+	+		+	+		+	+	
Pieridae	Bath white	Pontia daplidice	up to 2000	LC				+	+	+	+	+	+	+	+	+
	Lofty Bath White	Pontia callidice	up to 2800			+	+	+	+	+	+	+	+	+	+	+
	Psyche	Leptosia nina nina	up to 900										+	+	+	+
	Common Brimstone	Gonepteryx rhamni	up to 2800			+	+	+	+	+	+	+	+	+	+	
	Lesser Brimstone	Gonepteryx mahaguru	up to 3500			+	+	+	+	+	+	+	+	+	+	+
	Common Wanderer	Parenonia valeria	up to 2000			+	+	+	+	+	+	+	+ + + + + + + + + + + + + + + + + + +			
	Common Emigrant	Catopsilia pomona	up to 2800			+	+	+	+	+	+	+	+	+	+	+

	Mottled Emigrant	Catopsilia pyranthe	up to 1000										+	+	+	+
	Common Grass Yellow	Eurema hecabe	up to 900										+	+	+	+
	Small Grass Yellow	Eurema brigitta	up to 900	LC									+	+	+	+
	Spotless grass	Eurema laeta	up to 1000										+	+	+	+
	Three spot grass yellow	Eurema blanda	up to 900										+	+	+	+
	Dark Clouded Yellow	Colias electo	up to 2800			+	+	+	+	+	+	+	+	+	+	+
	Pale Clouded Yellow	Colias erate	above 2000			+	+	+	+	+	+	+	+	+	+	+
	Hill Jezebal	Delias belladonna	up to 2800			+	+	+	+	+	+	+	+	+		+
	Common Jezebel	Delias eucharis	up to 800										+	+	+	+
	Indian Cabbage White	Pieris canidia	up to 2800			+	+	+	+	+	+	+	+	+	+	+
	Large Cabbage White	Pieris brassicae	up to 2800			+	+	+	+	+	+	+	+	+	+	+
	Chumbi White	Pieris dubernardi	up to 2000			+	+	+	+	+	+	+	+	+	+	+
	Himalayan Blackvein	Aporia leucodice	up to 1500				+	+	+	+	+	+	+	+	+	+
	Pioneer	Belenois aurota	up to 2800			+	+	+	+	+	+	+			+	+
	Yellow Orange Tip	lxias pyrene	up to 1000										+	+	+	
	The White Orange Tip	Ixias marianne	up to 1000										+	+	+	+
	Spootted Sawtooth	Prioneris thestylis thestylis	up to 2000			+	+	+	+	+	+	+	+	+	+	+
Lycaenidae	Common Silverline	Spindasis vulcanus	up to 900										+	+	+	+
	Pulm Judy	Abisara echerius	up to 2500			+	+	+	+	+	+	+	+	+	+	+
	Dark Judy	Abisara fylla	up to 2500			+	+	+	+	+	+	+	+	+	+	+
	Tawny Coster	Acraea violae	up to 2500			+	+	+	+	+	+	+	+	+	+	+
	Yellow Coster	Pareba vesta	u to 2500			+	+	+	+	+	+	+	+	+	+	+
	White Bordered Copper	Lycaena pavana	up to 2800			+	+								+	
	Common Copper	Lycaena phlaeas	up to 2800			+	+	+	+	+	+	+	+	+	+	
	Green Copper	Lycaena kasyapa	up to 2800			+	+	+	+	+	+	+	+	+	+	+
	Common Line Blue	Prosota nora	up to 900										+	+	+	+
	Common Onyx	Horaga onyx	up to 900		П								+	+	+	+

	Common Punch	Dodona durga	up to 2800		+	+	+	+	+	+	+	+	+	+	+
	Guava Blue	Deudurix isocrates	up to 900									+	+		+
	Cornelian	Deudurix epijarbus	up to 2500		+	+	+	+	+	+	+	+	+	+	+
	Comma	Polygonia c-album	up to 3500		+	+	+	+	+	+	+	+	+	+	+
	Large Hedge Blue	Celastrina huegelii	up to 2800		+	+	+	+	+	+	+	+	+	+	
	Dark Glass Blue	Zizeeria karsandra	up to 900									+	+	+	+
	Pale Grass Blue	Pseudozizeeria maha	up to 2500		+	+	+	+	+	+	+	+	+	+	+
	Dark Grass Blue	Zizeeria lysimon	up to 2500		+	+	+	+	+	+	+	+	+	+	+
	Pea Blue	Lampides boeticus	up to 2800	Ш	+	+	+	+	+	+	+		+	+	
	Red Pierrot	Talicada nyseus	up to 800											+	+
	Pale Hedge Blue	Udara dilecta	upto 800											+	
	Purple Sapphire	Heliophorus epicles	upto 800									+	+	+	
	Sorrel Sapphire	Heliophorus sena	up to 2800		+	+	+	+	+	+	+	+	+	+	+
	Green Sapphire	Heliophorus androcles	up to 2500		+	+	+	+	+	+	+	+	+	+	+
	Western Blue Sapphire	Heliophorus bakeri	up to 2800		+	+	+	+	+	+	+	+	+	+	+
	Eastern Blue Sapphire	Heliophorus oda	up to 2800		+	+	+	+	+	+	+	+	+	+	+
	Yam Fly	Loxura atymnus	up to 2500		+	+	+	+	+	+	+	+	+	+	+
	Zebra Blue	Leptotes plinius	up to 800		+	+	+	+	+	+	+	+	+	+	+
	Rounded Pierrot	Tarucus nara	up to 800		+	+	+	+	+	+	+	+	+	+	+
	Common Hedge Blue	Acytolepis puspa	up to 2500		+	+	+	+	+	+	+	+	+	+	+
Nymphalidae	Large Silverstrip	Argynnis childreni	up to 4000		+	+	+	+	+	+	+	+	+	+	+
	Indian Fritilary	Argyreus hyperbius	up to 2800		+	+	+	+	+	+	+	+	+	+	+
	Club Beak	Libythea myrrha	up to 800									+	+	+	+
	Common Beak	Libythea lepita	up to 2800	Ш	+	+								+	
	Common Baron	Euthalia aconthea	up to 800											+	+
	Baronet	Euthalia nais	up to 800									+	+	+	
	Blue Pansy	Junonia orithiya	up to 2800		+	+	+	+	+	+	+	+	+	+	+

Chocolate Pansy	Junonia iphita	up to 2800			+	+	+	+	+	+	+	+	+	+	+
Grey Pansy	Junonia atlites	up to 800										+	+	+	
Lemon Pansy	Junonia lemonias	up to 1000										+	+	+	+
Peacock Pansy	Junonia almana	up to 800	LC									+	+	+	+
Yellow Pansy	Junonia hierta	up to 2500	LC				+	+	+	+	+	+	+	+	+
Common Jester	Symbrenthia hippoclus	up to 800										+	+	+	+
Himalayan Jester	Symbrenthia hypselis	up to 2500			+	+	+	+	+	+	+	+	+	+	+
Common Leopard	Phalanta phalantha	up to 800										+	+	+	+
Common Map	Cyrestis thyodamas	up to 800										+	+	+	
Common Sailer	Neptis hylas	up to 2800			+	+	+	+	+	+	+	+	+	+	+
Yerburis Sailer	Neptis yerburii	up to 2800			+	+	+	+	+	+	+	+	+	+	+
Himalayan Sailer	Neptis mehendra	up to 1000										+	+	+	+
Common Sergeant	Athyma perius	up to 800										+	+	+	+
Common Wall	Lasiommata schakra	up to 2800			+	+	+	+	+	+	+	+	+	+	
Danaid Eggfly	Hypolimnas misippus	up to 1000		II								+	+	+	+
Indian Red Admiral	Vanessa indica	up to 2800			+	+	+	+	+	+	+	+	+	+	+
Blue Admiral	Vanessa canace	up to 2800			+	+	+	+	+	+	+	+	+	+	+
Painted Lady	Vanessa cardui	Above 2000					+	+	+	+	+	+	+	+	+
Indian Tortoiseshell	Aglais caschmiriensis	up to 2800			+	+	+	+	+	+	+	+	+	+	+
Cruiser	Cynthia erota	up to 2500			+	+	+	+	+	+	+	+	+	+	+
Orange Oak leaf	Kallima inachus	up to 800										+	+	+	+
Pallid Argus	Callerebia scandal	up to 800										+	+	+	
Mountain Srgus	Erebia shallada	1700-2800			+	+									
Western Courtier	Sephisa dichroa	up to 2500													
Queen of Spain Fritilary	Issoria lathonia	up to 2800			+	+	+	+	+	+	+	+	+	+	
Rustic	Cupha erymanthis	up to 800										+	+	+	
The Commodore	Auzakia danava	up to 1000							_			+	+	+	+

Satyridae	Small Tawny Wall	Raphicera moorei	up to 3000					+	+	+	+	+	+	+	+	+
	Striated Satyr	Aulocera sarswati	up to 3000			+	+	+	+	+	+	+	+	+	+	+
	Great Satyr	Aulocera padma	up to 3000			+	+	+	+	+	+	+	+	+	+	+
	Common Satyr	Aulocera swaha	up to 3000			+	+	+	+	+	+	+	+	+	+	+
	Lilacin Bush Brown	Mycalesis francisca	up to 2500					+	+	+	+	+	+	+		
	Common Bush Brown	Mycalesis perseus	up to 800												+	+
	Dark Banded Bush Brown	Mycalesis mineus	up to 800										+			
	Common Fourring	Ypthima huebneri	up to 2800			+	+	+	+	+	+	+	+	+	+	+
	Common Fivering	Ypthima baldus	up to 1000			+	+	+	+	+	+	+	+	+	+	+
	Himalayan Five Ring	Ypthima sakra	up to 2800			+	+	+	+	+	+	+	+	+	+	+
	Large Three Ring	Ypthima nareda	up to 800										+	+	+	+
	Common Castor	Ariadne merione	up to 800										+	+	+	+
	Bamboo Treebrown	Lethe europa	up to 800										+	+	+	+
	Banded Tree brown	Lethe confusa	up to 800										+	+	+	+
	Common Woodbrown	Lethe nicetas	up to 3500			+	+	+	+	+	+	+	+	+	+	+
	Veined Labyrinth	Lethe pulaha	up to 3500		П	+	+	+	+	+	+	+	+	+	+	+
	Strait Banded Tree Brown	Lethe verma	up to 2500			+	+	+	+	+	+	+	+	+	+	+
	Common Treebrown	Lethe rohria	up to 1000										+	+	+	+
	Common Fiorester	Lethe insana insana	up to 1000		П								+	+	+	+
	Evening Brown	Melanitis leda	up to 1000										+	+	+	+
Danaidae	Common Crow	Euploea core	up to 2800	LC	IV	+	+	+	+	+	+	+	+	+	+	+
	Striped Blue Crow	Euploea mulciber	up to 2800		IV	+	+	+	+	+	+	+	+	+	+	+
	Blue Tiger	Tirumala limniace													+	+
	Dark Blue Tiger	Tirumala septentrionis	up to 800										+	+	+	+
	Common Sergent	Parathyma perius	up to 2500			+	+	+	+	+	+	+	+	+	+	+
	Chestnut Tiger	Parantica sita	up to 2500			+	+	+	+	+	+	+	+	+	+	+
	Glassy Tiger	Parantica aglea	up to 2800			+	+	+	+	+	+	+	+	+	+	+

	Striped Tiger	Danaus genutia	up to 2800		+	+	+	+	+	+	+	+	+	+	+
	Plain Tiger	Danaus chrysippus	up to 2800		+	+	+	+	+	+	+	+	+	+	+
Hesperiidae	Common Redeye	Matapa aria	up to 800									+	+	+	+
	Common small Flat	Sarangesa dasahara	up to 800									+	+	+	+
	Fulvous Pied Flat	Pseudocoladenia dan	up to 800									+	+	+	+
	Common Spotted Flat	Celaenorrhinus leucocera	up to 2500		+	+	+	+	+	+	+	+	+	+	+
	Snow Flat	Tagiades litigiosa	up to 2500		+	+	+	+	+	+	+	+	+	+	+
	Spotted Snow Flat	Tagiades menaka	up to 2500		+	+	+	+	+	+	+	+	+	+	+
	Grass demon	Udaspes folus	up to 800									+	+		+
	Indian Skipper	Spialia galba	up to 800									+	+	+	+
	Paint brush Swift	Baoris farri	up to 800	IV								+	+	+	+
	Pale palm dart	Telicota colon	up to 800									+	+		+
	Himalayan Grass Dark Dart	Taractrocera danna	up to 2800		+	+	+	+	+	+	+	+	+	+	+
	Rice Swift	Borbo cinnara	up to 800									+	+	+	+
	Bevan's Swift	Pseudoborbo bevani	up to 800									+	+		+
	Large Banded Swift	Pelopidas sinensis	uo to 2500	IV			+	+	+	+	+	+	+	+	+

BSI = Beas I, BSII = Beas II, BSIII = Beas III, BSIV = Beas IV, BSV = Beas V, MLN = Malana, PVI= Pavati I, PVII = Parvati II, SK = Sainj Khad, TT= Tirthan, Uhl = Uhl

Annexure VII: Physico-Chemical characteristics of water at different sampling sites in the Study Area (March 2016)

Physical / Chemical Characteristics								ling Locat						•	
Physical / Chemical Characteristics	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13	W14	W15
Water Temperature (°C)	16.4	17.2	17.12	18.3	17.8	17.6	18.92	5.12	16.25	16.38	18.76	19.2	18.78	20.1	19.7
Dissolved Oxygen (mg/l)	7.93	7.89	7.87	7.82	7.9	7.94	7.79	8.49	7.98	7.99	7.85	7.89	7.83	7.82	7.8
Turbidity (NTU)	1.3	1.23	1.7	1.43	0.4	0.42	0.59	0	1.15	1.21	1.32	1.12	1.15	1.04	0.84
Total Suspended Solids (mg/l)	3.61	3.45	2.98	2.43	2.18	2.26	2.43	2.18	2.98	3.01	1.94	1.86	1.96	1.42	1.54
рН	8.15	8.23	8.09	8.04	8.03	8.11	8.02	7.41	8.13	8.01	7.92	8.18	7.91	7.86	7.74
Electrical Conductivity (μS/cm)	96.86	81.83	90.18	81.83	75.15	76.82	91.85	78	81.83	78.49	80.16	83.5	68.47	76.82	80.16
Total Dissolved Solids (mg/l)	58	49	54	49	45	46	55	54	49	47	48	50	41	46	48
Total alkalinity (mg/l of CaCO ₃)	26.1	21.8	26	23	21	22	24	26	23	20	22	22	20	22	20
Sulphate (mg/l)	5.48	3.21	4.12	4.96	4.03	3.86	7.13	6.87	5.12	4.93	5.28	4.98	4.28	5.12	6.14
Chloride (mg/l)	8.03	8.29	8.16	7.18	6.13	6.1	7.84	5.6	6.97	7.99	6.54	6.13	5.14	6.27	7.13
Nitrates (NO₃) (mg/I)	0.86	0.46	0.43	0.24	0.31	0.52	0.32	0.04	0.21	0.24	0.18	0.95	0.13	0.12	0.12
Phosphate (PO ₄) (mg/l)	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.01	0.01	0.01	0.02	0.01	0.01
Total Hardness (mg/l)	33.473	29.849	31.179	30.424	26.297	26.296	32.924	37	28.998	27.685	30.19	27.917	25.358	28.702	29.139
Calcium ions (mg/ I)	8.42	7.61	7.65	7.84	6.14	6.32	8.02	10	7.45	8.04	7.73	7.69	6.24	7.43	7.49
Magnesium ions (mg/l)	3.03	2.64	2.94	2.64	2.67	2.56	3.14	3	2.53	1.85	2.65	2.12	2.38	2.47	2.54
Sodium (mg/l)	2.97	1.95	2.12	1.76	1.96	2.39	2.05	0.8	1.89	1.99	1.75	1.73	0.93	1.42	1.98
Potassium (mg/l)	1.84	1.39	1.05	1.26	1.21	1.21	1.06	0.6	1.43	1.04	1.17	1.21	1.14	0.95	1.58
Iron (mg/l)	0.13	0.11	0.12	0.1	0.13	0.15	0.1	0.03	0.14	0.12	0.01	0.02	0.11	0.12	0.12
Cadmium (Cd) (mg/l)	ND	0.007	ND	ND	ND	ND	ND	ND	ND						
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND							
Mercury (Hg) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND							
Copper (Cu) (mg/l)	ND	0.0003	ND	ND	ND	ND	ND	ND	ND						
Zinc (Zn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND							
Total Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND							
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND							
Lead (Pb) (mg/l)	ND	0.032	ND	ND	ND	ND	ND	ND	ND						
Biological Oxygen Demand (mg/l)	0.15	0.2	0.19	0.2	0.23	0.28	0.12	0.2	0.18	0.25	0.18	0.5	0.7	0.58	0.89
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Р	Р	Р	Р	Р	Α	Α	Α	Р	Р	Р	Р	Р	Р	Р

Contd...

Physical / Chemical Characteristics	W16	W17	W18	W19	W20	W21	W22	W23	W24	W25	W26	W27	W28	W29	W30
Water Temperature (°C)	18.86	18.92	19.4	18.86	19.4	19.1	18.7	18.9	19.1	18.8	18.7	18.9	19.2	19.1	20.1
Dissolved Oxygen (mg/l)	7.84	7.65	7.62	7.98	7.59	7.72	7.81	7.84	7.82	7.74	7.82	7.61	7.79	7.59	7.87
Turbidity (NTU)	0.78	0.98	0.92	0.74	0.97	1.1	0.8	0.85	0.89	0.69	0.71	0.76	0.54	0.72	0.43
Total Suspended Solids (mg/l)	1.48	2.63	2.59	1.76	2.29	2.1	2.2	2.31	2.42	1.78	1.68	1.75	1.56	1.62	1.67
рН	7.86	7.73	7.84	7.84	7.73	7.73	7.78	7.85	7.75	7.89	8.04	8.01	7.94	8.05	7.95
Electrical Conductivity (μS/cm)	78.49	75.15	80.16	76.82	71.81	78.49	71.81	61.79	71.81	73.48	75.15	73.48	76.82	71.81	75.15
Total Dissolved Solids (mg/l)	47	45	48	46	43	47	43	37	43	44	45	44	46	43	45
Total alkalinity (mg/l of CaCO3)	19	24	23	20	20	23	22	20	22	26	23	25	21	21	24
Sulphate (mg/l)	6.15	2.75	4.59	6.03	4.12	4.8	2.69	3.12	4.68	3.02	3.51	2.95	2.78	2.53	2.13
Chloride (mg/l)	7.42	5.79	6.31	6.47	5.29	6.47	5.01	3.25	4.01	2.93	4.63	3.99	7.64	7.31	6.21
Nitrates (NO3) (mg/l)	0.11	0.16	0.73	0.12	0.13	0.12	0.19	0.13	0.11	0.08	0.08	0.14	0.15	0.11	0.07
Phosphate (PO4) (mg/l)	0.02	0.01	0.01	0.001	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.01	0.02	0.02	0.01
Total Hardness (mg/l)	29.706	26.563	26.225	28.866	24.679	28.27	24.629	20.472	24.722	24.372	25.668	26.997	26.374	25.004	27.563
Calcium ions (mg/ I)	8.34	6.64	5.98	7.43	6.28	6.47	6.26	5.86	5.92	6.19	7.02	7.24	7.45	6.41	7.45
Magnesium ions (mg/l)	2.16	2.43	2.75	2.51	2.19	2.95	2.19	1.42	2.42	2.17	1.98	2.17	1.89	2.19	2.18
Sodium (mg/l)	1.95	1.64	2.07	1.97	2.06	1.67	1.02	1.19	1.28	1.8	1.75	1.02	1.78	1.98	1.65
Potassium (mg/l)	1.05	1.36	1.43	1.03	0.94	1.12	0.96	0.89	0.84	1.03	1.03	1.19	1.02	1.12	0.68
Iron (mg/l)	0.11	0.12	0.11	0.12	0.12	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cadmium (Cd) (mg/I)	ND	<0.01	ND	<0.01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	<0.001	ND	<0.001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper (Cu) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc (Zn) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Chromium (Cr) (mg/l)	ND	<0.05	ND	<0.05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand (mg/l)	0.23	0.45	0.34	0.78	0.65	0.35	0.21	0.22	0.19	0.2	0.16	0.12	0.2	0.14	0.21
Chemical Oxygen Demand (mg/l)	0	0	0	0	1.5	1.6	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Α	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Α

Contd.

Physical / Chemical Characteristics	W31	W32	W33	W34	W35	W36	W37	W38	W39	W40	W41	W42	W43	W44	W45
Water Temperature (°C)	19.2	19.5	19.4	19.6	18.54	18.7	18.1	18.25	1.8.18	18.9	19.4	18.7	18.7	18.8	18.5
Dissolved Oxygen (mg/l)	7.74	7.56	7.81	7.74	7.84	7.79	8.05	8.09	7.89	7.78	7.82	7.89	7.77	7.99	7.87
Turbidity (NTU)	0.21	0.43	0.22	0.19	0.36	0.21	0.13	0.17	0.19	0.17	0	0	0.3	0.2	0.2
Total Suspended Solids (mg/l)	1.52	1.32	1.2	1.02	1.38	1.27	1.56	1.48	1.56	1.38	1.48	1.39	1.15	1.37	1.29
рН	8.02	7.98	7.99	8.12	8.14	8.11	8.06	8.02	8.01	8.02	8.11	7.95	8.02	7.89	7.89
Electrical Conductivity (μS/cm)	65.13	63.46	71.81	76.82	71.81	75.15	76.82	80.16	83.5	75.15	83.5	81.83	93.52	85.17	75.15
Total Dissolved Solids (mg/l)	39	38	43	46	43	45	46	48	50	45	50	49	56	51	45
Total alkalinity (mg/l of CaCO3)	21	20	23	24	24	24	25	26	27	24	28	26	30	27	23
Sulphate (mg/l)	2.31	2.01	2.31	2.41	2.68	2.98	2.89	2.76	2.89	2.96	2.95	3.31	4.28	3.89	3.54
Chloride (mg/l)	4.21	4.79	5.28	5.84	4.86	5.87	5.76	5.63	5.78	5.75	5.03	4.84	5.83	5.86	6.13
Nitrates (NO3) (mg/l)	0.09	0.06	0.2	0.09	0.21	0.11	0.1	0.12	0.12	0.09	0.1	0.09	0.11	0.08	0.12
Phosphate (PO4) (mg/l)	0.001	0.02	0.01	0.02	0.02	0.01	0.02	0.001	0.02	0.01	0.02	0.02	0.01	0.01	0.01
Total Hardness (mg/l)	21.339	23.515	25.068	24.307	24.596	26.014	28.315	27.639	28.233	24.658	30.895	28.307	32.073	28.924	27.061
Calcium ions (mg/ l)	5.19	6.29	6.78	6.82	5.64	5.83	6.98	6.89	6.98	5.96	7.52	7.19	7.45	6.83	5.97
Magnesium ions (mg/l)	2.04	1.9	1.98	1.77	2.56	2.79	2.65	2.54	2.63	2.38	2.95	2.52	3.28	2.89	2.96
Sodium (mg/l)	1.96	1.26	1.74	2.54	1.69	1.84	1.32	2.12	2.18	2.02	1.63	1.29	2.53	1.95	1.83
Potassium (mg/l)	1.04	0.95	1.28	1.03	1.04	1.3	1.1	1.35	1.4	1.45	1.03	1.03	1.83	1.45	1.02
Iron (mg/l)	<0.1	<0.01	<0.01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.01	<0.01	<0.01	<0.01	<0.01
Cadmium (Cd) (mg/l)	ND	ND	ND	ND	ND	ND	<0.01	ND	<0.01	ND	ND	ND	ND	ND	ND
Arsenic (As) (mg/I)	ND														
Mercury (Hg) (mg/l)	ND	ND	ND	ND	ND	ND	<0.001	ND	<0.001	ND	ND	ND	ND	ND	ND
Copper (Cu) (mg/l)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Zinc (Zn) (mg/l)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Total Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	ND	<0.05	ND	<0.05	ND	ND	ND	ND	ND	ND
Manganese (Mn) (mg/l)	ND														
Lead (Pb) (mg/l)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand (mg/l)	0.22	0.56	0.88	0.58	0.86	0.35	0.88	0.58	0.98	0.58	0.66	0.65	0.45	0.44	0.55
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Р	Р	Р	Р	Р	Α	Р	Р	Р	Р	Α	Α	Р	Α	Α

Contd.

Physical / Chemical Characteristics	W46	W47	W48	W49	W50	W51	W52	W53	W54	W55	W56	W57	W58	W59
Water Temperature (°C)	18.3	18.6	19.2	19.1	19.4	18.3	18.1	19.8	18.9	18.2	19.11	18.89	18.3	19.25
Dissolved Oxygen (mg/l)	7.98	7.89	7.68	7.73	7.72	7.78	7.93	7.84	7.92	7.91	7.89	7.83	7.78	7.85
Turbidity (NTU)	0.3	0.25	0	0	0	0.22	2.5	0.55	0.2	0.18	0.2	0.21	0.35	0.43
Total Suspended Solids (mg/l)	1.14	1.24	1.05	1.21	1.19	1.24	1.26	1.29	1.1	1.05	1.12	0.98	1.03	1.05
рН	8.04	8.05	7.87	7.79	7.82	7.75	7.85	7.79	8.04	8.06	8.01	7.99	8.01	8.02
Electrical Conductivity (μS/cm)	80.16	78.49	71.81	76.82	85.17	75.15	76.82	76.82	83.5	71.81	81.83	86.84	95.19	85.17
Total Dissolved Solids (mg/l)	48	47	43	46	51	45	46	46	50	43	49	52	57	51
Total alkalinity (mg/l of CaCO3)	26	25	23	25	29	25	25.6	24.7	28	23	28	31	33.2	28
Sulphate (mg/l)	2.89	2.98	2.98	2.87	2.76	3.1	2.67	2.78	3.45	3.13	3.29	3.34	3.12	3.6
Chloride (mg/l)	5.84	6.05	4.78	5.28	4.87	4.7	5.29	5.87	4.89	5.39	3.45	3.78	4.55	5.67
Nitrates (NO3) (mg/l)	0.09	0.12	0.12	0.1	0.13	0.1	0.12	0.1	0.12	0.14	0.12	0.11	0.12	0.14
Phosphate (PO4) (mg/l)	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Total Hardness (mg/l)	28.015	26.701	25.138	25.98	29.096	26.148	27.579	26.397	28.536	24.61	26.348	26.923	29.66	27.199
Calcium ions (mg/ I)	6.86	5.99	5.66	5.8	5.8	5.9	6.21	6.18	6.56	5.99	5.98	6.21	6.78	6.14
Magnesium ions (mg/l)	2.65	2.86	2.68	2.8	3.56	2.78	2.94	2.67	2.96	2.35	2.78	2.78	3.1	2.89
Sodium (mg/l)	1.39	1.94	1.49	1.89	1.74	1.69	1.68	1.98	1.54	1.67	2.5	2.34	3.58	2.54
Potassium (mg/l)	1.22	1.46	1.12	1.23	1.21	1.45	1.28	1.47	1.32	1.29	1.48	1.89	1.45	1.68
Iron (mg/l)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.1	<0.01	<0.01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Cadmium (Cd) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.01	ND	<0.01
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.001	ND	<0.001
Copper (Cu) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1
Zinc (Zn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1
Total Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.05	ND	<0.05
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1
Biological Oxygen Demand (mg/l)	0.2	0.1	0.22	0.15	0.25	0.85	1.3	1.22	1.35	0.95	0.25	1.2	0.5	1.05
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	2.1	2.3	2.2	2.5	1.3	0	1.2	0	1.1
Total Coliform (MPN /100 ml)	Α	Р	Р	Р	Р	Α	Α	Р	Р	Р	Р	Α	Р	Р

Table 7.1: Physico-Chemical characteristics of water at different sampling sites in the Study Area (April 2016)

Physical / Chemical Characteristics	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13	W14	W15
Water Temperature (°C)	19.8	19.7	20.1	21.2	20.1	20.2	22.15	9.1	19.6	19.7	21.6	22.1	21.8	22.1	22.3
Dissolved Oxygen (mg/l)	7.89	7.86	7.81	7.78	7.89	7.91	7.72	8.12	7.9	7.89	7.68	7.81	7.73	7.75	7.74
Turbidity (NTU)	2.1	2	2.3	2.04	1.05	0.92	0.98	0	1.6	1.21	1.56	1.2	1.43	1.2	1.05
Total Suspended Solids (mg/l)	4.22	4.1	4.02	2.95	2.56	3.01	2.67	1.78	2.59	2.89	2.01	2.05	2.12	1.57	1.62
рН	8.23	8.26	8.16	8.14	8.12	8.18	8.05	8.16	8.24	8.05	8.02	8.23	7.98	7.99	7.82
Electrical Conductivity (μS/cm)	103.54	88.51	95.19	86.84	81.83	85.17	100.2	88.51	88.51	86.84	86.84	88.51	70.14	86.84	86.84
Total Dissolved Solids (mg/l)	62	53	57	52	49	51	60	53	53	52	52	53	42	52	52
Total alkalinity (mg/l of CaCO3)	27.6	24.5	28	25	24	25	28	29	25	23	25	24.1	19	25	22.1
Sulphate (mg/l)	5.75	3.67	4.37	5.1	4.35	4.17	7.26	4.54	5.43	5.1	5.38	5.21	4.02	5.31	6.34
Chloride (mg/l)	8.21	8.52	8.35	7.47	6.6	6.5	8.06	4.76	7.16	8.12	6.26	6.45	4.98	6.68	7.43
Nitrates (NO3) (mg/l)	0.95	0.92	0.8	0.32	0.65	0.8	0.56	0.21	0.45	0.7	0.41	1.2	0.29	0.3	0.28
Phosphate (PO4) (mg/I)	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.01
Total Hardness (mg/l)	34.825	31.299	32.701	31.92	27.89	27.83	35.046	32.431	30.184	29.135	31.48	29.455	23.86	30.638	30.725
Calcium ions (mg/ I)	8.6	7.78	7.98	7.93	6.4	6.54	8.18	8.2	7.58	8.21	8	8.01	6.1	7.86	7.78
Magnesium ions (mg/l)	3.25	2.89	3.11	2.95	2.9	2.8	3.56	2.91	2.74	2.1	2.8	2.3	2.1	2.68	2.75
Sodium (mg/l)	3.1	2.1	2.3	1.98	2.1	2.6	2.39	1.58	2.1	2.45	1.89	1.82	1.02	1.59	2.1
Potassium (mg/l)	1.8	1.54	1.29	1.3	1.35	1.35	1.28	1.1	1.6	1.19	1.26	1.39	1.21	1.02	1.65
Iron (mg/l)	0.13	0.11	0.12	0.1	0.13	0.15	0.1	0.11	0.14	0.12	0.01	0.02	0.11	0.12	0.12
Cadmium (Cd) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper (Cu) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc (Zn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/I)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand (mg/l)	0.18	0.25	0.21	0.26	0.29	0.36	0.27	0.32	0.25	0.39	0.26	0.78	0.98	0.92	1.1
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Р	Р	Р	Р	Р	Α	Α	Α	Р	Р	Р	Р	Р	Р	Р

Contd.

Physical / Chemical Characteristics	W16	W17	W18	W19	W20	W21	W22	W23	W24	W25	W26	W27	W28	W29	W30
Water Temperature (°C)	21.3	21.3	21.4	22.3	22.3	22.6	22.3	22.5	22.1	21.8	21.4	22.4	22.7	23.1	24.18
Dissolved Oxygen (mg/l)	7.71	7.54	7.56	7.91	7.43	7.68	7.78	7.59	7.45	7.71	7.75	7.54	7.68	7.45	7.79
Turbidity (NTU)	1.06	1.2	1.28	0.96	1.3	1.45	1.12	1.34	1.26	1.02	1.13	1.02	0.67	0.89	0.56
Total Suspended Solids (mg/l)	1.59	2.8	2.8	1.85	2.8	2.1	2.2	2.31	2.42	1.78	1.68	1.75	1.56	1.62	1.67
рН	7.95	7.89	7.91	7.99	7.84	7.85	7.82	7.81	7.69	7.84	8.11	8.05	7.99	8.02	7.98
Electrical Conductivity (μS/cm)	83.5	70.14	78.49	86.84	83.5	75.15	66.8	65.13	68.47	83.5	81.83	85.17	81.83	80.16	83.5
Total Dissolved Solids (mg/l)	50	42	47	52	50	45	40	39	41	50	49	51	49	48	50
Total alkalinity (mg/l of CaCO3)	21	20	22	22	25	21	20	19	20	29	26	28	23	24	26
Sulphate (mg/l)	6.37	2.87	4.48	6.21	4.25	4.7	2.56	3.29	4.3	3.21	3.86	3.1	3.02	2.65	2.45
Chloride (mg/l)	7.85	5.45	6.19	6.9	5.56	6.31	4.98	3.87	4.21	3.27	4.98	4.24	7.85	7.45	6.54
Nitrates (NO3) (mg/l)	0.15	0.21	0.56	0.16	0.18	0.28	0.32	0.21	0.2	0.15	0.12	0.2	0.2	0.18	0.12
Phosphate (PO4) (mg/l)	0.02	0.01	0.01	0.001	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.01	0.02	0.02	0.01
Total Hardness (mg/l)	30.987	24.485	26.155	30.667	26.445	26.77	23.389	21.421	23.335	26.17	26.708	28.166	27.96	29.721	30.34
Calcium ions (mg/ I)	8.59	6.35	5.87	7.56	6.56	6.28	6.01	6.01	5.89	6.45	7.19	7.56	7.74	7.69	7.79
Magnesium ions (mg/l)	2.32	2.1	2.8	2.87	2.45	2.7	2.04	1.56	2.1	2.45	2.13	2.26	2.1	2.56	2.65
Sodium (mg/l)	2.01	1.78	1.98	2.12	2.32	1.56	1.21	1.27	1.16	2.1	2.02	2.16	1.9	2.12	1.8
Potassium (mg/l)	1.32	1.21	1.34	1.2	1.12	0.98	1.1	1.1	0.98	1.28	1.18	1.45	1.25	1.21	0.95
Iron (mg/l)	0.11	0.12	0.11	0.12	0.12	0.11	0.1	0.01	0.01	0.11	0.11	0.1	0.01	0.11	0.12
Cadmium (Cd) (mg/l)	ND	<0.01	ND	<0.01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	<0.001	ND	<0.001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper (Cu) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc (Zn) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Chromium (Cr) (mg/l)	ND	<0.05	ND	<0.05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand (mg/l)	0.36	0.89	0.78	1.01	0.95	0.85	0.25	0.32	0.17	0.26	0.25	0.19	0.3	0.28	0.3
Chemical Oxygen Demand (mg/l)	0	0	0	0	1.8	1.9	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Α	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Α

Physical / Chemical Characteristics	W31	W32	W33	W34	W35	W36	W37	W38	W39	W40	W41	W42	W43	W44	W45
Water Temperature (°C)	23.1	24.2	23.3	23.1	21.1	21.2	20.9	20.85	20.57	23.1	23.1	22.15	22.45	22.67	22.1
Dissolved Oxygen (mg/l)	7.45	7.42	7.68	7.6	7.8	7.7	7.98	7.75	7.68	7.58	7.68	7.82	7.75	7.94	7.71
Turbidity (NTU)	0.45	0.86	0.45	0.6	0.54	0.67	0.48	0.78	0.94	0.51	0.86	0.72	1.04	0.76	0.52
Total Suspended Solids (mg/l)	1.52	1.32	1.2	1.02	1.38	1.27	1.56	1.48	1.56	1.38	1.7	1.54	1.28	1.63	1.53
рН	8.08	7.93	8.02	8.09	8.16	8.17	8.04	7.98	8.05	8.11	8.19	8.02	8.14	8.02	7.72
Electrical Conductivity (μS/cm)	71.81	73.48	66.8	73.48	66.8	68.47	71.81	70.14	75.15	71.81	88.51	80.16	90.18	83.5	76.82
Total Dissolved Solids (mg/l)	43	44	40	44	40	41	43	42	45	43	53	48	54	50	46
Total alkalinity (mg/l of CaCO3)	23	23	21	22	21	20	23	22	24	22	29	25	28	26	24
Sulphate (mg/l)	2.46	2.26	2.15	2.58	2.34	2.85	2.54	2.45	2.53	2.78	3.04	3.45	4.13	3.74	3.21
Chloride (mg/l)	4.87	5.1	5.12	6.12	4.59	5.65	5.43	5.21	5.12	5.47	5.12	5.02	5.61	5.73	6.02
Nitrates (NO3) (mg/l)	0.14	0.12	0.21	0.14	0.1	0.12	0.12	0.17	0.12	0.11	0.13	0.11	0.12	0.09	0.18
Phosphate (PO4) (mg/l)	0.001	0.02	0.01	0.02	0.02	0.01	0.02	0.001	0.02	0.01	0.02	0.02	0.01	0.01	0.01
Total Hardness (mg/l)	22.527	24.91	24.149	25.643	21.735	23.251	26.445	25.066	24.859	23.374	31.466	29.386	31.263	27.809	26.574
Calcium ions (mg/ I)	5.37	6.52	6.56	7.01	5.25	5.43	6.56	6.32	6.27	5.84	7.65	7.31	7.29	6.63	5.89
Magnesium ions (mg/l)	2.22	2.1	1.89	1.98	2.1	2.36	2.45	2.26	2.24	2.14	3.01	2.71	3.18	2.74	2.89
Sodium (mg/l)	2.1	1.56	1.56	1.67	1.54	1.52	1.23	1.89	1.78	1.89	1.73	1.43	2.45	2.03	1.65
Potassium (mg/l)	1.27	1.21	1.21	1.23	1.27	1.2	1.03	1.27	1.12	1.3	1.18	1.12	1.67	1.86	1.13
Iron (mg/l)	0.11	0.11	0.1	0.11	0.1	0.12	0.11	0.13	0.11	0.12	0.11	0.1	0.11	0.1	0.11
Cadmium (Cd) (mg/I)	ND	ND	ND	ND	ND	ND	<0.01	ND	<0.01	ND	ND	ND	ND	ND	ND
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	ND	ND	ND	ND	ND	<0.001	ND	<0.001	ND	ND	ND	ND	ND	ND
Copper (Cu) (mg/l)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Zinc (Zn) (mg/l)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Total Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	ND	<0.05	ND	<0.05	ND	ND	ND	ND	ND	ND
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/l)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand (mg/l)	0.35	0.89	1.1	0.95	1.1	0.54	1.1	0.78	1.2	1.1	0.45	0.38	0.25	0.2	0.35
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Р	Р	Р	Р	Р	Α	Р	Р	Р	Р	Α	Α	Р	Α	Α

Physical / Chemical Characteristics	W46	W47	W48	W49	W50	W51	W52	W53	W54	W55	W56	W57	W58	W59
Water Temperature (°C)	21.9	22.3	23.54	22.3	23.8	21.7	21.9	24.2	22.3	21.6	22.25	22.56	21.46	23.1
Dissolved Oxygen (mg/l)	7.89	7.83	7.57	7.61	7.63	7.69	7.7	7.64	7.81	7.72	7.76	7.69	7.63	7.73
Turbidity (NTU)	0.67	0.48	0.29	0.46	0.58	0.52	0.69	0.72	0.61	0.63	0.48	0.52	0.84	0.97
Total Suspended Solids (mg/l)	1.41	1.49	1.47	1.43	1.38	1.42	1.53	1.57	1.05	1.04	1.18	1.03	1.32	1.21
рН	7.99	7.98	7.78	7.65	7.64	7.63	7.72	7.68	7.99	8.03	8.04	7.93	7.98	7.92
Electrical Conductivity (μS/cm)	75.15	70.14	66.8	70.14	78.49	70.14	71.81	75.15	78.49	65.13	85.17	81.83	91.85	78.49
Total Dissolved Solids (mg/l)	45	42	40	42	47	42	43	45	47	39	51	49	55	47
Total alkalinity (mg/l of CaCO3)	24	21	21	22	27	22	23.1	22.2	26	19	30	29	32.1	25
Sulphate (mg/l)	2.85	2.75	2.87	2.64	2.21	2.8	2.14	2.53	3.17	2.89	3.14	3.03	2.86	3.21
Chloride (mg/l)	5.19	5.91	4.53	5.19	4.63	4.32	5.02	5.43	4.62	5.18	3.27	3.41	4.25	5.32
Nitrates (NO3) (mg/l)	0.12	0.16	0.17	0.12	0.16	0.12	0.13	0.12	0.18	0.18	0.15	0.13	0.21	0.18
Phosphate (PO4) (mg/l)	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Total Hardness (mg/l)	25.543	23.688	23.063	24.12	27.236	25.221	25.815	23.988	26.438	23.014	25.672	25.958	28.352	25.649
Calcium ions (mg/ I)	6.15	5.49	5.24	5.63	5.63	5.89	5.98	6.02	6.18	5.86	5.89	6.07	6.47	5.93
Magnesium ions (mg/l)	2.48	2.43	2.43	2.45	3.21	2.56	2.65	2.18	2.68	2.04	2.67	2.63	2.97	2.64
Sodium (mg/l)	1.54	1.63	1.29	1.62	1.58	1.42	1.58	1.69	1.96	1.43	2.32	2.19	3.43	2.23
Potassium (mg/l)	1.32	1.19	1.04	1.02	1.29	1.21	1.15	1.13	1.04	1.02	1.57	1.72	1.36	1.37
Iron (mg/l)	0.1	0.1	0.14	0.12	0.13	0.14	0.1	0.11	0.01	0.1	0.01	0.01	0.01	0.01
Cadmium (Cd) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.01	ND	<0.01
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.001	ND	<0.001
Copper (Cu) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1
Zinc (Zn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1
Total Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.05	ND	<0.05
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1
Biological Oxygen Demand (mg/l)	0.32	0.23	0.36	0.29	0.37	1.69	1.76	2.2	1.9	1.1	0.3	1.16	0.75	1.19
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	3.1	3.15	3.8	3.2	2.2	0	2.25	0	0
Total Coliform (MPN /100 ml)	Α	Р	Р	Р	Р	Α	Α	Р	Р	Р	Р	Α	Р	Р

Table 7.2: Physico-Chemical characteristics of water at different sampling sites in the Study Area (May 2016)

Physical / Chemical Characteristics	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13	W14	W15
Water Temperature (°C)	25.6	25.4	26.1	26.3	26.8	26.5	26.2	14.2	26.2	26.4	25.8	26.6	26.7	26.8	27.4
Dissolved Oxygen (mg/l)	7.73	7.69	7.73	7.63	7.85	7.82	7.68	8.05	7.85	7.82	7.61	7.72	7.62	7.62	7.69
Turbidity (NTU)	2.9	2.2	3.05	2.25	1.29	1.16	1.25	0	2.1	1.9	1.8	1.54	1.95	1.98	1.85
Total Suspended Solids (mg/l)	4.86	4.78	4.2	3.1	2.95	3.26	2.98	1.56	2.85	3.1	2.37	2.21	2.31	1.65	1.74
рН	8.2	8.25	8.14	8.18	8.16	8.22	8.12	8.21	8.26	8.09	8.07	8.2	7.95	7.92	7.75
Electrical Conductivity (μS/cm)	101.87	83.5	91.85	86.84	76.82	81.83	105.21	85.17	101.87	93.52	90.18	91.85	78.49	81.83	90.18
Total Dissolved Solids (mg/l)	61	50	55	52	46	49	63	51	61	56	54	55	47	49	54
Total alkalinity (mg/l of CaCO3)	27	22	26	23	22	23	28	27	27	25	27	25.3	22	23	24.3
Sulphate (mg/l)	5.89	3.54	4.1	4.9	4.02	4.03	7.14	4.38	5.12	5.22	5.24	5.64	4.12	5.42	6.28
Chloride (mg/l)	8.65	8.75	8.23	7.35	6.52	6.29	7.95	4.63	8.42	8.53	6.11	6.89	5.24	6.41	7.58
Nitrates (NO3) (mg/l)	0.82	0.87	0.76	0.21	0.65	0.74	0.32	0.26	0.87	1	0.92	1.02	0.53	0.42	0.21
Phosphate (PO4) (mg/l)	0.02	0.02	0.01	0.02	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.01
Total Hardness (mg/l)	35.042	30.289	33.52	31.287	27.23	25.897	35.9	31.648	33.77	31.021	33.135	31.144	26.759	29.598	31.826
Calcium ions (mg/ I)	8.9	7.54	8.16	7.89	6.3	6.39	8.21	8.1	8.67	8.62	8.17	8.21	6.62	7.69	8.04
Magnesium ions (mg/l)	3.12	2.79	3.2	2.82	2.8	2.42	3.75	2.78	2.95	2.31	3.1	2.59	2.49	2.53	2.86
Sodium (mg/I)	2.9	1.98	2	1.89	1.9	2.51	2.54	1.36	2.6	2.63	2.03	1.92	1.29	1.42	2.03
Potassium (mg/I)	1.6	1.49	1.35	1.24	1.28	1.24	1.36	0.95	1.48	1.48	1.2	1.56	1.42	1.13	1.72
Iron (mg/l)	0.13	0.11	0.12	0.1	0.13	0.15	0.1	0.11	0.14	0.12	0.01	0.02	0.11	0.12	0.12
Cadmium (Cd) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper (Cu) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc (Zn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/I)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand (mg/l)	0.15	0.26	0.24	0.18	0.26	0.25	0.18	0.32	0.24	0.29	0.31	0.82	1.1	0.98	105
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Р	Р	Р	Р	Р	Α	Α	Α	Р	Р	Р	Р	Р	Р	Р

Physical / Chemical Characteristics	W16	W17	W18	W19	W20	W21	W22	W23	W24	W25	W26	W27	W28	W29	W30
Water Temperature (°C)	26.8	26.4	26.8	26.5	27.1	26.3	26.5	26.7	26.4	24.8	24.9	25.1	26.3	26.1	26.14
Dissolved Oxygen (mg/l)	7.62	7.42	7.48	7.82	7.38	7.42	7.56	7.65	7.38	7.72	7.68	7.43	7.58	7.32	7.67
Turbidity (NTU)	1.92	2.2	2.25	1.2	2.4	2.3	2.1	2.05	2.08	1.62	1.49	1.42	1.1	1.05	0.95
Total Suspended Solids (mg/l)	1.65	3.2	3.1	1.9	3.14	2.8	2.57	2.65	2.74	1.68	1.74	1.84	1.71	1.65	1.59
рН	7.92	7.83	7.84	8.02	7.68	7.81	7.79	7.86	7.73	7.87	8.15	8.17	8.02	7.99	7.95
Electrical Conductivity (μS/cm)	90.18	71.81	76.82	91.85	81.83	73.48	68.47	70.14	66.8	96.86	90.18	96.86	90.18	88.51	90.18
Total Dissolved Solids (mg/l)	54	43	46	55	49	44	41	42	40	58	54	58	54	53	54
Total alkalinity (mg/l of CaCO3)	23	21	21	24	23	20	21	22	18	32	28	31	25	27	28
Sulphate (mg/l)	6.58	2.48	4.56	6.47	4.19	4.5	2.42	3.42	4.6	3.56	3.75	3.4	3.3	2.89	2.6
Chloride (mg/l)	7.92	5.87	6.36	7.41	5.79	6.23	5.13	4.02	4.98	3.89	4.91	4.8	8.02	7.67	6.9
Nitrates (NO3) (mg/I)	0.19	0.31	0.41	0.18	0.23	0.31	0.3	0.22	0.25	0.18	0.16	0.28	0.14	0.22	0.17
Phosphate (PO4) (mg/l)	0.02	0.01	0.01	0.001	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.01	0.02	0.02	0.01
Total Hardness (mg/l)	31.218	23.761	25.09	31.697	27.444	26.25	24.383	22.773	22.941	28.589	28.745	30.153	29.431	30.19	31.075
Calcium ions (mg/ I)	8.42	6.29	5.69	7.89	6.73	6.4	6.26	6.19	6.29	6.86	7.48	7.83	7.82	7.73	7.92
Magnesium ions (mg/l)	2.48	1.96	2.65	2.92	2.59	2.5	2.13	1.78	1.76	2.79	2.45	2.58	2.41	2.65	2.75
Sodium (mg/l)	2.16	1.63	1.83	2.31	2.02	1.67	1.27	1.36	1.21	2.27	2.18	2.37	2.13	2.35	2.02
Potassium (mg/l)	1.26	1.34	1.42	1.31	1.04	1.02	1.08	1.18	1.08	1.98	1.56	1.69	1.43	1.39	1.05
Iron (mg/l)	0.11	0.12	0.11	0.12	0.12	0.11	0.1	0.01	0.01	0.11	0.11	0.1	0.01	0.11	0.12
Cadmium (Cd) (mg/l)	ND	<0.01	ND	<0.01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic (As) (mg/I)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	<0.001	ND	<0.001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper (Cu) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc (Zn) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Chromium (Cr) (mg/l)	ND	<0.05	ND	<0.05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand (mg/l)	0.38	1.2	8.0	1.15	1.1	1.2	0.8	0.6	0.4	0.3	0.5	0.4	0.3	0.4	0.35
Chemical Oxygen Demand (mg/l)	0	0	0	0	1.5	1.7	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Α	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Α

Physical / Chemical Characteristics	W31	W32	W33	W34	W35	W36	W37	W38	W39	W40	W41	W42	W43	W44	W45
Water Temperature (°C)	26.3	26.4	26.15	25.95	24.4	24.56	25.8	26.12	26.05	26.2	26.3	26.4	26.1	27.8	26.4
Dissolved Oxygen (mg/l)	7.32	7.36	7.59	7.47	7.71	7.64	7.84	7.62	7.58	7.45	7.59	7.74	7.67	7.89	7.68
Turbidity (NTU)	1.02	1.52	0.95	0.82	1.03	1.12	1.29	1.38	1.43	1.08	1.07	0.87	1.36	0.95	0.68
Total Suspended Solids (mg/l)	1.55	1.43	1.34	1.1	1.58	1.98	1.76	1.73	1.75	1.63	2.1	1.78	1.52	1.83	1.73
рН	8.12	7.89	7.98	8.02	8.12	8.11	7.98	7.89	8.04	8.05	8.25	8.05	8.18	8.06	7.68
Electrical Conductivity (μS/cm)	78.49	80.16	75.15	76.82	63.46	73.48	81.83	73.48	71.81	75.15	93.52	90.18	96.86	88.51	83.5
Total Dissolved Solids (mg/l)	47	48	45	46	38	44	49	44	43	45	56	54	58	53	50
Total alkalinity (mg/l of CaCO3)	26	25	23	23	19	22	25	24	22	21	31	28	31	28	26
Sulphate (mg/l)	2.56	2.36	2.23	2.65	2.19	2.98	2.68	2.58	2.65	2.57	3.37	3.96	4.21	3.92	3.49
Chloride (mg/l)	5.01	5.68	5.84	6.23	4.98	5.89	5.59	5.35	5.32	5.89	5.21	5.82	5.72	5.99	6.21
Nitrates (NO3) (mg/l)	0.21	0.14	0.28	0.18	0.12	0.12	0.14	0.21	0.15	0.13	0.17	0.13	0.18	0.12	0.18
Phosphate (PO4) (mg/l)	0.001	0.02	0.01	0.02	0.02	0.01	0.02	0.001	0.02	0.01	0.02	0.02	0.01	0.01	0.01
Total Hardness (mg/l)	24.708	25.87	25.673	26.266	20.479	24.368	27.803	25.138	23.983	24.462	32.57	30.317	33.25	28.974	28.185
Calcium ions (mg/ I)	5.98	6.74	6.94	7.21	5.01	5.68	6.89	6.48	6.1	5.98	7.78	7.42	7.56	6.85	6.19
Magnesium ions (mg/l)	2.38	2.2	2.03	2.01	1.94	2.48	2.58	2.18	2.13	2.32	3.2	2.87	3.5	2.89	3.1
Sodium (mg/l)	2.31	1.74	1.78	2.08	1.39	1.57	1.39	1.73	1.69	2.16	1.89	1.58	2.65	2.18	1.85
Potassium (mg/l)	1.45	1.57	1.49	1.62	1.15	1.38	1.21	1.34	1.03	1.2	1.25	1.42	1.98	1.94	1.24
Iron (mg/I)	0.11	0.11	0.1	0.11	0.1	0.12	0.11	0.13	0.11	0.12	0.11	0.1	0.11	0.1	0.11
Cadmium (Cd) (mg/l)	ND	ND	ND	ND	ND	ND	<0.01	ND	<0.01	ND	ND	ND	ND	ND	ND
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	ND	ND	ND	ND	ND	<0.001	ND	<0.001	ND	ND	ND	ND	ND	ND
Copper (Cu) (mg/l)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Zinc (Zn) (mg/l)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Total Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	ND	<0.05	ND	<0.05	ND	ND	ND	ND	ND	ND
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/l)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand (mg/l)	0.31	0.82	1.1	0.92	1.1	0.36	1.1	0.8	1.2	1.06	0.26	0.4	0.36	0.26	0.35
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Р	Р	Р	Р	Р	Α	Р	Р	Р	Р	Α	Α	Р	Α	Α

Physical / Chemical Characteristics	W46	W47	W48	W49	W50	W51	W52	W53	W54	W55	W56	W57	W58	W59
Water Temperature (°C)	25.9	25.7	27.1	26.8	26.9	26.1	26.9	27.2	25.8	26.18	27.65	25.98	25.23	25.57
Dissolved Oxygen (mg/l)	7.85	7.78	7.48	7.58	7.59	7.62	7.64	7.58	7.72	7.64	7.65	7.58	7.57	7.62
Turbidity (NTU)	0.95	0.68	0.45	0.77	0.94	0.67	0.83	1.1	0.82	0.99	0.94	0.79	1.05	1.16
Total Suspended Solids (mg/l)	1.56	1.82	1.65	1.82	1.79	1.62	1.78	1.69	1.36	1.28	1.62	1.27	1.87	1.72
рН	8.03	7.95	7.71	7.69	7.62	7.59	7.69	7.61	7.95	8.01	8.02	7.98	7.94	7.88
Electrical Conductivity (μS/cm)	86.84	76.82	73.48	76.82	83.5	75.15	76.82	80.16	85.17	71.81	91.85	90.18	100.2	81.83
Total Dissolved Solids (mg/l)	52	46	44	46	50	45	46	48	51	43	55	54	60	49
Total alkalinity (mg/l of CaCO3)	28	23	24	25	29	24	25.3	25.1	28.2	21	34	32	35.4	27
Sulphate (mg/l)	2.96	2.84	2.95	2.78	2.34	3.1	2.45	2.63	3.6	3.1	2.99	3.12	3.1	3.5
Chloride (mg/l)	5.36	6.12	4.64	5.25	4.89	4.89	5.15	5.57	4.95	5.6	3.1	3.67	4.74	5.48
Nitrates (NO3) (mg/l)	0.15	0.22	0.21	0.16	0.21	0.14	0.17	0.16	0.3	0.21	0.21	0.16	0.35	0.26
Phosphate (PO4) (mg/l)	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Total Hardness (mg/l)	28.166	25.039	24.928	25.93	29.414	26.197	27.067	25.796	27.89	24.229	27.468	27.417	29.935	27.124
Calcium ions (mg/ I)	6.74	5.85	5.74	5.78	5.96	6.1	6.12	6.12	6.4	6.1	6.1	6.26	6.89	6.11
Magnesium ions (mg/l)	2.76	2.54	2.58	2.8	3.54	2.67	2.87	2.56	2.9	2.19	2.98	2.87	3.1	2.89
Sodium (mg/l)	1.89	1.85	1.53	1.74	1.78	1.56	1.67	1.98	2.1	1.54	2.8	2.53	3.67	2.1
Potassium (mg/l)	1.46	1.32	1.28	1.18	1.46	1.35	1.21	1.27	1.23	1.18	1.89	1.98	1.54	1.45
Iron (mg/l)	0.1	0.1	0.14	0.12	0.13	0.14	0.1	0.11	0.01	0.1	0.01	0.01	0.01	0.01
Cadmium (Cd) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.01	ND	<0.01
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.001	ND	<0.001
Copper (Cu) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1
Zinc (Zn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1
Total Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.05	ND	<0.05
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1
Biological Oxygen Demand (mg/l)	0.3	0.2	0.5	0.29	1.88	1.99	2.1	2.3	2.1	1.2	0.4	1.1	1.05	1.2
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	2.6	2.9	3.9	3.6	1.92	0	0	1.75	0
Total Coliform (MPN /100 ml)	Α	Р	Р	Р	Р	Α	Α	Р	Р	Р	Р	Α	Р	Р

Table 7.3: Physico-Chemical characteristics of water at different sampling sites in the Study Area (June 2016)

Physical / Chemical Characteristics	W1	, W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13	W14	W15
Water Temperature (°C)	23.6	23.5	24.1	24.2	23.9	23.8	24.6	13.5	23.8	23.7	24.6	25.9	25.2	25.8	26.1
Dissolved Oxygen (mg/l)	7.81	7.79	7.82	7.75	7.92	7.89	7.71	8.21	7.92	7.9	7.68	7.76	7.69	7.71	7.74
Turbidity (NTU)	2.8	2.1	2.9	2.2	1.2	1.1	1.18	0	1.8	1.6	1.55	1.18	1.9	1.88	1.78
Total Suspended Solids (mg/l)	5.1	4.9	4.4	3.2	3.1	3.6	3.1	1.6	2.9	3.2	2.5	2.2	2.4	1.7	1.85
рН	8.18	8.24	8.22	8.12	8.21	8.29	8.18	8.24	8.21	8.15	8.19	8.24	7.85	7.8	7.76
Electrical Conductivity (μS/cm)	108.55	95.19	98.53	90.18	81.83	86.84	115.23	90.18	106.88	100.2	98.53	96.86	81.83	86.84	98.53
Total Dissolved Solids (mg/l)	65	57	59	54	49	52	69	54	64	60	59	58	49	52	59
Total alkalinity (mg/l of CaCO3)	29	25	29	24	24	24	31	29	30	27	30	27.6	24	24	26.2
Sulphate (mg/l)	6.1	3.8	4.7	5.2	4.1	4.25	7.52	4.65	5.36	5.32	5.65	5.9	4.61	5.65	6.72
Chloride (mg/l)	8.7	8.9	8.81	7.1	6.67	6.71	8.12	4.92	8.77	8.67	6.45	7.1	5.6	6.7	8.1
Nitrates (NO3) (mg/l)	0.95	0.92	0.89	0.15	0.72	0.65	0.25	0.21	0.95	1.05	1.01	1.09	0.67	0.5	0.15
Phosphate (PO4) (mg/l)	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.001	0.02	0.01	0.01
Total Hardness (mg/l)	38.465	31.3	35.335	30.363	28.14	27.446	37.74	31.91	34.88	32.22	35.065	32.319	27.517	30.49	33.335
Calcium ions (mg/ I)	9.4	7.6	8.23	7.75	6.5	6.78	8.7	8.5	8.95	8.87	8.45	8.27	6.71	7.85	8.25
Magnesium ions (mg/l)	3.65	3	3.6	2.68	2.9	2.56	3.9	2.6	3.05	2.45	3.4	2.84	2.62	2.65	3.1
Sodium (mg/l)	2.8	1.7	2.1	1.75	1.75	2.6	2.67	1.27	2.7	2.75	2.2	2.05	1.35	1.58	2.19
Potassium (mg/l)	1.7	1.58	1.4	1.28	1.1	1.12	1.43	0.89	1.5	1.58	1.4	1.78	1.55	1.22	1.81
Iron (mg/l)	0.13	0.11	0.12	0.1	0.12	0.15	0.1	0.11	0.11	0.12	0.01	0.02	0.11	0.12	0.12
Cadmium (Cd) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper (Cu) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc (Zn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand (mg/l)	0.11	0.2	0.2	0.1	0.2	0.2	0.1	0.28	0.18	0.23	0.22	0.76	0.95	0.86	1
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Р	Р	Р	Р	Р	Α	Α	Α	Р	Р	Р	Р	Р	Р	Р

Physical / Chemical Characteristics	W16	W17	W18	W19	W20	W21	W22	W23	W24	W25	W26	W27	W28	W29	W30
Water Temperature (°C)	25.9	25.8	25.6	24.7	26.1	25.1	25.8	25.2	26.1	24.7	23.5	22.9	24.8	24.3	24.5
Dissolved Oxygen (mg/l)	7.68	7.49	7.51	7.86	7.4	7.5	7.7	7.78	7.48	7.8	7.78	7.59	7.7	7.46	7.8
Turbidity (NTU)	1.75	2.1	2.6	1	2.2	2.7	1.9	2.2	2.1	1.5	1.4	1.32	0.9	1	0.78
Total Suspended Solids (mg/l)	1.7	3.8	3.4	1.6	3.5	3.2	2.6	2.7	2.8	1.55	1.6	1.7	1.82	1.75	1.62
рН	7.81	7.79	7.9	8.16	7.72	7.76	7.73	7.83	7.82	7.99	8.19	8.21	8.11	8.07	8.01
Electrical Conductivity (μS/cm)	100.2	83.5	81.83	98.53	90.18	81.83	71.81	71.81	73.48	90.18	95.19	98.53	86.84	86.84	93.52
Total Dissolved Solids (mg/l)	60	50	49	59	54	49	43	43	44	54	57	59	52	52	56
Total alkalinity (mg/l of CaCO3)	27	24	23	26	26	21	23	23	20	28	30	30	24	25	30
Sulphate (mg/l)	6.91	2.62	4.8	6.98	4.74	4.9	2.51	3.56	4.9	3.78	3.92	3.9	3.5	2.6	2.2
Chloride (mg/l)	8.15	6.11	4.68	7.52	6.12	6.51	5.22	4.12	5.12	4.12	5.03	5.2	8.12	7.54	7.11
Nitrates (NO3) (mg/l)	0.19	0.27	0.38	0.18	0.15	0.22	0.26	0.25	0.21	0.12	0.19	0.32	0.19	0.24	0.14
Phosphate (PO4) (mg/l)	0.02	0.01	0.01	0.001	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.01	0.02	0.02	0.01
Total Hardness (mg/l)	33.441	25.28	24.996	32.555	28.773	27.986	24.995	23.99	24.568	27.763	29.61	31.191	30.471	29.671	32.218
Calcium ions (mg/ I)	8.85	6.75	5.8	8.02	6.95	6.75	6.39	6.48	6.58	6.71	7.58	7.95	7.99	7.67	8
Magnesium ions (mg/l)	2.76	2.05	2.56	3.05	2.78	2.71	2.2	1.9	1.98	2.68	2.6	2.76	2.56	2.56	2.98
Sodium (mg/l)	2.49	1.86	1.72	2.45	2.1	1.8	1.3	1.45	1.13	2.15	2.79	2.54	2.2	2.2	2.12
Potassium (mg/l)	1.58	1.39	1.35	1.47	1.17	1.18	1.19	1.22	1.02	1.9	1.75	1.84	1.56	1.58	1.2
Iron (mg/l)	0.11	0.12	0.11	0.12	0.12	0.11	0.1	0.01	0.01	0.11	0.11	0.1	0.01	0.11	0.12
Cadmium (Cd) (mg/l)	ND	<0.01	ND	<0.01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic (As) (mg/l)	ND ND	ND	ND	ND	ND	ND	ND								
Mercury (Hg) (mg/l)	ND	<0.001	ND	<0.001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper (Cu) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc (Zn) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Chromium (Cr) (mg/l)	ND	<0.05	ND	<0.05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Manganese (Mn) (mg/l)	ND ND	ND	ND	ND	ND	ND	ND								
Lead (Pb) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand (mg/l)	0.24	1	0.67	1.1	0.8	0.9	0.2	0.2	0.1	0.2	0.2	0.1	0.28	0.18	0.23
Chemical Oxygen Demand (mg/l)	0	0	0	0	2	2.1	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Α	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Α

Physical / Chemical Characteristics	W31	W32	W33	W34	W35	W36	W37	W38	W39	W40	W41	W42	W43	W44	W45
Water Temperature (°C)	24.9	24.6	25.2	25.1	22.9	22.1	23.7	24.3	23.1	24.8	24.1	23.9	23.78	26.1	24.2
Dissolved Oxygen (mg/l)	7.4	7.48	7.65	7.58	7.82	7.99	7.92	7.75	7.69	7.5	7.68	7.89	7.75	8.02	7.75
Turbidity (NTU)	1.1	1.67	0.87	0.74	1	1.04	1.05	1.45	1.57	1.02	1.02	0.67	1.2	0.69	0.5
Total Suspended Solids (mg/l)	1.59	1.56	1.29	1.19	1.98	2.1	1.8	1.85	1.9	1.75	2	1.7	1.43	1.76	1.65
рН	8.15	7.9	8.1	8.12	8.19	8.15	8.04	8.03	8.12	8.15	8.36	8.13	8.2	8.11	7.9
Electrical Conductivity (μS/cm)	75.15	76.82	80.16	81.83	65.13	75.15	78.49	80.16	75.15	78.49	90.18	86.84	95.19	81.83	80.16
Total Dissolved Solids (mg/l)	45	46	48	49	39	45	47	48	45	47	54	52	57	49	48
Total alkalinity (mg/l of CaCO3)	24	23	25	25	20	24	23	25	24	23	29	27	29	26	24
Sulphate (mg/l)	2.31	2.12	1.9	2.1	2.24	2.8	2.45	2.43	2.46	2.44	3.28	3.85	3.98	3.65	3.18
Chloride (mg/l)	5.18	5.9	5.98	6.17	5.11	5.78	5.67	5.11	5.21	6.1	5.35	5.76	5.67	5.82	5.91
Nitrates (NO3) (mg/l)	0.14	0.16	0.24	0.15	0.15	0.15	0.18	0.17	0.11	0.14	0.19	0.15	0.16	0.16	0.21
Phosphate (PO4) (mg/l)	0.001	0.02	0.001	0.02	0.02	0.01	0.02	0.001	0.02	0.01	0.02	0.02	0.01	0.01	0.01
Total Hardness (mg/l)	24.68	25.735	26.401	26.617	21.041	25.262	26.961	25.364	24.275	25.32	31.91	30.493	31.41	28.102	27.943
Calcium ions (mg/ I)	6.1	6.85	7.1	7.17	5.12	5.89	6.75	6.39	6.02	6.11	7.68	7.31	7.48	6.78	6.29
Magnesium ions (mg/l)	2.3	2.1	2.11	2.12	2.01	2.57	2.46	2.29	2.25	2.45	3.1	2.98	3.1	2.72	2.98
Sodium (mg/l)	2.21	1.67	1.9	2.05	1.65	1.68	1.42	1.64	1.85	2.05	1.6	1.88	2.15	2.01	1.59
Potassium (mg/l)	1.56	1.49	1.5	1.54	1.25	1.45	1.29	1.28	1.14	1.12	1.12	1.54	1.82	1.72	1.18
Iron (mg/l)	0.11	0.11	0.1	0.11	0.1	0.12	0.11	0.12	0.11	0.12	0.11	0.1	0.11	0.1	0.11
Cadmium (Cd) (mg/l)	ND	ND	ND	ND	ND	ND	<0.01	ND	<0.01	ND	ND	ND	ND	ND	ND
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	ND	ND	ND	ND	ND	<0.001	ND	<0.001	ND	ND	ND	ND	ND	ND
Copper (Cu) (mg/l)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Zinc (Zn) (mg/l)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Total Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	ND	<0.05	ND	<0.05	ND	ND	ND	ND	ND	ND
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/I)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand (mg/l)	0.22	0.76	0.95	0.86	1	0.24	1	0.67	1.1	1	0.11	0.2	0.2	0.1	0.2
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Р	Р	Р	Р	Р	Α	Р	Р	Р	Р	Α	Α	Р	Α	Α

Physical / Chemical Characteristics	W46	W47	W48	W49	W50	W51	W52	W53	W54	W55	W56	W57	W58	W59
Water Temperature (°C)	23.98	23.1	25.3	24.87	25.1	24.6	25.12	26.1	23.6	24.66	26.5	24.7	23.4	23.9
Dissolved Oxygen (mg/l)	7.91	7.85	7.57	7.69	7.67	7.75	7.72	7.46	7.58	7.78	7.72	7.64	7.69	7.71
Turbidity (NTU)	0.73	0.54	0.3	0.68	0.85	0.56	0.72	0.95	0.68	0.98	0.86	0.67	0.92	1.1
Total Suspended Solids (mg/l)	1.45	1.76	1.45	1.76	1.67	1.51	1.85	1.75	1.29	1.2	1.53	1.4	1.82	1.62
pH	8.12	8	7.67	7.72	7.68	7.65	7.74	7.68	8.05	8.11	8.16	7.85	8.05	8.02
Electrical Conductivity (μS/cm)	85.17	75.15	80.16	75.15	85.17	73.48	71.81	78.49	81.83	73.48	86.84	93.52	96.86	75.15
Total Dissolved Solids (mg/l)	51	45	48	45	51	44	43	47	49	44	52	56	58	45
Total alkalinity (mg/l of CaCO3)	26	22	25	23	27	24	23.1	25.2	27	22	31	33	34.7	24
Sulphate (mg/l)	2.76	2.65	2.56	2.64	2.51	2.98	2.32	2.56	3.1	3.2	2.8	3.02	2.67	3.1
Chloride (mg/l)	5.18	5.98	4.1	5.11	5.02	4.78	4.96	5.45	4.82	5.2	2.89	3.54	4.68	5.2
Nitrates (NO3) (mg/l)	0.18	0.21	0.26	0.19	0.19	0.16	0.16	0.19	0.2	0.18	0.19	0.12	0.2	0.19
Phosphate (PO4) (mg/l)	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01
Total Hardness (mg/l)	26.864	24.602	25.672	25.122	27.681	25.364	25.393	25.897	27.271	25.57	26.476	26.773	29.168	24.572
Calcium ions (mg/ I)	6.58	5.79	5.89	5.67	5.89	5.98	5.68	5.98	6.3	6.21	5.9	6.15	6.78	5.45
Magnesium ions (mg/l)	2.54	2.47	2.67	2.67	3.16	2.54	2.73	2.67	2.81	2.45	2.86	2.78	2.98	2.67
Sodium (mg/l)	1.76	1.76	1.5	1.6	1.69	1.45	1.56	1.92	1.98	1.65	2.6	2.86	3.56	1.9
Potassium (mg/l)	1.31	1.21	1.19	1.21	1.34	1.16	1.18	1.21	1.15	1.25	1.67	2.35	1.36	1.22
Iron (mg/l)	0.1	0.1	0.14	0.12	0.15	0.11	0.1	0.11	0.01	0.1	0.01	0.01	0.01	0.01
Cadmium (Cd) (mg/l)	ND ND	<0.01	ND	<0.01										
Arsenic (As) (mg/l)	ND ND	ND	ND	ND										
Mercury (Hg) (mg/l)	ND ND	<0.001	ND	<0.001										
Copper (Cu) (mg/l)	ND ND	<0.1	ND	<0.1										
Zinc (Zn) (mg/l)	ND ND	<0.1	ND	<0.1										
Total Chromium (Cr) (mg/l)	ND ND	<0.05	ND	<0.05										
Manganese (Mn) (mg/l)	ND ND	ND	ND	ND										
Lead (Pb) (mg/l)	ND ND	<0.1	ND	<0.1										
Biological Oxygen Demand (mg/l)	0.2	0.1	0.28	0.18	0.23	1.9	1.7	2.1	1.8	1	0.24	1	0.67	1.1
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	2.8	2.5	3.2	3.1	0	0	0	0	0
Total Coliform (MPN /100 ml)	Α	Р	Р	Р	Р	Α	Α	Р	Р	Р	Р	Α	Р	Р

Table 7.4: Physico-Chemical characteristics of water at different sampling sites in the Study Area (July 2016)

Physical / Chemical Characteristics	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13	W14	W15
Water Temperature (°C)	20.4	21.3	20.5	21.6	21	21.8	22.4	10.1	20.9	21.6	23.5	23.1	23	23.1	22.1
Dissolved Oxygen (mg/l)	7.95	7.86	7.9	7.83	8.01	7.94	7.78	8.3	8.01	7.99	7.62	7.83	7.72	7.85	7.85
Turbidity (NTU)	3.2	2.3	3.8	2.5	1.25	1.2	1.3	0	2.1	2	1.7	1.2	2	2.1	2
Total Suspended Solids (mg/l)	6.1	5.8	4.7	3.4	3.8	3.9	3.4	1.4	3.2	3.4	2.7	2.5	2.6	1.9	1.98
рН	8.21	8.2	8.28	8.18	8.26	8.35	8.21	8.22	8.24	8.19	8.15	8.2	7.92	7.95	7.82
Electrical Conductivity (μS/cm)	125.25	100.2	106.88	93.52	81.83	90.18	115.23	95.19	106.88	113.56	98.53	105.21	85.17	88.51	103.54
Total Dissolved Solids (mg/l)	75	60	64	56	49	54	69	57	64	68	59	63	51	53	62
Total alkalinity (mg/l of CaCO3)	32	26	28	26	24	25	34	30	31	30	28	27	24	27	28
Sulphate (mg/l)	6.5	4.1	5.1	5.8	4.5	4.89	7.4	4.6	5.4	5.4	5.75	6.28	4.7	5.7	6.8
Chloride (mg/l)	9.2	9.6	8.99	6.9	6.54	6.78	8.3	5.2	8.98	8.97	6.62	7.25	5.9	6.95	8.44
Nitrates (NO3) (mg/l)	1.1	1.02	0.98	0.19	0.85	0.79	0.22	0.28	1.1	1.17	1.18	1.2	0.7	0.56	0.19
Phosphate (PO4) (mg/l)	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.001	0.02	0.01	0.01
Total Hardness (mg/l)	40.695	32.87	35.88	31.39	28.86	28.889	41.2	34.095	35.745	35.118	34.421	33.018	28.434	31.116	35.364
Calcium ions (mg/ I)	9.8	7.9	8.12	7.8	6.46	6.98	9.1	8.8	9.05	9.16	8.34	8.32	6.88	7.92	8.34
Magnesium ions (mg/l)	3.95	3.2	3.8	2.9	3.1	2.79	4.5	2.95	3.2	2.98	3.31	2.98	2.74	2.76	3.54
Sodium (mg/l)	2.9	1.8	2.2	1.89	1.98	2.8	2.8	1.21	2.8	2.9	2.11	2.13	1.4	1.67	2.23
Potassium (mg/l)	1.8	1.9	1.6	1.3	1.2	1.35	1.5	0.98	1.6	1.67	1.58	1.84	1.21	1.2	1.89
Iron (mg/l)	0.13	0.12	0.12	0.1	0.11	0.1	0.12	0.13	0.1	0.1	0.01	0.021	0.11	0.12	0.12
Cadmium (Cd) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper (Cu) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc (Zn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand (mg/l)	0.15	0.21	0.26	0.11	0.19	0.15	1.2	0.25	0.16	0.21	0.24	0.67	0.59	0.79	1.15
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Р	Р	Р	Р	Р	Α	Α	Α	Р	Р	Р	Р	Р	Р	Р

Physical / Chemical Characteristics	W16	W17	W18	W19	W20	W21	W22	W23	W24	W25	W26	W27	W28	W29	W30
Water Temperature (°C)	22.2	23.6	23.8	21.1	23.4	23.5	23.8	23.2	23.9	21.1	20.9	20.98	22.8	22.1	21.1
Dissolved Oxygen (mg/l)	7.62	7.55	7.58	7.92	7.42	7.57	7.75	7.82	7.52	7.99	7.83	7.62	7.75	7.58	7.9
Turbidity (NTU)	1.9	2.9	3.1	1.1	3.2	3.3	2.3	2.5	2.4	1.4	1.5	1.3	8.0	1.1	0.7
Total Suspended Solids (mg/l)	2	4.2	3.5	1.9	4.1	3.8	2.9	2.95	3.01	1.6	1.5	1.5	1.95	1.7	1.6
рН	7.88	7.84	8.1	8.18	7.89	7.82	7.85	7.99	7.92	8.16	8.21	8.18	8.15	8.14	8.1
Electrical Conductivity (μS/cm)	98.53	73.48	80.16	101.87	85.17	86.84	75.15	76.82	71.81	100.2	100.2	105.21	88.51	93.52	98.53
Total Dissolved Solids (mg/l)	59	44	48	61	51	52	45	46	43	60	60	63	53	56	59
Total alkalinity (mg/l of CaCO3)	26	22	24	27	24	23	21	21	19	31	32	34	25	26	32
Sulphate (mg/l)	7.12	2.7	5.64	7.12	5.2	5.45	2.4	3.9	4.7	4.1	4.3	4.2	3.6	2.9	2.78
Chloride (mg/l)	8.34	6.23	4.98	7.69	6.44	6.62	5.7	4.4	6.3	4.65	5.22	5.6	8.31	7.6	7.34
Nitrates (NO3) (mg/l)	0.21	0.38	0.42	0.21	0.19	0.22	0.28	0.29	0.3	0.19	0.26	0.3	0.26	0.3	0.19
Phosphate (PO4) (mg/l)	0.02	0.01	0.01	0.001	0.01	0.02	0.01	0.02	0.01	0.01	0.02	0.02	0.01	0.01	0.001
Total Hardness (mg/l)	34.176	25.645	26.709	33.092	28.073	28.505	24.61	23.37	25.81	28.94	30.07	32.468	30.57	30.035	33.356
Calcium ions (mg/ I)	8.98	6.65	5.78	8.12	6.67	6.81	6.4	6.56	6.88	6.82	7.6	8.1	7.8	7.75	8.16
Magnesium ions (mg/l)	2.86	2.2	2.99	3.12	2.78	2.8	2.1	1.7	2.1	2.9	2.7	2.98	2.7	2.6	3.16
Sodium (mg/l)	2.54	1.98	1.86	2.66	1.9	1.72	1.2	1.3	1.2	2.45	2.98	2.6	2.3	2.34	2.32
Potassium (mg/I)	1.66	1.32	1.42	1.56	1.21	1.21	1.1	1.1	1.1	2.1	1.89	1.94	1.6	1.6	1.27
Iron (mg/l)	0.11	0.12	0.12	0.11	0.11	0.11	0.1	0.01	0.01	0.11	0.11	0.1	0.01	0.11	0.12
Cadmium (Cd) (mg/l)	ND	<0.01	ND	<0.01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic (As) (mg/l)	ND ND	ND	ND	ND	ND	ND	ND	ND							
Mercury (Hg) (mg/l)	ND	<0.001	ND	<0.001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper (Cu) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc (Zn) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Chromium (Cr) (mg/l)	ND	<0.05	ND	<0.05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Manganese (Mn) (mg/l)	ND ND	ND	ND	ND	ND	ND	ND	ND							
Lead (Pb) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand (mg/l)	0.35	0.89	0.45	1.12	1.26	1.3	0.54	0.32	0.21	0.19	0.28	0.18	0.4	0.5	0.35
Chemical Oxygen Demand (mg/l)	0	0	0	0	1.8	1.9	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Α	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Α

Physical / Chemical Characteristics	W31	W32	W33	W34	W35	W36	W37	W38	W39	W40	W41	W42	W43	W44	W45
Water Temperature (°C)	22.8	22.6	21.6	22.1	19.2	18.9	20.8	21.1	20.8	22.1	20.5	20.8	21.9	22.1	21.1
Dissolved Oxygen (mg/l)	7.45	7.57	7.75	7.62	7.99	8.1	8	7.87	7.75	7.55	7.76	8	7.82	8.11	7.82
Turbidity (NTU)	1.3	1.8	0.9	0.8	1.1	1.2	1.2	1.5	1.6	1.1	1.2	0.8	1.5	0.8	0.6
Total Suspended Solids (mg/l)	1.6	1.65	1.34	1.24	2.25	2.44	1.95	1.99	2.1	1.8	2.2	1.95	1.5	1.8	1.7
рН	8.21	8.02	8.2	8.21	8.25	8.21	8.16	8.19	8.18	8.19	8.42	8.18	8.28	8.14	7.92
Electrical Conductivity (μS/cm)	80.16	78.49	85.17	83.5	68.47	71.81	76.82	73.48	70.14	80.16	96.86	91.85	96.86	86.84	73.48
Total Dissolved Solids (mg/l)	48	47	51	50	41	43	46	44	42	48	58	55	58	52	44
Total alkalinity (mg/l of CaCO3)	26	25	28	27	22	23	25	23	22	26	32	30	32	28	22
Sulphate (mg/l)	2.45	2.48	2.2	2.4	2.1	2.3	2.68	2.54	2.59	2.56	3.65	3.94	4.18	3.78	3.02
Chloride (mg/l)	5.98	6.2	6.1	6.41	5.3	5.9	5.92	5.98	5.75	6.28	5.99	5.94	5.82	5.9	6
Nitrates (NO3) (mg/l)	0.18	0.19	0.28	0.18	0.19	0.12	0.16	0.19	0.12	0.16	0.2	0.18	0.14	0.21	0.24
Phosphate (PO4) (mg/l)	0.01	0.01	0.001	0.02	0.02	0.02	0.01	0.001	0.02	0.02	0.01	0.01	0.01	0.01	0.01
Total Hardness (mg/l)	25.816	26.295	27.619	28.32	22.52	24.91	27	25.637	24.135	26.601	33.323	31.786	31.502	28.695	25.586
Calcium ions (mg/ I)	6.21	6.91	7.21	7.31	5.4	5.7	6.7	6.45	6.21	6.36	7.95	7.45	7.32	6.64	6.2
Magnesium ions (mg/l)	2.51	2.2	2.34	2.45	2.2	2.6	2.5	2.32	2.1	2.61	3.28	3.21	3.22	2.95	2.46
Sodium (mg/l)	2.38	1.85	2.11	2.21	1.7	1.9	1.5	1.78	1.72	2.2	1.72	1.78	2.34	2.1	1.62
Potassium (mg/I)	1.62	1.56	1.75	1.6	1.2	1.34	1.2	1.31	1.28	1.24	1.25	1.37	1.65	1.8	1.1
Iron (mg/l)	0.11	0.11	0.1	0.11	0.1	0.12	0.11	0.11	0.11	0.12	0.11	0.1	0.11	0.1	0.11
Cadmium (Cd) (mg/l)	ND	ND	ND	ND	ND	ND	<0.01	ND	<0.01	ND	ND	ND	ND	ND	ND
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	ND	ND	ND	ND	ND	<0.001	ND	<0.001	ND	ND	ND	ND	ND	ND
Copper (Cu) (mg/l)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Zinc (Zn) (mg/l)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Total Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	ND	<0.05	ND	<0.05	ND	ND	ND	ND	ND	ND
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/l)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand (mg/l)	0.3	0.7	0.9	0.85	1.15	0.26	0.98	0.87	1.25	1.2	0.2	0.28	0.3	0.26	0.24
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Р	Р	Р	Р	Р	Α	Р	Р	Р	Р	Α	Α	Р	Α	Α

Physical / Chemical Characteristics	W46	W47	W48	W49	W50	W51	W52	W53	W54	W55	W56	W57	W58	W59
Water Temperature (°C)	20.7	20.6	22.4	22.2	22.8	22.4	22.9	23.1	20.9	21.9	22.6	22.1	20.6	21.7
Dissolved Oxygen (mg/l)	8.01	7.98	7.62	7.78	7.71	7.84	7.8	7.54	7.5	7.8	7.87	7.79	7.85	7.76
Turbidity (NTU)	0.8	0.6	0.6	0.9	0.95	0.6	0.8	1.1	0.7	1.1	0.9	0.7	1.1	1.2
Total Suspended Solids (mg/l)	1.55	1.85	1.52	1.82	1.77	1.58	1.96	1.85	1.35	1.22	1.65	1.49	1.9	1.78
рН	8.17	8.08	7.72	7.85	7.78	7.74	7.82	7.85	8.02	8.18	8.11	7.92	8.17	8.11
Electrical Conductivity (μS/cm)	76.82	73.48	81.83	78.49	86.84	68.47	75.15	71.81	83.5	76.82	91.85	88.51	91.85	80.16
Total Dissolved Solids (mg/l)	46	44	49	47	52	41	45	43	50	46	55	53	55	48
Total alkalinity (mg/l of CaCO3)	23	23	27	26	30	22	24.5	22.7	26	24	34	31	30.2	26
Sulphate (mg/l)	2.89	2.76	2.68	2.8	2.72	2.8	2.45	2.67	3.32	3.65	3.1	3.2	2.83	3.3
Chloride (mg/l)	5.44	6.25	4.98	5.25	5.26	4.95	4.8	5.62	4.98	5.92	3.05	3.92	4.95	5.4
Nitrates (NO3) (mg/l)	0.24	0.23	0.31	0.28	0.26	0.22	0.19	0.18	0.2	0.21	0.23	0.19	0.18	0.16
Phosphate (PO4) (mg/l)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Total Hardness (mg/l)	25.865	25.123	26.73	26.476	29.19	23.963	25.405	25.897	27.92	26.496	27.595	27.056	27.871	26.709
Calcium ions (mg/ I)	6.41	5.9	6.1	5.9	6.1	5.6	5.57	5.98	6.33	6.4	6.2	6.05	6.54	5.78
Magnesium ions (mg/l)	2.4	2.53	2.8	2.86	3.4	2.43	2.8	2.67	2.95	2.56	2.95	2.91	2.81	2.99
Sodium (mg/l)	1.6	1.8	1.67	1.85	1.78	1.5	1.6	1.92	2.1	1.7	3.1	2.96	3.1	2.1
Potassium (mg/l)	1.23	1.31	1.23	1.3	1.45	1.2	1.2	1.21	1.21	1.3	1.98	2.56	1.45	1.3
Iron (mg/l)	0.12	0.11	0.14	0.12	0.15	0.11	0.1	0.11	0.01	0.1	0.01	0.01	0.01	0.01
Cadmium (Cd) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.01	ND	<0.01
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.001	ND	<0.001
Copper (Cu) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1
Zinc (Zn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1
Total Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.05	ND	<0.05
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1
Biological Oxygen Demand (mg/l)	0.32	0.25	0.26	0.22	0.27	1.04	1.21	1.75	1.43	0.95	0.38	0.86	0.72	1.1
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	2.58	2.42	2.6	2.59	1.2	0	1.1	1	0
Total Coliform (MPN /100 ml)	Α	Р	Р	Р	Р	Α	Α	Р	Р	Р	Р	Α	Р	Р

Table 7.5: Physico-Chemical characteristics of water at different sampling sites in the Study Area (August 2016)

Physical / Chemical Characteristics	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13	W14	W15
Water Temperature (°C)	20.6	21.1	20.4	21.8	21.2	21.9	22.3	10.2	21.6	21.7	23.6	23.5	22.3	22.6	21.5
Dissolved Oxygen (mg/l)	7.9	7.85	7.82	7.76	7.95	7.9	7.69	8.2	7.9	7.95	7.56	7.75	7.74	7.79	7.65
Turbidity (NTU)	3.1	2.2	3.9	2.2	1.3	1.25	1.28	0	1.5	1.45	1.3	1.1	1.8	2	1.4
Total Suspended Solids (mg/l)	5.9	5.4	4.5	3.3	3.6	3.6	3.5	1.5	3.5	3.2	2.6	2.2	2.4	2.1	2.2
рН	8.15	8.18	8.28	8.14	8.33	8.39	8.15	8.18	8.2	8.16	8.17	8.24	7.86	7.89	7.92
Electrical Conductivity (μS/cm)	120.24	103.54	106.88	95.19	85.17	90.18	106.88	95.19	106.88	105.21	98.53	96.86	85.17	86.84	100.2
Total Dissolved Solids (mg/l)	72	62	64	57	51	54	64	57	64	63	59	58	51	52	60
Total alkalinity (mg/l of CaCO3)	32	29	27	28	26	27	34	31	30	29	29	27	25	25	27
Sulphate (mg/l)	6.9	5.1	5.6	5.7	4.8	5.2	7.6	4.9	5.25	5.4	5.9	6.6	5.2	5.7	6.9
Chloride (mg/l)	9.6	9.8	9.2	7.2	6.6	7.1	8.9	5.8	9.1	9	6.9	7.3	6.8	6.95	8.4
Nitrates (NO3) (mg/l)	1.4	1.2	1.1	0.15	0.1	0.11	0.23	0.67	1.1	1.25	1.21	1.22	0.9	0.6	0.32
Phosphate (PO4) (mg/l)	0.01	0.01	0.02	0.01	0.001	0.01	0.02	0.02	0.01	0.02	0.01	0.01	0.02	0.02	0.01
Total Hardness (mg/l)	41.31	33.69	35.46	31.71	30.12	30.87	42.61	34.96	37.39	33.91	33.87	33.18	29.89	31.73	35.18
Calcium ions (mg/ I)	9.8	7.9	7.95	7.6	6.8	7.1	9.5	8.9	9.38	9.3	8.3	8.35	7.2	8.1	8.25
Magnesium ions (mg/l)	4.1	3.4	3.8	3.1	3.2	3.2	4.6	3.1	3.4	2.6	3.2	3	2.9	2.8	3.55
Sodium (mg/l)	2.7	2.6	2.2	1.9	1.9	2.3	2.7	1.2	2.9	2.9	2.3	2.4	1.8	1.6	2.45
Potassium (mg/l)	1.9	1.8	1.4	1.3	1.2	1.4	1.6	0.9	1.77	1.8	1.75	1.92	1.3	1.15	1.95
Iron (mg/l)	0.12	0.13	0.12	0.11	0.12	0.11	0.14	0.18	0.12	0.1	0.1	0.01	0.12	0.1	0.11
Cadmium (Cd) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper (Cu) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc (Zn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/I)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand (mg/l)	0.11	0.2	0.2	0.1	0.2	0.2	0.1	0.28	0.18	0.23	0.22	0.76	0.95	0.86	1
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Р	Р	Р	Р	Р	Α	Α	Α	Р	Р	Р	Р	Р	Р	Р

Physical / Chemical Characteristics	W16	W17	W18	W19	W20	W21	W22	W23	W24	W25	W26	W27	W28	W29	W30
Water Temperature (°C)	21.3	23.6	23.4	20.8	23.1	23.7	23.5	23.1	23.8	20.7	20.8	20.85	22.6	21.7	20.6
Dissolved Oxygen (mg/l)	7.6	7.53	7.58	7.95	7.42	7.59	7.75	7.82	7.6	7.9	7.85	7.65	7.75	7.72	7.85
Turbidity (NTU)	1.6	3.2	3.4	0.9	3.2	3.3	2.2	2.5	2.4	1.3	1.2	1.1	0.3	0.5	0.2
Total Suspended Solids (mg/l)	2.1	4.3	3.5	2.1	4.2	4	3.1	2.9	3	1.9	1.6	1.4	1.9	1.8	1.7
рН	7.82	7.9	8.05	8.21	7.97	7.99	7.98	8.1	7.99	8.1	8.15	8.2	8.1	8.16	8.05
Electrical Conductivity (μS/cm)	98.53	81.83	78.49	101.87	83.5	86.84	80.16	76.82	71.81	93.52	100.2	105.21	88.51	90.18	95.19
Total Dissolved Solids (mg/l)	59	49	47	61	50	52	48	46	43	56	60	63	53	54	57
Total alkalinity (mg/l of CaCO3)	26	22	23	28	23	24	22	23	21	31	32	34	26	27	31
Sulphate (mg/l)	7.2	6.1	5.78	7.1	5.29	5.45	4.6	3.8	4.1	4.1	4.25	4.32	3.45	3.1	2.9
Chloride (mg/l)	8.6	6.4	5.25	7.95	6.45	6.8	5.7	4.45	5.3	4.9	5.3	5.4	8.25	7.6	7.5
Nitrates (NO3) (mg/l)	0.41	0.56	0.92	0.23	0.33	0.25	0.42	0.54	0.66	0.32	0.49	0.36	0.38	0.51	0.25
Phosphate (PO4) (mg/l)	0.001	0.02	0.02	0.02	0.01	0.02	0.01	0.02	0.02	0.01	0.001	0.001	0.01	0.01	0.001
Total Hardness (mg/l)	33.86	27.41	26.60	33.95	27.25	29.68	24.86	25.11	24.92	29.08	30.73	32.96	31.39	30.48	33.62
Calcium ions (mg/ l)	8.95	6.7	5.8	8.33	6.8	6.95	6.5	6.6	6.82	6.94	7.8	8.1	7.8	7.6	8.2
Magnesium ions (mg/l)	2.8	2.6	2.95	3.2	2.5	3	2.1	2.1	1.92	2.86	2.74	3.1	2.9	2.8	3.2
Sodium (mg/l)	2.45	1.9	1.95	2.9	1.92	1.7	1.15	1.4	1.25	2.38	2.15	2.8	2.2	2.45	2.35
Potassium (mg/l)	1.6	1.4	1.5	1.8	1.3	1.25	1.22	1.1	1.15	1.94	2.18	1.9	1.5	1.58	1.32
Iron (mg/l)	0.14	0.13	0.12	0.13	0.11	0.11	0.1	0.01	0.1	0.12	0.12	0.1	0.1	0.12	0.12
Cadmium (Cd) (mg/l)	ND	<0.01	ND	<0.01	ND	ND	ND	ND							
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	<0.001	ND	<0.001	ND	ND	ND	ND							
Copper (Cu) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND							
Zinc (Zn) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND							
Total Chromium (Cr) (mg/l)	ND	<0.05	ND	<0.05	ND	ND	ND	ND							
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND							
Biological Oxygen Demand (mg/l)	0.24	1	0.67	1.1	0.9	0.9	0.2	0.2	0.1	0.2	0.2	0.1	0.28	0.18	0.23
Chemical Oxygen Demand (mg/l)	0	0	0	0	1.7	1.9	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Α	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Α

Physical / Chemical Characteristics	W31	W32	W33	W34	W35	W36	W37	W38	W39	W40	W41	W42	W43	W44	W45
Water Temperature (°C)	22.6	22.3	21.4	22.5	18.6	18.4	20.5	20.7	20.4	21.8	20.2	20.3	21.7	21.6	20.5
Dissolved Oxygen (mg/l)	7.42	7.62	7.74	7.65	8.05	8.1	8	7.95	7.9	7.52	7.75	7.99	7.9	8.1	7.82
Turbidity (NTU)	0.8	1.5	0.2	0.3	0.1	0.2	1.1	1.2	1.1	0.8	0.7	0.2	0.8	0.3	0.1
Total Suspended Solids (mg/l)	1.4	1.5	1.4	1.2	2.2	2.3	2.1	1.9	2	1.9	2.1	1.9	1.6	1.7	1.8
рН	8.17	7.98	8.2	8.27	8.17	8.2	8.25	8.3	8.2	8.21	8.54	8.21	8.35	8.19	7.9
Electrical Conductivity (μS/cm)	80.16	81.83	85.17	85.17	70.14	71.81	76.82	80.16	75.15	81.83	98.53	91.85	96.86	88.51	80.16
Total Dissolved Solids (mg/l)	48	49	51	51	42	43	46	48	45	49	59	55	58	53	48
Total alkalinity (mg/l of CaCO3)	26	25	28	28	23	22	25	26	24	25	32	30	31	29	26
Sulphate (mg/l)	2.8	2.7	2.3	2.6	2.1	2.5	2.75	2.1	2.6	2.66	3.6	4.1	4.2	3.78	3.2
Chloride (mg/l)	5.9	6.4	6	6.45	5.4	5.9	5.96	6.1	5.75	6.32	6.1	5.9	5.78	5.95	6.18
Nitrates (NO3) (mg/l)	0.31	0.27	0.25	0.19	0.18	0.21	0.18	0.19	0.21	0.19	0.24	0.18	0.16	0.21	0.28
Phosphate (PO4) (mg/l)	0.001	0.001	0.02	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Total Hardness (mg/l)	27.07	28.00	27.84	28.39	23.43	24.34	26.16	27.66	25.13	27.89	33.45	31.62	31.85	29.97	27.99
Calcium ions (mg/l)	6.4	7.1	7.2	7.5	5.6	5.8	6.2	6.8	6.28	6.4	8.1	7.4	7.41	7.15	6.72
Magnesium ions (mg/l)	2.7	2.5	2.4	2.35	2.3	2.4	2.6	2.6	2.3	2.9	3.22	3.2	3.25	2.95	2.73
Sodium (mg/l)	2.35	1.98	2.2	2.1	1.9	1.95	1.8	2.1	1.8	2.2	1.82	1.9	1.95	1.92	1.8
Potassium (mg/l)	1.68	1.52	1.84	1.69	1.3	1.4	1.4	1.5	1.4	1.4	1.26	1.3	1.5	1.5	1.2
Iron (mg/l)	0.11	0.11	0.1	0.11	0.12	0.18	0.13	0.11	0.12	0.12	0.11	0.14	0.11	0.16	0.11
Cadmium (Cd) (mg/l)	ND	ND	ND	ND	ND	ND	<0.01	ND	<0.01	ND	ND	ND	ND	ND	ND
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Mercury (Hg) (mg/l)	ND	ND	ND	ND	ND	ND	<0.001	ND	<0.001	ND	ND	ND	ND	ND	ND
Copper (Cu) (mg/l)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Zinc (Zn) (mg/l)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Total Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	ND	<0.05	ND	<0.05	ND	ND	ND	ND	ND	ND
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Lead (Pb) (mg/l)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand (mg/l)	0.22	0.76	0.95	0.86	1	0.24	1	0.67	1.1	1	0.11	0.2	0.2	0.1	0.2
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Р	Р	Р	Р	Р	Α	Р	Р	Р	Р	Α	Α	Р	Α	Α

Physical / Chemical Characteristics	W46	W47	W48	W49	W50	W51	W52	W53	W54	W55	W56	W57	W58	W59
Water Temperature (°C)	20.3	20.1	22.3	22.4	22.6	22.8	22.5	22.1	22.6	21.3	22.2	21.9	20.1	21.2
Dissolved Oxygen (mg/l)	8	7.9	7.75	7.72	7.69	7.85	7.8	7.61	7.59	7.75	7.89	7.75	7.85	7.69
Turbidity (NTU)	0.2	0.2	0.4	0.5	0.5	0.2	0.3	0.4	0.2	0.6	0.3	0.21	0.3	0.2
Total Suspended Solids (mg/l)	1.6	1.9	1.6	1.9	1.68	1.69	1.89	1.9	1.4	1.25	1.76	1.56	1.5	1.9
рН	8.13	8.15	7.85	7.9	7.82	7.81	7.76	7.79	8.1	8.21	8.15	7.89	8.26	8.19
Electrical Conductivity (μS/cm)	83.5	75.15	83.5	85.17	86.84	73.48	75.15	73.48	83.5	81.83	93.52	86.84	91.85	80.16
Total Dissolved Solids (mg/l)	50	45	50	51	52	44	45	44	50	49	56	52	55	48
Total alkalinity (mg/l of CaCO3)	26	24	26	27	29	24	25	23	26	25	34	30	31	26
Sulphate (mg/l)	3.2	2.6	3.1	2.75	3.1	2.8	2.54	2.34	3.3	3.6	3.4	3.2	2.9	3.3
Chloride (mg/l)	5.75	6.2	5.5	5.22	5.3	4.9	5.1	5.35	5.1	6	3.4	3.9	4.5	5.9
Nitrates (NO3) (mg/l)	0.36	0.42	0.38	0.32	0.27	0.23	0.21	0.1	0.15	0.13	0.16	0.11	0.12	0.1
Phosphate (PO4) (mg/l)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.001
Total Hardness (mg/l)	27.44	25.75	27.34	26.94	28.91	25.41	25.07	25.32	28.59	27.62	28.77	28.09	27.11	27.46
Calcium ions (mg/ I)	6.94	6.2	6.05	6.1	6.15	5.9	5.6	5.7	6.35	6.7	6.26	6.15	6.25	6.13
Magnesium ions (mg/l)	2.46	2.5	2.98	2.85	3.3	2.6	2.7	2.7	3.1	2.65	3.2	3.1	2.8	2.96
Sodium (mg/l)	1.95	1.7	1.7	1.8	1.8	1.45	1.82	1.9	1.7	1.73	3.4	2.95	3.1	1.95
Potassium (mg/l)	1.26	1.3	1.2	1.25	1.4	1.2	1.25	1.4	1.35	1.32	1.95	1.48	1.5	1.2
Iron (mg/l)	0.17	0.16	0.14	0.15	0.16	0.12	0.1	0.19	0.1	0.01	0.12	0.01	0.1	0.11
Cadmium (Cd) (mg/l)	ND	<0.01	ND	<0.01										
Arsenic (As) (mg/l)	ND	ND	ND											
Mercury (Hg) (mg/l)	ND	<0.001	ND	<0.001										
Copper (Cu) (mg/l)	ND	<0.1	ND	<0.1										
Zinc (Zn) (mg/l)	ND	<0.1	ND	<0.1										
Total Chromium (Cr) (mg/l)	ND	<0.05	ND	<0.05										
Manganese (Mn) (mg/l)	ND	ND	ND											
Lead (Pb) (mg/l)	ND	<0.1	ND	<0.1										
Biological Oxygen Demand (mg/l)	0.2	0.1	0.28	0.18	0.23	1.5	1.7	1.6	1.9	1	0.24	1	0.67	1.1
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	2.8	2.4	2.5	2.55	1.2	1.1	1.6	1.05	1.88
Total Coliform (MPN /100 ml)	Α	Р	Р	Р	Р	Α	Α	Р	Р	Р	Р	Α	Р	Р

Table 7.6: Physico-Chemical characteristics of water at different sampling sites in the Study Area (September 2016)

Physical / Chemical Characteristics	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13	W14	W15
Water Temperature (°C)	19.2	20	19.3	21.2	20.4	21.1	22	9.8	19	19.1	22.4	20.8	21.3	22.1	19.2
Dissolved Oxygen (mg/l)	8	7.9	7.9	7.8	8.1	8	7.8	8.4	8.1	8.1	7.6	7.8	7.76	7.82	7.9
Turbidity (NTU)	3	2	4	2.1	1.2	1.3	1.2	0	1.1	1.2	1.2	0.5	1.7	1.95	1.2
Total Suspended Solids (mg/l)	6	5.3	4.8	3.2	3.5	3.7	3.4	1.2	3.4	3.5	2.3	2.1	2.3	1.56	1.8
рН	8.2	8.14	8.32	8.1	8.34	8.4	8.11	8.14	8.19	8.21	8.2	8.22	7.91	7.94	7.98
Electrical Conductivity (μS/cm)	116.9	106.88	101.87	98.53	75.15	80.16	110.22	100.2	113.56	108.55	93.52	101.87	81.83	78.49	96.86
Total Dissolved Solids (mg/l)	70	64	61	59	45	48	66	60	68	65	56	61	49	47	58
Total alkalinity (mg/l of CaCO3)	29	26	24	24	21	22	32	27	28	27	26	25	22	22	25
Sulphate (mg/l)	6.8	4.1	5.3	5.5	4.2	4.7	7.3	4.1	4.9	5.1	5.7	6.2	4.6	5.1	6.7
Chloride (mg/l)	9.4	9.4	8.9	6.4	6.3	6.67	8.5	5.3	8.9	8.7	6.5	7.1	6.4	6.7	8.32
Nitrates (NO3) (mg/l)	1.2	1.1	0.95	0.11	0.98	0.85	0.19	0.22	1.22	1.21	1.11	1.1	0.56	0.48	0.12
Phosphate (PO4) (mg/l)	0.001	0.001	0.002	0.001	0.001	0.002	0.001	<.001	0.001	0.001	0.01	0.001	0.002	0.002	0.001
Total Hardness (mg/l)	39.58	31.46	34.67	29.82	27.39	28.23	41.95	33.64	36.37	33	33.21	32.39	28.73	29.59	34.44
Calcium ions (mg/ I)	9.6	7.5	7.8	7.5	6.2	6.7	9.4	8.7	9.3	9.1	8.2	8.2	6.9	7.9	8.2
Magnesium ions (mg/l)	3.8	3.1	3.7	2.7	2.9	2.8	4.5	2.9	3.2	2.5	3.1	2.9	2.8	2.4	3.4
Sodium (mg/l)	2.6	2.5	2.1	1.8	1.8	2.1	2.6	1.1	2.8	2.7	2.1	2.32	1.2	1.5	2.1
Potassium (mg/l)	1.8	1.7	1.3	1.2	1.1	1.3	1.4	0.7	1.6	1.7	1.63	1.89	1.1	1.05	1.8
Iron (mg/l)	0.15	0.14	0.11	0.11	0.11	0.12	0.13	0.22	0.1	0.1	0.01	0.021	0.11	0.12	0.11
Cadmium (Cd) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper (Cu) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc (Zn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/I)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand (mg/l)	0.14	0.26	0.23	0.15	0.21	0.25	0.18	0.26	0.27	0.22	0.18	0.89	1.1	0.95	1.2
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α

Physical / Chemical Characteristics	W16	W17	W18	W19	W20	W21	W22	W23	W24	W25	W26	W27	W28	W29	W30
Water Temperature (°C)	20.4	23	22.2	19.5	22.4	23.6	23.1	22.9	23.4	19.5	19.8	20.1	22	20.6	19.5
Dissolved Oxygen (mg/l)	7.6	7.5	7.6	8.1	7.4	7.6	7.8	7.9	7.5	8.1	7.9	7.6	7.8	7.6	8
Turbidity (NTU)	1.8	3.2	3.4	0.3	3.4	3.2	2.1	2.4	2.3	1.2	1.1	0.8	0	0	0
Total Suspended Solids (mg/l)	2.1	4.4	3.7	1.5	4.5	4.2	3.2	2.8	3.1	1.5	1.3	1.2	2	1.3	1.5
рН	7.94	7.88	7.99	8.17	8.03	8.02	8.05	8	8	8.11	8.19	8.17	8.15	8.19	8.1
Electrical Conductivity (μS/cm)	91.85	70.14	73.48	98.53	80.16	83.5	78.49	73.48	75.15	96.86	103.54	108.55	78.49	85.17	91.85
Total Dissolved Solids (mg/l)	55	42	44	59	48	50	47	44	45	58	62	65	47	51	55
Total alkalinity (mg/l of CaCO3)	23	18	20	26	20	22	18	19	17	29	30	32	22	24	29
Sulphate (mg/l)	6.95	5.6	5.6	6.9	5.1	5.2	4.1	3.5	4.3	3.9	4.1	4	3.2	2.8	2.6
Chloride (mg/l)	8.12	6.1	5.1	7.8	6.3	6.5	5.6	4.2	6.1	4.8	5.1	5.3	8.2	7.5	7.2
Nitrates (NO3) (mg/l)	0.18	0.45	0.58	0.14	0.12	0.11	0.24	0.31	0.35	0.11	0.21	0.28	0.21	0.28	0.11
Phosphate (PO4) (mg/l)	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.01	0.01	0.001
Total Hardness (mg/l)	33.32	24.36	25.73	34.44	25.68	28.07	23.54	22.56	23.72	28.48	29.41	31.89	28.5	28.59	32.96
Calcium ions (mg/ I)	8.9	6.3	5.7	8.2	6.5	6.8	6.3	6.4	6.7	6.8	7.5	8	7.3	7.5	8.1
Magnesium ions (mg/l)	2.7	2.1	2.8	3.4	2.3	2.7	1.9	1.6	1.7	2.8	2.6	2.9	2.5	2.4	3.1
Sodium (mg/l)	2.4	1.8	1.9	2.6	1.87	1.6	1.1	1.2	1.15	2.4	2.9	2.5	2.1	2.3	2.2
Potassium (mg/l)	1.5	1.2	1.3	1.4	1.12	1.1	1.02	1.05	1.1	1.9	2.01	1.8	1.4	1.5	1.2
Iron (mg/l)	0.13	0.12	0.12	0.13	0.11	0.11	0.01	0.01	0.01	0.11	0.11	0.1	0.01	0.11	0.12
Cadmium (Cd) (mg/l)	ND	<0.01	ND	<0.01	ND	ND	ND	ND	ND						
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	<0.001	ND	<0.001	ND	ND	ND	ND	ND						
Copper (Cu) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND						
Zinc (Zn) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND						
Total Chromium (Cr) (mg/l)	ND	<0.05	ND	<0.05	ND	ND	ND	ND	ND						
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND						
Biological Oxygen Demand (mg/l)	0.56	0.98	0.78	1.2	0.95	0.86	0.28	0.3	0.18	0.26	0.25	0.18	0.21	0.25	0.27
Chemical Oxygen Demand (mg/l)	0	0	0	0	1.6	1.8	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А

Physical / Chemical Characteristics	W31	W32	W33	W34	W35	W36	W37	W38	W39	W40	W41	W42	W43	W44	W45
Water Temperature (°C)	22.1	21.4	20.1	21.2	15.6	15.3	17.8	18.2	18	21.2	19.2	19.6	20.7	21.2	19.2
Dissolved Oxygen (mg/l)	7.4	7.6	7.8	7.7	8.2	8.3	8.1	8	7.9	7.5	7.8	8.1	7.9	8.21	7.89
Turbidity (NTU)	0	1.1	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Suspended Solids (mg/l)	1.1	1.4	1.2	1.1	2.1	2.2	1.9	1.8	1.9	1.6	2.1	1.8	1.3	1.45	1.5
рН	8.16	8.01	8.2	8.27	8.17	8.2	8.25	8.3	8.2	8.21	8.54	8.21	8.35	8.19	7.9
Electrical Conductivity (μS/cm)	73.48	71.81	80.16	78.49	63.46	65.13	65.13	66.8	68.47	86.84	108.55	98.53	93.52	83.5	83.5
Total Dissolved Solids (mg/l)	44	43	48	47	38	39	39	40	41	52	65	59	56	50	50
Total alkalinity (mg/l of CaCO3)	23	22	26	25	19	20	23	20	21	24	30	29	30	27	24
Sulphate (mg/l)	2.3	2.4	2.1	2.3	1.9	2.1	2.6	2.4	2.5	2.5	3.5	3.8	4.1	3.65	3.1
Chloride (mg/l)	5.8	6.1	5.9	6.3	5.3	5.7	5.8	5.9	5.7	6.2	5.9	5.8	5.76	5.8	6.1
Nitrates (NO3) (mg/l)	0.12	0.13	0.11	0.16	0.11	0.12	0.11	0.12	0.11	0.13	0.15	0.12	0.11	0.18	0.2
Phosphate (PO4) (mg/I)	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.01	0.01	0.01	0.01	0.01
Total Hardness (mg/l)	25.09	25.61	26.77	27.391	21.86	23.18	23.86	24.52	23.475	26	32.46	30.96	30.94	28.324	26.51
Calcium ions (mg/ I)	6.1	6.8	7.1	7.25	5.3	5.5	6.1	6.2	6.11	6.3	7.9	7.3	7.21	6.59	6.34
Magnesium ions (mg/l)	2.4	2.1	2.2	2.26	2.1	2.3	2.1	2.2	2	2.5	3.1	3.1	3.15	2.89	2.6
Sodium (mg/l)	2.3	1.9	2.1	2.15	1.6	1.7	1.4	1.6	1.6	2.1	1.68	1.7	1.9	1.87	1.7
Potassium (mg/l)	1.5	1.4	1.7	1.5	1.1	1.2	1.1	1.2	1.2	1.1	1.17	1.25	1.54	1.43	1.05
Iron (mg/I)	0.11	0.11	0.1	0.11	0.1	0.12	0.11	0.11	0.11	0.12	0.11	0.1	0.11	0.12	0.11
Cadmium (Cd) (mg/l)	ND	ND	ND	ND	ND	ND	<0.01	ND	<0.01	ND	ND	ND	ND	ND	ND
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	ND	ND	ND	ND	ND	<0.001	ND	<0.001	ND	ND	ND	ND	ND	ND
Copper (Cu) (mg/l)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Zinc (Zn) (mg/l)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Total Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	ND	<0.05	ND	<0.05	ND	ND	ND	ND	ND	ND
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/I)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand (mg/l)	0.28	0.89	1.1	0.95	1.1	0.4	1.09	0.85	1.02	0.95	0.19	0.25	0.22	0.16	0.28
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α

Physical / Chemical Characteristics	W46	W47	W48	W49	W50	W51	W52	W53	W54	W55	W56	W57	W58	W59
Water Temperature (°C)	18.9	18.6	21.5	21.1	21.6	21.8	21.6	21.9	20.5	19.8	20.1	20.4	18.9	19.6
Dissolved Oxygen (mg/l)	8.1	8	7.68	7.8	7.75	7.98	7.85	7.59	7.54	7.85	7.92	7.83	7.98	7.85
Turbidity (NTU)	0	0	0.3	0.4	0.4	0.1	0.15	0.21	0	0.2	0.1	0.12	0	0
Total Suspended Solids (mg/l)	1.35	1.8	1.5	1.6	1.55	1.42	1.56	1.75	1.2	1.1	1.6	1.21	2.6	1.8
рН	8.13	8.15	7.85	7.9	7.82	7.81	7.76	7.79	8.1	8.21	8.15	7.89	8.22	8.15
Electrical Conductivity (μS/cm)	88.51	78.49	80.16	81.83	85.17	63.46	68.47	70.14	80.16	83.5	88.51	81.83	90.18	75.15
Total Dissolved Solids (mg/l)	53	47	48	49	51	38	41	42	48	50	53	49	54	45
Total alkalinity (mg/l of CaCO3)	25	21	26	26	28	20	22	20	24	23	32	28	28	24
Sulphate (mg/l)	3	2.6	2.8	2.6	2.65	2.7	2.3	2.5	3.2	3.54	3.18	3.1	2.65	3.2
Chloride (mg/l)	5.6	6.15	5.21	5.1	5.16	4.8	4.9	5.3	4.9	5.85	3.2	3.8	4.8	5.2
Nitrates (NO3) (mg/l)	0.21	0.19	0.26	0.22	0.21	0.14	0.12	0.1	0.15	0.13	0.16	0.11	0.12	0.01
Phosphate (PO4) (mg/l)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.001
Total Hardness (mg/l)	26.208	23.715	26.64	26.023	28.075	22.93	24.285	24.414	27.39	25.34	28.217	26.535	26.57	25.924
Calcium ions (mg/ I)	6.58	5.55	5.9	5.85	5.9	5.4	5.45	5.6	6.2	6.2	6.17	5.94	6.2	5.63
Magnesium ions (mg/l)	2.38	2.4	2.9	2.78	3.25	2.3	2.6	2.54	2.9	2.4	3.12	2.85	2.7	2.89
Sodium (mg/l)	1.85	1.58	1.6	1.7	1.65	1.4	1.7	1.84	1.55	1.6	3.2	2.89	2.85	1.82
Potassium (mg/l)	1.15	1.2	1.12	1.2	1.25	1.1	1.17	1.1	1.19	1.21	1.9	1.43	1.32	1.1
Iron (mg/l)	0.12	0.11	0.14	0.12	0.15	0.11	0.1	0.11	0.01	0.01	0.01	0.01	0.01	0.01
Cadmium (Cd) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.01	ND	<0.01
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.001	ND	<0.001
Copper (Cu) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1
Zinc (Zn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1
Total Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.05	ND	<0.05
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1
Biological Oxygen Demand (mg/l)	0.29	0.34	0.31	0.21	0.26	1.2	1.35	1.95	1.32	1.1	0.6	1.1	0.8	1.2
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	2.3	2.1	2.8	2.5	1.8	0	1.9	1.5	1.1
Total Coliform (MPN /100 ml)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α

Table 7.7: Physico-Chemical characteristics of water at different sampling sites in the Study Area (October 2016)

Physical / Chemical Characteristics	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13	W14	W15
Water Temperature (°C)	17.1	17	17.4	18.1	18	19.1	19.6	7.1	17.5	17.2	20.1	18.2	19.2	19.5	18.1
Dissolved Oxygen (mg/l)	8.2	8.1	8	7.9	8.2	8.1	8	8.6	8.2	8.1	7.9	8	7.8	7.8	7.85
Turbidity (NTU)	1.1	1.1	1.5	1.2	0	0.2	0.4	0	1	1.1	0.8	0.2	1.5	1.82	0.5
Total Suspended Solids (mg/l)	5.3	5.2	4.5	3	3.1	2.2	2.7	1.5	3.2	3.3	2.1	2	2.1	1.8	1.2
рН	8.24	8.21	8.28	8.13	8.3	8.35	8.18	8.2	8.2	8.17	8.16	8.21	7.7	7.8	7.87
Electrical Conductivity (μS/cm)	103.54	95.19	91.85	88.51	80.16	83.5	106.88	95.19	103.54	100.2	91.85	95.19	83.5	85.17	93.52
Total Dissolved Solids (mg/l)	62	57	55	53	48	50	64	57	62	60	55	57	50	51	56
Total alkalinity (mg/l of CaCO3)	28	26	26	24	22	23	30	29	28	27	29	23	24	25	23
Sulphate (mg/l)	5.3	4.8	4.9	5.1	4.6	4.8	7.1	3.9	4.5	4.9	5.2	5.9	4.3	4.8	6.2
Chloride (mg/l)	8.2	8.3	8.4	7.5	7.1	6.9	8.2	5.1	8.1	8.2	6.1	6.8	6.1	6.3	7.9
Nitrates (NO3) (mg/l)	1.05	1.02	0.91	0.12	0.82	0.89	0.15	0.19	1.1	1.1	0.9	0.89	0.54	0.51	0.25
Phosphate (PO4) (mg/l)	0.001	0.001	0.002	0.001	0.001	0.002	0.001	<.001	0.001	0.001	0.01	0.001	0.002	0.002	0.001
Total Hardness (mg/l)	36.76	33.62	34.83	30.89	28.46	28.14	39.97	33.96	34.87	33.89	32.14	29.25	30.46	29.66	32.46
Calcium ions (mg/ I)	8.8	8.2	7.7	7.6	6.3	6.5	9.1	8.5	8.7	8.8	8.1	7.6	7.1	7.6	7.9
Magnesium ions (mg/l)	3.6	3.2	3.8	2.9	3.1	2.9	4.2	3.1	3.2	2.9	2.9	2.5	3.1	2.6	3.1
Sodium (mg/l)	2.2	2.4	2.2	2.1	2	1.9	2.2	1.2	2.3	2.4	2	2.1	1.4	1.7	2.2
Potassium (mg/l)	1.9	1.8	1.6	1.5	1.4	1.1	1.2	0.8	1.5	1.4	1.45	1.6	1.1	1	1.1
Iron (mg/l)	0.13	0.12	0.11	0.11	0.11	0.11	0.13	0.22	0.1	0.1	0.01	0.021	0.11	0.12	0.11
Cadmium (Cd) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper (Cu) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc (Zn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/I)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand (mg/l)	0.11	0.2	0.2	0.1	0.2	0.2	0.1	0.28	0.18	0.23	0.22	0.76	0.95	0.86	1
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Р	Р	Р	Р	Р	Α	Α	Α	Р	Р	Р	Р	Р	Р	Р

Physical / Chemical Characteristics	W16	W17	W18	W19	W20	W21	W22	W23	W24	W25	W26	W27	W28	W29	W30
Water Temperature (°C)	19	20	19.2	18.2	20.1	20.5	20.4	20.2	21.2	17.2	18.1	18.2	21.1	20.1	19.1
Dissolved Oxygen (mg/l)	7.8	7.7	7.85	8.15	7.36	7.75	7.85	7.92	7.8	8.2	8.1	8	8.1	7.9	8.2
Turbidity (NTU)	1.1	2.9	2.9	0	3.2	2.1	2.2	2.1	2.1	1	0.5	0.4	0	0	0
Total Suspended Solids (mg/l)	1.7	4.1	3.8	1.7	4.1	3.5	3	2.5	2.6	1.6	1.4	1.3	2.1	1.2	1.4
рН	7.9	7.87	8	8.11	7.85	7.9	8	8.15	8.1	8.15	8.16	8.19	8.11	8.2	8.1
Electrical Conductivity (μS/cm)	86.84	71.81	75.15	93.52	83.5	88.51	83.5	80.16	75.15	91.85	105.21	106.88	85.17	90.18	88.51
Total Dissolved Solids (mg/l)	52	43	45	56	50	53	50	48	45	55	63	64	51	54	53
Total alkalinity (mg/l of CaCO3)	21	19	21	24	22	24	19	21	19	28	29	30	24	25	28
Sulphate (mg/l)	6.5	5.4	5.7	6.2	5.6	5.8	5.3	4.2	4.8	4.1	4.3	4.3	3.8	3.2	2.9
Chloride (mg/l)	7.9	5.7	5.4	6.6	6.1	6.1	5.7	4.9	5.7	4.5	5.5	5.4	7.8	7.9	7.5
Nitrates (NO3) (mg/l)	0.15	0.34	0.43	0.12	0.12	0.12	0.21	0.21	0.28	0.11	0.12	0.18	0.22	0.21	0.16
Phosphate (PO4) (mg/l)	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.01	0.01	0.001
Total Hardness (mg/l)	31.66	24.93	27.14	32.71	28.07	29.14	25.27	24.13	24.61	27.91	30.152	32.255	29.82	29.955	32.202
Calcium ions (mg/ I)	8.4	6.2	6.1	8	6.8	6.9	6.5	6.7	6.4	6.9	7.6	7.9	7.5	7.8	7.6
Magnesium ions (mg/l)	2.6	2.3	2.9	3.1	2.7	2.9	2.2	1.8	2.1	2.6	2.72	3.05	2.7	2.55	3.22
Sodium (mg/l)	2.2	1.5	1.2	2.2	1.9	1.7	1.4	1.5	1.2	2.1	2.75	2.6	2.34	2.5	2.45
Potassium (mg/l)	1.2	1	0.9	1.2	1.1	1.2	1	1.1	1.23	1.5	2.1	1.9	1.6	1.7	1.5
Iron (mg/l)	0.13	0.12	0.12	0.13	0.11	0.11	0.01	0.01	0.01	0.11	0.11	0.1	0.01	0.11	0.12
Cadmium (Cd) (mg/I)	ND	<0.01	ND	<0.01	ND	ND	ND	ND	ND						
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	<0.001	ND	<0.001	ND	ND	ND	ND	ND						
Copper (Cu) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND						
Zinc (Zn) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND						
Total Chromium (Cr) (mg/l)	ND	<0.05	ND	<0.05	ND	ND	ND	ND	ND						
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/l)	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND						
Biological Oxygen Demand (mg/l)	0.24	1	0.67	1.1	0.7	0.8	0.2	0.2	0.1	0.2	0.2	0.1	0.28	0.18	0.23
Chemical Oxygen Demand (mg/l)	0	0	0	0	1.7	1.9	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Α	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Α

Physical / Chemical Characteristics	W31	W32	W33	W34	W35	W36	W37	W38	W39	W40	W41	W42	W43	W44	W45
Water Temperature (°C)	21.2	20.2	19.1	19.2	15.2	15.1	16.8	17.2	17.7	20.4	18.4	18.3	19.4	20.3	18.1
Dissolved Oxygen (mg/l)	7.6	7.8	7.85	7.8	8.22	8.35	8.18	8.2	7.75	7.6	7.85	8.15	7.95	8.15	7.9
Turbidity (NTU)	0	0.6	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Suspended Solids (mg/l)	1.2	1.3	1.4	1.4	2.2	2.1	1.6	1.7	1.8	2.1	2.2	1.9	1.5	1.6	1.5
рН	8.16	7.99	8.12	8.25	8.21	8.25	8.19	8.27	8.22	8.21	8.48	8.2	8.31	8.24	8.1
Electrical Conductivity (μS/cm)	80.16	81.83	86.84	85.17	70.14	76.82	73.48	75.15	66.8	81.83	100.2	95.19	91.85	90.18	93.52
Total Dissolved Solids (mg/l)	48	49	52	51	42	46	44	45	40	49	60	57	55	54	56
Total alkalinity (mg/l of CaCO3)	25	23	28	27	22	24	22	23	20	27	30	29	30	30	25
Sulphate (mg/l)	2.7	2.8	2.4	2.6	2.1	2.5	2.9	2.8	2.9	2.9	3.5	3.3	4.1	4.1	3.8
Chloride (mg/l)	6.2	6.4	6.3	6.6	6.1	6.1	6.5	6.2	5.95	6.4	6.3	6.56	6.1	6.2	6.2
Nitrates (NO3) (mg/l)	0.18	0.11	0.1	0.12	0.09	0.1	0.15	0.13	0.1	0.12	0.11	0.08	0.13	0.15	0.21
Phosphate (PO4) (mg/l)	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.01	0.01	0.01	0.01	0.01
Total Hardness (mg/l)	27.07	26.77	27.885	28.012	24.75	25.91	24.77	25.84	24.11	25.84	31.89	30.849	31.05	29.97	28.07
Calcium ions (mg/ I)	6.4	7.1	7.3	7.4	5.8	6.1	6.3	6.4	6.2	6.4	8	7.6	7.5	7.15	6.8
Magnesium ions (mg/l)	2.7	2.2	2.35	2.32	2.5	2.6	2.2	2.4	2.1	2.4	2.9	2.89	3	2.95	2.7
Sodium (mg/l)	2.5	2.1	2.2	2.3	1.9	2.1	1.8	1.9	1.8	2	1.7	1.8	2.1	1.9	1.8
Potassium (mg/I)	1.6	1.5	1.8	1.6	1.4	1.3	1.2	1.3	1.28	1.25	1.21	1.35	1.5	1.4	1.2
Iron (mg/l)	0.11	0.11	0.1	0.11	0.1	0.12	0.11	0.11	0.11	0.12	0.11	0.1	0.11	0.12	0.11
Cadmium (Cd) (mg/l)	ND	ND	ND	ND	ND	ND	<0.01	ND	<0.01	ND	ND	ND	ND	ND	ND
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	ND	ND	ND	ND	ND	<0.001	ND	<0.001	ND	ND	ND	ND	ND	ND
Copper (Cu) (mg/l)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Zinc (Zn) (mg/l)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Total Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	ND	<0.05	ND	<0.05	ND	ND	ND	ND	ND	ND
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/l)	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand (mg/l)	0.22	0.76	0.95	0.86	1	0.24	1	0.67	1.1	1	0.11	0.2	0.2	0.1	0.2
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Coliform (MPN /100 ml)	Р	Р	Р	Р	Р	Α	Р	Р	Р	Р	Α	Α	Р	Α	Α

Physical / Chemical Characteristics	W46	W47	W48	W49	W50	W51	W52	W53	W54	W55	W56	W57	W58	W59
Water Temperature (°C)	18.2	17.9	19.2	19.3	19.4	19.5	19.2	19.7	18.9	18.2	18.7	18.9	17.5	18.2
Dissolved Oxygen (mg/l)	8.15	8.12	7.75	7.84	7.79	8.1	7.9	7.6	7.65	7.9	8	7.9	8.1	7.9
Turbidity (NTU)	0	0	0.4	0.3	0.3	0.2	0.15	0.3	0	0.2	0.1	0.1	0	0
Total Suspended Solids (mg/l)	1.4	1.6	1.7	1.7	1.6	1.5	1.6	1.8	1.4	1.2	1.7	1.3	2.5	2.1
рН	8.15	8.11	7.93	7.95	7.91	7.86	7.82	7.85	8.12	8.25	8.11	7.92	8.2	8.14
Electrical Conductivity (μS/cm)	85.17	76.82	80.16	80.16	90.18	70.14	73.48	70.14	78.49	90.18	95.19	86.84	90.18	81.83
Total Dissolved Solids (mg/l)	51	46	48	48	54	42	44	42	47	54	57	52	54	49
Total alkalinity (mg/l of CaCO3)	27	24	27	27	29	22	24	22	25	24	31	29	30	26
Sulphate (mg/l)	3.5	2.9	3.2	2.9	3.1	3.2	2.9	2.8	3.4	3.6	3.4	3.5	3.2	3.5
Chloride (mg/l)	5.2	6.4	5.8	5.52	5.59	5.2	5.16	5.89	5.45	6.2	4.1	4.3	5.2	5.4
Nitrates (NO3) (mg/l)	0.22	0.18	0.21	0.18	0.19	0.17	0.1	0.11	0.18	0.12	0.15	0.14	0.11	0.12
Phosphate (PO4) (mg/l)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.001
Total Hardness (mg/l)	27.5	25.91	28.05	27.365	29.54	24.34	25.32	25.615	28.3	27.164	29.075	27.365	27.492	27.468
Calcium ions (mg/ I)	6.9	6.1	6.3	6.19	6.24	5.8	5.7	5.9	6.4	6.7	6.3	6.19	6.29	6.1
Magnesium ions (mg/l)	2.5	2.6	3	2.9	3.4	2.4	2.7	2.65	3	2.54	3.25	2.9	2.87	2.98
Sodium (mg/l)	1.9	1.6	1.8	1.9	1.8	1.5	1.7	1.9	1.7	1.7	2.8	2.95	2.94	2.1
Potassium (mg/l)	1.4	1.3	1.25	1.32	1.35	1.2	1.25	1.26	1.3	1.4	1.69	1.59	1.6	1.3
Iron (mg/l)	0.12	0.11	0.14	0.12	0.15	0.11	0.1	0.11	0.01	0.01	0.01	0.01	0.01	0.01
Cadmium (Cd) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.01	ND	<0.01
Arsenic (As) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury (Hg) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.001	ND	<0.001
Copper (Cu) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1
Zinc (Zn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1
Total Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.05	ND	<0.05
Manganese (Mn) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead (Pb) (mg/l)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	ND	<0.1
Biological Oxygen Demand (mg/l)	0.2	0.1	0.28	0.18	0.23	1.5	1.7	1.3	1.5	1	0.24	1	0.67	1.1
Chemical Oxygen Demand (mg/l)	0	0	0	0	0	2.2	2.3	2.9	2.8	0	0	0	0	0
Total Coliform (MPN /100 ml)	Α	Р	Р	Р	Р	Α	Α	Р	Р	Р	Р	Α	Р	Р

Note: W1 to W59 shows sampling Sites

Site Code	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13	W14	W15						
Sampling	Malana I	Malana I	Tosh	Patikari	Allain	Allain	Sarbari-II	Beas Kund	Malana II	Malana	Neogal	Uhl -II	Binwa	Baner	Gaj Khad						
Sites					Duhangan	Duhangan							Khad	Khad							
Site Code	W16	W17	W18	W19	W20	W21	W22	W23	W24	W25	W26	W27	W28	W29	W30						
Sampling	Khauli	Khauli Larji	Larii	Larii	Larii	Larii	Larii	Larii	Larji	Uhl-I	Pong Dam	g Dam Pong Dam B	Beas Satluj	Beas Satluj	Beas Satluj	Parbati	Parbati	Parbati	Baner II	Fozal	Lambadug
Sites	Kilauli		Larji	(Shanan)	Tong Dam Tong Dam	Link	Link	Link	III	III	III	Danei II	1 0201	Lambadug							
Site Code	W31	W32	W33	W34	W35	W36	W37	W38	W39	W40	W41	W42	W43	W44	W45						
Sampling	Lowerlibi	Baragao	Baragao Uhl III		Uhl III	Caini HED	Cain: HED	D =l- = #: 11	Dawlasti II	Parbati II	Uhl	Carcadill	Palchan	Uhl Khad	Dhong	Doloraho					
Sites	Lower Uhl	n	Uni iii	Onlin	Sainj HEP	Sainj HEP	Parbati II	Parbati II	Pardati II	Oni	Sarsadi II	Bhang	Uni Knau	Bhang	Balargha						
Site Code	W46	W47	W48	W49	W50	W51	W52	W53	W54	W55	W56	W57	W58	W59	-						
Sampling	Charni	Carcadi	Nakhthan	Nakhthan Nakhtha Nakhth	Nakhthan	Thana	Thana	Triveni	Dhaulasidh	dh Parbati	i Hurla-I	Kilhi-Bahl	Malana	labria							
Sites	Sharni	Sarsadi	HEP	n HEP	HEP	Plaun	Plaun	Mahadev	Dhaulasidh				III	Jobrie	-						

Annexure - VIII

No MPP-F(2)-16/2008 Government of Himachal Pradesh, Department of MPP and Power.

From

The Principal Secretary (Power) to the Government of Himachal Pradesh.

To

The Principal Secretary (NES) to the Government of Himachai Pradesh, Shimla-171002.
The Chairman, H.P. State Electricity Board,

 Vidyut Bhawan, Shimla-171004.
 The Chief Executive Officer, HIMURJA
 Urja Bhawan, Kasumpti, Shimla-171009.

Dated : Shimla-2, the

27 January, 2009.

Subject:- Policy regarding ensuring minimum flow of water in Hydro Electric Projects.

Sir.

Government for some past. The State Government has recently decided that the minimum flow of water in Hydro Electric Projects will henceforth be regulated as under-

"The Company, if ROR Project shall ensure minimum flow of 15% water immediately downstream of the diversion structure of the Project throughout the year. For the purpose of determination of minimum discharge, the average discharge in the lean months i.e. from December to February shall be considered. This minimum discharge is required keeping in mind the serious concerns of the State Government on account of its fragile ecology & environment and also to address issues concerning riparian rights drinking water, health aquatic life, wild life, fisheries, silt and even to honour the sensitive religious issues like cremation and other religious rites etc. on the river banks. However, the companies are at liberty to install mini hydel projects to harness such water for their captive use for their utilities.

192

systems and colonies, subject to prior approval of the State Government".

In the light of aforesaid Policy decision, you are, requested to modify this clause in draft MOUs/PIAs/IAs etc. This Policy change will come into immediate effect and will apply to all the power producers, in the spirit of the Hydro Power Policy-2006.

This Policy change may also be brought to the notice of the all power producers

Yours faithfully

Special Secretary (Power) to the Government of Himachal Pradesh.

BEFORE THE NATIONAL GREEN TRIBUNAL, PRINCIPAL BENCH, NEW DELHI

Original Application No. 498 of 2015 (M.A. No. 628/2016)

IN THE MATTER OF:

Pushp Saini Vs. Ministry of Environment, Forest & Climate Change & Ors.

CORAM: HON'BLE MR. JUSTICE SWATANTER KUMAR, CHAIRPERSON

HON'BLE MR. JUSTICE RAGHUVENDRA S. RATHORE, JUDICIAL MEMBER

HON'BLE MR. BIKRAM SINGH SAJWAN, EXPERT MEMBER

Present: Applicant:

Respondent No. 1: Respondent Nos. 15&26:

Respondent No. 19:

Respondent No. 22:

Ms. Shibani Ghosh, Adv. for Intervenor Mr. Divya Prakash Pande, Adv. Mr. Mukesh Verma, Adv. Mr. Nishe Rajen Shonker and Ms. Anu K. Joy, Advs. for State of Kerala Ms. K. Enatoli Sema, Adv. For Nagaland SPCB and Mr. Amith J, Adv., Mr. Shiv Mangal Sharma, AAG. Mr. Saurabh Rajpal, Adv., and Mr. Adhiraj Singh, Adv. for State of Rajasthan Respondent Nos. 28&29: Mr. Nikhil Nayyar, Adv., Ms. Smriti Shah, Advs. for APPCB & TSPCB Mr. G.M. Kawoosa, Adv. and Ms. Palak Mittal, Adv. for State of J&K Mr. Guntur Prabhakar, Mr. Pramod Kumar and Mr. Gautam Prakhakar, Advs. for State of AP Mr. Devraj Ashok, Adv. for State of Karnataka Mr. A.K. Panda and Mr. M. Paikaray, Advs. for SPCB, Odisha Mr. Atul Jha, Adv. For State of Chhattisgarh Mr. Ranjan Mukherjee and Ms. Aprajita Mukherjee, Advs. For State of Meghalaya Mr. Raja Chatterjee and Mr. Chanchal Kumar Ganguly, Advs., Mr. Piyush Sachdev, Adv. for State of WB Mr. Aruna Mathura, Mr. Avneesh Arputham, Ms. Simran Jeet and Ms. Anuradha Arp<mark>uth</mark>am, Advs. For State of Sikkim Mr. Edward Belho, Mr. K. Luikang Michael and Mr. Hoineithiam, Advs. for State of Nagaland Ms. Yogmaya Agnihotra, Adv. for CECB Ms. Priyanka Sinha, Adv. for State of Jharkhand Mr. Anil Shrivastav, Mr. Rituraj Biswas and Ms. Sujaya Bardhan, Advs. for State of Arunachal Pradesh Mr. Tayenjam Momo Singh, Adv. for Meghalaya SPCB Mr. Sapam Biswajit Meitei and Mr. Naresh Kumar Gaur, Advs. for MPCB Mr. Gopal Singh, Mr. Rituraj Biswas, Advs. for State of Tripura Mr. Dhruv Pal and Mr. Himanshu Pal, Advs. for State of Gujarat & GSPCB

Mr. Ajay Marwah, Adv. for HPSPCB

Alam, Adv. for State of Bihar

Laxmi, Adv. for State of MP

Advs. for WBPCB

Mr. Gautam Singh, Adv. for Mr. Shoeab

Mr. R. Rakesh Sharma, Adv. For State of Tamil Nadu & TN Pollution Control Board Mr. Rajul Shrivastav, Adv. for MPPCB Mr. V.K. Shukla, Adv. and Ms. Vijay

Mr. Amrit Agarwal and Ms. Asha N. Basu,

Mr. Ravin Dubey, Adv.

Orders of the Tribunal

Mr. Utkarsh Sharma, Adv. for State of UP Mr. Gaurav M. Liberhan, AAG, State of Punjab

Mr. Jogy Scaria, Adv., Mr. Reegan S. Bal and Ms. Beena Victor, Advs. for Kerala State Pollution Control Board

Mr. Shuvodeep Roy, Adv. and Mr. Sayooj Mohandas M., Adv. for State of Assam and ASPCB

Mr. Rajkumar, Adv. for Central Pollution Control Board

Mr. Anil Grover, AAG, Mr. Rahul Khurana, Mr. Sandeep Yadav and Mr. Mishal Vij, Advs. for HSPCB

Mr. Naginder Benipal, Adv. for PPCB Mr. B.V. Niren, Adv. and Mr. Vinayak Gupta, Adv.

Remarks	
Item No.	
21	The Learned Counsel appearing for Ministry of
August 09,	
2017	Environment, Forest and Climate Change submits that
sn	the Ministry has already completed river basin study of 6
	river basins i.e. Siang River Basin, Twang River Basin,
11	Bichom River Basin, Subansiri River Basin, Dibang River
M =	Basin and Lohit River Basin and upon study the Ministry
VALE	has recommended the minimum flow of the river to be
W o	18% of the average of lean season flow of the river.
1 3	However, in some of the cases, it has stated to be even
N. A.	20%.
21	Pa
	The Tribunal in the recent Judgment pronounced on
	river Ganga had directed 20% minimum environment flow
	to be maintained from Haridwar onwards on the basis of
	the average lean season flow. In light of the above and the
	clear stand being taken by the Ministry, we direct that all
	the rivers in the Country shall maintain minimum 15 % to
	20% of the average lean season flow of that river. However,
	whichever State is unable to adhere to this average
	percentage, in that event we grant liberty to that State
	Government to move the Secretary, Ministry of
	Environment, Forest and Climate Change who shall in

Date

and

Item No. 21 August 09, 2017 sn consultation with the Ministry of Water Resources examine such a representation and if it is desirable to fix any lower percentage than the percentage aforestated, then it will pass appropriate order. The order should be reasoned and thereafter it would be left to the discretion of the State concerned to follow the directions of the Ministry in accordance with law.

We also grant liberty to the Applicant to move the Ministry of Environment, Forest and Climate Change if it has material with them in respect of any river of the country, which should have minimum environment flow in excess of 20%. If such representation is moved the same shall be disposed of by the Committee headed by Secretary in the Ministry of Environment, Forest and Climate Change in accordance with law.

With the above direction, Original Application No. 498 of 2015 stands disposed of without any order as to cost.

M.A. No. 628 of 2016

This Application does not survive for consideration as the main Application itself stands disposed of.

Thus, M.A. No. 628 of 2016 stands disposed of accordingly.

,CP (Swatanter Kumar)
,JM (Raghuvendra S. Rathore)
,EM

Minutes of the 13th Meeting of the Expert Appraisal Committee for River Valley & Hydroelectric Projects held on 27.04.2018 at Narmada Meeting Hall, Ground Floor, Jal Wing, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi-3.

The 13th meeting of the re-constituted EAC for River Valley & Hydroelectric Projects was held on 27.04.2018 with the Chairmanship Dr. S.K. Jain in the Ministry of Environment, Forest & Climate Change at Narmada Meeting Hall, Ground Floor, Jal Wing, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi. The following members were present:

1. Dr. S.K. Jain - Chairman

Shri Sharvan Kumar
 Dr. J.A. Johnson
 Shri N.N. Rai
 Representative of CEA
 Representative of WII
 Representative of CWC

5. Dr. S.R. Yadav - Member 6. Dr. D.M. More - Member 7. Dr. J.P. Shukla - Member 8. Dr. T.P. Singh - Member

9. Dr. (Mrs.) Poonam Kumria - Member

10. Dr. S. Kerketta - Member Secretary

Dr. A.K. Sahoo, Shri Chetan Pandit, Dr. R. Vasudeva, Dr. Vijay Kumar and Dr. Govind Chakrapani could not present due to pre-occupation. The deliberations held and the decisions taken are as under:

Item No. 13.0 Confirmation of minutes of 12th EAC meeting.

The Minutes of the 12th EAC (River Valley & Hydroelectric Projects) meeting held on 27.03.2018 were confirmed.

Item No. 13.1 CIA and CCS of Beas River Basin – reconsideration and presentation of Draft Final Report before the EAC

The Consultant, IRSET, Gurgaon has presented the draft Final report of CIA and CCS of Beas River Basin and *inter-alia* provided the following:

The CIA&CCS of Beas basin study's report was presented with special focus on the issues of post EAC's visit to the study area covering the issues raised during the visit. Site visit was conducted during April 12-14, 2018 to Parbati valley, Beas river up to Solang valley including Allain and Duhangan tributaries, Sainj valley and Tirthan valley. Detailed discussions were held during the visit based on the observations made by the Sub-committee of the EAC and following major issues were flagged:

- 1) Protected areas in the basin with status of declaration of ESZ along with marking on the map
- 2) Environment flow assessment for all the projects
- 3) Justification for projects recommended to be dropped

Consultant has discussed each point in detailed and have informed the Committee that they have updated the status of ESZ for all the protected areas in the Beas basin report. There are 10 Wildlife Sanctuaries and 3 National Parks in the basin. Indrakilla National Park ESZ has been declared by final notification, whereas remaining two national parks and 10 ESZ are in draft notification stage as listed below:

S.	Protected Areas	Area	Status of ESZ
No.		km ²	Notification
	Wildlife Sanctua	ries	
1	Dhauladhar Wildlife Sanctuary	982.86	Draft Notification
2	Kanawar Wildlife Sanctuary	107.29	Draft Notification
3	Khokhan Wildlife Sanctuary	14.94	Draft Notification
4	Manali Wildlife Sanctuary	29.00	Draft Notification
5	Sainj Wildlife Sanctuary	90.00	Draft Notification
6	Pong Dam Lake Wildlife Sanctuary	207.59	Draft Notification
7	Tirthan Wildlife Sanctuary	61.00	Draft Notification
8	Shikari Devi Wildlife Sanctuary	29.94	Draft Notification
9	Nargu Wildlife Sanctuary	132.37	Draft Notification
10	Kais Wildlife Sanctuary	12.61	Draft Notification
	National Park	S	
11	Great Himalayan National Park	1615.40	Draft Notification
	Conservation Area (GHNPCA)		
12	Khirganga National Park	710.00	Draft Notification
13	Indrakilla National Park	104.00	Final Notification

Environmental flow assessment has been discussed in detail. Consultant informed that there are 50 hydropower projects in the Beas river basin with installed capacity of more than 5 MW, out of which 18 projects have installed capacity of 25 MW or more. These 18 projects have been assessed for modelling study. Small projects (less than 25 MW IC) could not be subjected to modelling study and recommendations for these projects are made based on standard guidelines of EAC/MoEF&CC.

Out of 18 projects subjected to environmental flow assessment by habitat simulation and hydraulic modeling, 10 are already commissioned, 3 are under construction and 5 are under different stages of survey & investigations. Area downstream of Pong dam is outside the study area and Uhl II (Basi) is tailrace development of Uhl I without any additional diversion; therefore, no environmental flow is recommended for these projects. For each of the remaining 16 projects, based on modelling exercise, environmental flows have been recommended in the range of 20-25% in lean season; 15-30% in peak season and 15-25% in other seasons. EAC deliberated on the subject in detail, especially keeping in view that many of the projects are operational for a very long time and presently they are releasing EFs as per the state government norms of 15% of lean season average. EAC decided that the matter will be discussed with the state government before making recommendations.

Major recommendations of the report were also discussed in details.

1. Following four projects falling in protected areas, were recommended for dropping by EAC:

S. No.	Name of Project	Capacity (MW)	Developer	Status	Reasons for Dropping		
1	Jobrie	12	Green Infra Limited	Under S&I	Located within Inderkilla National Park		
2	Manalsu	21.9		Yet to be allotted	Located within Manali Wildlife Sanctuary		

3	Bujling	20	Sai Engineering Foundation	Recently Allotted	Located within Dhauladhar Wildlife Sanctuary
4	Makori	20.8	Sai Engineering	Recently Allotted	Located within Dhauladhar Wildlife
			Foundation	motted	Sanctuary

- 2. Two proposed projects, viz. Palchan Bhang and Bhang HEPs, both of installed capacity of 9 MW are allotted in the same river reach. Palchan Bhang HEP levels are 2246m to 2035m and Bhang HEP levels are 2240m to 2104m. Due to conflicts in level only one project is possible. Therefore, it is recommended that state government may take a decision on which project to proceed with and sort out the matter with private developers.
- 3. A yet to be allotted 7 MW project named Seri Rawala, is proposed with diversion weirs on Seri and Rawala nallas at an altitude of about 3000 m. The area is characterized by moist alpine scrub and is very rich in biodiversity. The project is recommended for dropping. EAC discussed the matter and accepted the recommendation.
- 4. Consultant discussed another proposed project viz. Raison HEP (18 MW) located on main Beas river, upstream of Kullu, along the National Highway between Kullu and Manali. The stretch along with tributaries has several trout fishing sites. EAC flagged the matter for discussion with State Government.
- 5. Consultant informed that four projects, namely, Parbati (12 MW), Sharni (9.6 MW), Sarsadi (9.6 MW) and Sarsadi-II (9 MW) with total capacity of 40.20 MW are proposed on Parbati river in cascade. Projects are allotted and are under survey and investigation stage. Total length of Parbati river from confluence of Malana Nallah to confluence with Beas river is about 15 km, out which 13 km will be affected by these four projects. These projects are not meeting the EAC/MoEF&CC norm of at least one km free flowing stretch between two projects.

Parbati river is rich in fish fauna and trout is known to migrate upstream in Parbati river; Kasol is an important trout fishing site upstream of these projects. Fish fauna of the sub-basin is comprised of 20 species comprised mainly of Amblyceps mangois, Sperata aor, Botia dario, Crossocheilus latius, Garra gotyla, Labeo pangusia, Puntius chola, Schizothorax richardsonii and Systomus sarana. The consultant recommended that all four projects should be dropped to keep this important stretch free from development. EAC deliberated the issue in detail and discussed and flagged it for further discussion.

6. The proposed Nakthan HE project is located on the boundary of Khirganga National Park. Draft notification declaring ESZ of Great Himalayan National Park Conservation Area (Khirganga National Park is a part) was issued on 25th July 2016; the matter was discussed in Expert Committee Meeting held on 27th February 2017 where it was recommended for finalization subject to certain corrections in coordinates. The project falls within the ESZ as it is just touching the boundary of the National Park, ESZ is about 1.8 km wide on this part of the park. Entire catchment of Nakthan constitutes Khirganga National

Park and is home to important wildlife and number of RET plant species. At present the matter related to diversion of Tosh Nalla for Nakthan is sub-judice and EAC has taken a note of it during the discussion in 91st meeting held on 8-9th February 2016. EAC deferred the appraisal till the time the matter is settled in court. It is also recommended that whenever the project is considered by EAC for appraisal after court order, it will be ensured that all the project components and pondage, up to the tip of submergence should be outside the ESZ of Great Himalayan National Park Conservation Area. A wildlife management plan should be prepared and approved by Chief Wildlife Warden for the construction of the project ensuring enough safeguard to protect the wildlife in the region.

It was suggested that MoEF&CC will discuss the report with state government of Himachal Pradesh and thereafter the final report will be discussed in EAC again for final appraisal and recommendation. The EAC *deferred the proposal* for reconsideration in a subsequent meeting.

Table - E-flow details

Name of Project	River (Affected Stretch)	Recommended E-flow as % of average discharge in 90% DY			Recommended E-flow cumec			
		Lean	Peak	Other	Lean	Peak	Other	
		Season	Season	Months	Season	Season	Months	
		(Dec-	(June-	(Oct,	(Dec-	(June-	(Oct,	
		Mar)	Sept)	Nov,	Mar)	Sept)	Nov,	
				Apr			Apr	
				and			and	
5 6 4		2.0		May)	440=		May)	
Beas Satluj Link	Beas River (25 km)	20	15	15	14.25	64.72	25.74	
Parbati-III	Sainj River (13.7 km)	20	15	15	1.51	8.46	2.83	
Allain	Allain (9.2 km)	20	15	15	0.42	2.43	0.85	
Duhangan	Duhangan (5 km)	20	15	20	0.15	0.96	0.4	
Larji	Beas River (5.65 Km)	20	15	15	11.42	64.06	21.45	
Uhl-I	Uhl River (40 km)	20	15	15	0.44	2.37	1.11	
Malana-II	Malana Nalla (5.2 km)	20	15	15	0.43	2.94	1.1	
Sainj	Sainj River (9 km)	20	15	15	0.71	3.34	1.61	
Malana-I	Malana Nalla (2.32 km)	20	15	15	0.49	3.32	1.24	
Parbati-II	Parbati River (5.28 km)	20	15	15	2.99	16.3	3.79	
	Jigrai Nalla (0.8 km)	20	30	25	0.2	1.16	0.54	
	Jiva Nalla (8.2 km)	20	30	25	1.19	6.2	2.53	
	Hurla Nalla (12 km)	20	30	25	0.57	3.12	1.28	
Lambadug	Lambadug (6.3 Km)	20	15	15	0.25	1.28	0.6	
Uhl III*	Rana Khad	20	30	25				
	Neri Khad							
Nakhtan	Toss (4.4 km)	25	20	20	0.93	5.24	1.99	
	Parbati (8.9 km)	25	20	20	1.42	7.84	2.94	
Thana Plaun	Beas River (12.7 km)	20	15	15	5.05	46.62	11.64	

Triveni Mahadev	Beas River (5.5 km)	20	15	15	5.62	54.05	14.49
	Binwa Khad (3.2 km)	20	15	15	0.93	4.6	1.5
Malana-III	Malana Nalla (3.35	20	15	15	0.34	2.32	0.95
	km)						
Dhaulasidh	Beas River (37 km)	20	30	25	7.11	90.79	7.87

Item No. 13.2: Lugu Pahar Pumped Storage Project (1500 MW) in Bokaro District of Jharkhand by M/s Damodar Valley Corporation - for TOR -File No. J-12011/10/2018-IA.I (R), Proposal No. IA/JH/RIV/73970/2018

The project proponent has submitted this proposal online on 04.04.2018 for grant of fresh Terms of Reference to the Project for preparation of EIA/EMP report. The project proponent made a detailed presentation of the project along with the Consultant, WAPCOS, Gurgaon and *inter-alia*, provided the following information:

The Lugu Pahar Pumped Storage Project (1500 MW) is located near Lugu village in Bokaro District of Jharkhand comprises of 2 reservoirs i.e. one at lower elevation and another one at upper elevation. The difference of water levels of the reservoirs will represent the effective head of the project. The water conductor system will connect the 2 reservoirs through an underground powerhouse. During peaking hours power will be generated by releasing the water of upper reservoir through conductor, turbines and generator installed at powerhouse to lower reservoir. The project envisages construction of 2 dams i.e. 104.5 m high rock-fill upper dam across Kairo Jhama Nallah to provide a storage of 10.8 MCM with full reservoir level at 640 m & MDDL at 630 m and 31.5 m high rock-fill lower dam across Bokaro Nallah to provide a live storage of 11.5 MCM with full reservoir level at 269 m & MDDL at 262 m.

The total land requirement is about 496 ha. Out of which, 430 ha is forest land and remaining 66 ha is government land. The total submergence is about 318 ha (upper reservoir – 202 ha + lower reservoir – 116 ha). About 24 villages are coming under submergence due to proposed scheme. Total cost of the project is Rs.4303.48crores.

The project was considered by EAC and after detailed deliberations and considering all the facts of the project as presented by the PP, the EAC recommended for grant of scoping/TOR clearance for the proposed project with the following additional conditions along with the standard ToR:

- i. Three (3) season's data should be collected for the entire project.
- ii. As there are two reservoirs proposed for the pumped water storage project, details of district located may be identified for conducting Public Hearing.
- iii. Two dams are being constructed to divert water to store. E-flow requirement will be studied as per the existing norms i.e. Minimum environmental flow release should be 20% of average of four lean months of lean period and 20-30% of flows during non-lean and non-monsoon period corresponding to 90% dependable year. The cumulative environmental flow releases including spillage during the monsoon period should be about 30% of the cumulative inflows during the monsoon periods corresponding to 90% dependable year.
- iv. Land requirement if any, for the project shall be suitably compensated in accordance with the law of the land with the prevailing guidelines. Private land shall be acquired as per provision of Right to Fair Compensation and Transparency in Land acquisition, Rehabilitation and Resettlement Act, 2013.

Minutes of the 15th Meeting of the Expert Appraisal Committee for River Valley & Hydroelectric Projects held on 28.06.2018 at Teesta Meeting Hall, 1st Floor, Vayu Wing, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi-3.

The 15th meeting of the re-constituted EAC for River Valley & Hydroelectric Projects was held on 28.06.2018 with the Chairmanship Dr. S.K. Jain in the Ministry of Environment, Forest & Climate Change at Teesta Meeting Hall, 1st Floor, Vayu Wing, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi. The following members were present:

1. Dr. S.K. Jain - Chairman

Shri Sharvan Kumar
 Shri N.N. Rai
 Dr. A.K. Sahoo
 Representative of CEA
 Representative of CWC
 Representative of CIFRI

5. Shri Chetan Pandit - Member
6. Dr. D.M. More - Member
7. Dr. T.P. Singh - Member

8. Dr. S. Kerketta - Member Secretary

Dr. J.A. Johnson, Dr. Vijay Kumar, Prof. S.R. Yadav, Dr.(Mrs.) Poonam Kumria, Dr. J.P. Shukla, Dr. R. Vasudeva and Dr. Govind Chakrapani could not present due to pre-occupation. The deliberations held and the decisions taken are as under:

Item No. 15.0 Confirmation of minutes of 14th EAC meeting.

The Minutes of the 14th EAC (River Valley & Hydroelectric Projects) meeting held on 28.05.2018 were confirmed.

Item No. 15.1 Cumulative Impact Assessment and Carrying Capacity Study of Beas River Basin, Himachal Pradesh - Reconsideration of the Study Report before the EAC

The recommendations of the CIA & CCS report of Beas River Basin along with the site visit report of the Sub committee of EAC was deliberated in the 13th EAC meeting held on 27.04.2018, subsequent to this, Directorate of Energy, Government of Himachal Pradesh had requested to attend the EAC meeting for submissions of their comments on the recommendations of Beas River Basin Study on behalf of state of Himachal Pradesh. The Ministry agreed the request. And accordingly, two Officials of the Directorate of Energy, Govt. of H.P attended the 15th EAC meeting and *inter-alia*, made a detailed presentation on the recommendation of the study report.

EAC deliberated on all the issues. Project wise deliberation and the recommendation of the EAC is as follows:

1. **Jobire HEP (12 MW)** – The project has been recommended for dropping as some of project its components falls in Inderkilla Wildlife Sanctuary. Govt. of H.P. mentioned that some of the project's components are on the boundary of the protected area and sought some time to redefine/revisit so that no component would fall within the protected area.

EAC deliberated on the matter and asked the H.P. Govt. representative to revise the project proposal so that it would completely fall outside the protected area and also the ESZ boundary. It was agreed that H.P. Govt. would approach MoEF&CC within 2 months with revised project details along with a certificate from Chief Wildlife Warden that all components of the revised project are located outside the protected area and ESZ.

- 2. **Manalsu HEP (21.9 MW)** The project has been recommended for dropping as the project falls in Manali Wildlife Sanctuary. Govt. of H.P. agreed to it and confirmed that the project shall not be allotted.
- 3. **Bujling HEP (20 MW)** The project has been recommended for dropping as some of project its components fall in Dhauladhar Wildlife Sanctuary. Govt. of H.P. mentioned that some of the project's components are on the boundary of the protected area and sought some time to redefine/revisit so that no component would fall within the protected area.

EAC deliberated on the matter and asked the H.P. Govt. representative to revise the project proposal so that it would completely fall outside the protected area and also the ESZ boundary. It was agreed that H.P. Govt. would approach MoEF&CC within 2 months with revised project details along with a certificate from Chief Wildlife Warden that all components of the revised project are located outside the protected area and ESZ.

- 4. **Makori HEP (20.8 MW) -** The project has been recommended for dropping as the project falls in Dhauladhar Wildlife Sanctuary. Govt. of H.P. agreed to it and confirmed that the project shall be cancelled.
- 5. **Palchan Bhang HEP (9 MW) and Bhang HEP (9 MW)** Beas basin study has recommended that Palchan Bhang HEP levels are 2,246 m to 2,035 m and Bhang HEP levels are 2,240 m to 2,104 m. Due to conflicts in level only one project was possible. Govt. of H.P clarified that these are two parallel schemes, one on Kothi Khad, a tributary of river Beas and another on Beas river and there is no level conflicts between these two schemes. EAC discussed the matter and recommended that both the schemes can be developed, as they are independent schemes. Govt. of H.P was requested to submit a location map showing the layouts of both the projects components and levels.
- 6. **Seri Rawela (7 MW)** The Project has been recommended for dropping as the project is located at an elevation of 3000m in an area, which is characterized by moist alpine scrub and the area is rich in biodiversity.

Govt. of H.P submitted that the project may be allowed with stringent conditions to conserve the Biodiversity, and ensured that all the necessary measures shall be adopted in designing of the project, during construction of the project and also after commissioning. EAC deliberated the concerns in detail and concluded that as the project is in near vicinity of Rohtang tunnel portal, Small HEP be taken up, with adequate precautions to minimize adverse impacts on biodiversity.

7. **Raison HEP (18 MW)** – Beas RBS has flagged this project for detailed deliberations. The project is proposed on the Beas river, upstream of Kullu, along the Kullu – Manali National Highway. The river stretch along with tributaries has several trout fishing sites, besides there was lot of constructional activities are in progress for widening of the NH.

Govt. of H.P. submitted that this project is proposed to be developed as a model project by using the head attained by the meandering of Beas river stretch at Raison. The technology to be adopted for the construction of this HEP with flexible weir option will have the least impacts in comparison to what has been anticipated in the report. The concept and proposal of the project have already been appreciated by the experts in the fields.

EAC deliberated on the issue in detail and considering the new technology, recommended this project for development.

8. Four projects on Parbati River viz. Parbati HEP (12 MW), Sharni HEP (9.6 MW), Sarasadi HEP (9.60 MW) & Sarasadi-II HEP (9 MW) - Beas RBS has flagged these projects, proposed on Parbati river in cascade in about 15 km of river stretch without any significant inter-project free flow stretch. Further, this river stretch is rich in fish fauna and trout is known to migrate upstream in Parbati river along this stretch from Beas. Development of this stretch would hamper trout movements and also during construction phase the road to Manikaran Sahib will be severely affected. Govt. of H.P. has submitted that they will redefine the projects to ensure the minimum free flowing river stretch is maintained between projects in cascade and shall also ensure fish movement by provisions of well-designed fish ladders. Further Sharni HEP (9.6 MW) and Sarasadi HEP (9.6 MW) are proposed to be dropped. It was also submitted that project construction will be taken up in phased manner.

EAC recommended that Govt. of H.P. may redefine these projects by ensuring minimum 1 km of free flowing river stretch between FRL and TWL of projects in cascade. E-flows have to be provided as per the norms and the impact on the river should be minimum. Revised project configurations be submitted within 2 months and the same shall be deliberated in EAC.

9. **Nakhtan HEP (460 MW)** - Beas RBS has flagged the project as the proposed project is located on the boundary of Khirganga National Park and falls within the ESZ boundary of Great Himalayan National Park Conservation Area (Khirganga National Park is a part). Further, the matter related to diversion of Tosh Nalla for Nakthan HEP is sub-judice.

Govt. of H.P., requested that the recommendations on above two aspects may be left for the stage of individual EC of this project.

EAC noted the concerns raised and concluded that it is a legal requirement to keep the project components outside the ESZ. Further, the court order with respect to diversion of Tosh Nalla will be binding on project developer. Therefore, once the matters are resolved, a fresh look will be taken at the project at that point of time.

10. Environment Flow Release Recommendations – With respect to environment flow release recommendations of all the projects viz., operational, under construction and proposed as made in Beas river basin study report; GoHP has submitted that project specific e-flow release with respect to 8 operational projects and 3 under construction projects should not be considered. These Hydro Electric Projects are bound by GoHP Notification dated 09.09.2005 regarding release of e-flow which states that "threshold value of not less than 15% of the minimum inflow observed in lean season to the main river water body whose water is being harnessed by the project" shall be the quantum of minimum flow of water to be released and maintained immediately down stream of the diversion structure of existing and upcoming hydel projects. The same has also been incorporated in the respective agreements executed for these HEPs and accordingly the e-flow is being maintained and monitored through Himachal Pradesh State Pollution Control Board. However, few developers like Bhakra Beas Management Board, Punjab State Power Corp. Ltd., etc. were not following the notification and have moved to the Hon'ble NGT. Now as per 9th August, 2017 orders of Hon'ble NGT, all theses HEPs have been directed to maintain e-flow @ 15-20% of the average lean seasons flow of a particular river. GoHP requested that let the e-flow release be as per NGT order rather than as per the basin study report because implementation of recommendation of basin study report on operational and under construction project would be a challenge for the state and developers can again take the legal recourse.

EAC noted the issue and asked Govt. of H.P. to make a comparative statement within 2 months for all under construction and operational projects about the e-flow and energy generation under all the three scenarios viz. present release, release as per NGT order and release as per basin study report. The matter will be again deliberated in EAC on receipt of this information.

E-flow release recommendation of 3 proposed projects viz. Thana Plaun (191 MW), Triveni Mahadev (96 MW) and Malana-III (30 MW) HEPs has been accepted by the state government.

E-flow release recommendation with respect to Dhaulasidh HEP (66 MW), may require revision as the 90% dependable year as per the approved DPR and as taken in Beas river basin study appears to be different. EAC opined that the results be re-examined and submitted.

GoHP also requested that e-flow release requirement with respect to Nakhtan HEP should not be fixed at this stage because based on court order and ESZ boundary resolution, project components will undergo certain changes. Based on final project components, a fresh e-flow requirement study will be undertaken and presented along with the EIA report at the time of environment clearance. EAC agreed with the submission.

Beas RBS shall be deliberated after receiving the requisite information from Govt. of H.P. after two months.

Item No. 15.2 Head Regulator and Indo-Nepal Link Canal at village Sailanigoth, Tanakpur, district Champavat, Uttarakhand by M/s NHPC Ltd – for Scoping/TOR. (File No. J-12011/53/2018-IA.I(R) & Online No. IA/UK/RIV/75334/1993)

Project Proponent submitted online application on 08.06.2018 for amendment of Environmental Clearance for the above mentioned project and *inter alia*, presented the following information:

- i. The proposed head regulator (35 m length) and Indo-Nepal link canal (1.15 km length) on the left bank of Mahakali River (Sharda river) and Tanakpur Barrage will transport the water of about 28.35 cumecs (1000 cusecs) and 8.5 cumecs (300 cusecs) during wet season and dry season, respectively to Nepal for irrigation purpose. The command area for which water is supplied is in Nepal.
- ii. The water of 28.35 cumecs (wet season) and 8.5 cumecs (dry season) is to be supplied to Nepal as per the Mahakali Treaty, a bilateral agreement between Nepal and India which was entered in 1996.
- iii. As a part of the Mahakali Treaty, India is obliged to supply 70 MU per annum of energy generated from Tanakpur Power Station to Nepal, to construct a head regulator near the left under sluice of the Tanakpur Barrage and to construct waterways of required capacity up to India-Nepal Border for supplying 28.35 cumecs and 8.5 cumecs of water during dry and wet seasons, respectively.
- iv. The main component of the proposed project includes inlet waterway (11.25 m), approach channel (31.0 m), Head regulator (35.0 m), canal (1.15 km) and cross drainage work (23.0 m width).
- v. Total land required for the proposed waterway is 38 ha (including 26 ha of stone quarry area, Reserve Forest) which is a forestland. Proposal for Forest Clearance is in progress which will be submitted to the State Forest Department.
- vi. The quarry area is proposed downstream of Tanakpur Barrage for which 26 ha of Reserve Forestland is to be acquired. In case, Uttarakhand Forest Corporation gives permission to lift construction materials from the river bed, the forestland of 26 ha Reserve Forestland proposed for quarry sites may not be diverted in future.

Minutes of the 19th Meeting of the Expert Appraisal Committee for River Valley & Hydroelectric Projects held on 26.10.2018 at Teesta Meeting Hall, FirstFloor, Vayu Wing, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi-3.

The 19th meeting of the re-constituted EAC for River Valley & Hydroelectric Projects was held on 26.10.2018 with the Chairmanship Dr. S.K. Jain in the Ministry of Environment, Forest & Climate Change at Teesta Meeting Hall, FirstFloor, Vayu Wing, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi–3. The following members were present:

1. Dr. S.K. Jain - Chairman

Shri Sharvan Kumar
 Shri N.N. Rai
 Dr. A.K. Sahoo
 Dr. Vijay Kumar
 Representative of CWC
 Representative of CIFRI
 Representative of IMD

6. Shri T.P. Singh - Member
7. Dr. D.M. More - Member
8. Dr. J.P. Shukla - Member
9. Prof. Govind Chakrapani - Member
10. Prof. S.K. Kohli - Member

11. Dr. S. Kerketta - Member Secretary

Shri Chetan Pandit, Prof. S.R. Yadav, Dr. J.A. Johnson and Dr. (Mrs.) Poonam Kumria could not be present due to pre-occupation.

The deliberations held and the decisions taken are as under:

Item No. 19.0 Confirmation of minutes of 18th EAC meeting.

The Minutes of the 18th EAC (River Valley & Hydroelectric Projects) meeting held on 27.09.2018 were confirmed.

Item No. 19.1 Koshi-Mechi Intrastate Link Project (Construction of Canal of 76.20 km long) on the existing barrage beyond existing Eastern Koshi Main Canal (41.30 km) for irrigation purpose under Koshi-Mechi Intrastate Link Project in the State of Bihar. Discussion on the site visit of the Sub-committee (File No.J-12011/22/2016-IA.I&Online No.IA/BR/RIV/57622/2016)

The site visit report of the Sub-committee was deliberated in detail; Chairman of the Sub-committee briefed the main observations/recommendations to the EAC. A copy of the site visit report is annexed as **Annexure-I**. The following are the recommendations for the project:

1. There appears to be no problem from the design and construction point of view in taking up of the works of canal system in the extended portion. The activity seems to be conventional one.

- command of the farmers. The area at places was seen water logged. This will take care of water requirement of perennial crops like banana, sugarcane and so on. With this background in the days to come the system could be converted to perennial one.
- 10. In the extended command, about 20% area has been proposed to be developed under micro irrigation system. It is basically for enhancing the productivity and quality of the agri-produce, in addition, it saves plenty of water. More and more area canbe planned to be brought under micro irrigation in the days to come and water could be saved. The water stored in the secondary storages in the command, use of groundwater and also the water saved in micro irrigation could help to transform the entire command into a perennial farming. Additional area from the Mahananda basin (left over as un-irrigated) could also be brought under irrigation with the help of the increased water availability as explained above. The land holding in this area is very small and therefore, it will be very much necessary to support farmers with irrigation facility.
- 11. The project involves remodeling of existing EKMC upto R.D. 41.30 km and construction of new canal upto RD 117.50 km. The discharge of canal will increase from present 425 cumecs to 573 cumecs. This will also involve remodeling of existing structure like canal siphons and head regulators of the branch canal, distributaries with cross regulators and escapes. PP (WRD, Govt. of Bihar) shall submit their programme to undertake such remodeling work.
- 12. The maintenance of canal needs improvement. Particular attention should immediately be given in head reaches where the canal needs proper re-sectioning as well as proper dumping of excavated silt with landscaping wherever.
- 13. Water quality particularly variation of water temp., DO, pH, TS and alkalinity, Phosphate, Nitrate, Silicates and Carbon (soil) at the site of joining of Kosi with Mechi (Upstream and downstream of joining point). E.coli data to be provided.
- 14. Fish species available upstream and downstream of joining point in Mechi river to be provided.
- 15. Possibility of fish pass in the Kosi canal (if possible) for efficient migration of Tor sp. to be explored.
- 16. Inventorization of fish species available in the Kosi canal to be revisited.

After detailed deliberations as per the presentation including the facts presented by the Sub-committee, the Committee agreed on all the suggestions made by the Sub-committee and opined that let the PP submitall the information as per the site visit report and then the **proposal will be again reconsidered for recommendation of grant of EC in the subsequent EAC meeting.**

Item No. 19.2 Cumulative Impact Assessment and Carrying Capacity Study of Beas River Basin, Himachal Pradesh - Reconsideration of the Study Report before the EAC

The Directorate of Energy, Government of Himachal Pradesh hadmade a presentation in the 15th EAC meeting and discussed their response to the

recommendations of Beas Basin Study. EAC deliberated in detail and sought further information from Directorate of Energy to which they have responded vide their letter dated 23.10.2018 and made presentation before EAC. As per the presentation including the facts presented by the Director of Energy, **the Committee** discussed each project as given below:

- 1. **Jobrie HEP (12 MW)** Beas Basin Study has recommended this project for dropping as the project falls in Inderkilla Wildlife Sanctuary. EAC has taken a note of it and accepted the recommendation of the study in its13thEAC meeting. GoHP has claimed that some of the projects components are on the boundary of the protected areaand they need some more time to ascertain that all project components should fall outside the protected area. GoHP submitted that Jobri Nalla is falling within the wildlife sanctuary and therefore they are not diverting the water of Jobri Nalla. Whereas another diversion of the project in on Allan Nalla, which is outside the protected area and therefore, they should be allowed to utilize the water of Allan Nalla for developing an HEP with reduced capacity of 6 MW. As up to 2 MW projects are permitted in the Eco-Sensitive Zone.GoHP may be allowed to develop an HEP of 2 MW IC in ESZ of Inderkilla WLS on Jobrie Nalla. **EAC accepted the GoHP request** with regard to Jobrie HEP.
- 2. **Manalsu HEP (21.9 MW)**-In the 13th EAC meeting held on 28.06.2018, the Consultant informed that Manalsu HEP (21.9 MW) is a newly identified and yet to be allotted project. It is a run-of-the river scheme utilizing the water of Manalsu Nallah which is a tributary of River Beas in Kullu district of Himachal Pradesh. The Project envisages a diversion weir with HFL at El 2500 m proposed to be constructed to divert water of Manalsu Nallah to a2.8 km long water conductor system to carry a design discharge of 6.2 cumecs to the power house with TWL at El 2100 m, located on left bank of stream to generate an estimated annual energy 87 Gwh utilizing a gross head of 400m. Based on the above information, the basin study report has mapped the location of proposed Manalsu HEP and found it to be falling within the Manali WLS. Accordingly, the project was recommended for dropping. This recommendation was accepted by the EAC and also by the State Government of Himachal Pradesh.

However, the Member Secretary informed that a representation from a prospective developer has been received. The representation was discussed in the meeting and the Member Secretary informed the major project features viz., the powerhouse, forebay, penstock, switchyard and transmission lines will be located outside the sanctuary area. It involves an intake in a deep gorge and an underground tunnel of 2.5 km which will be excavated from one end that is out of the WLS boundary. No adit is proposed in between the tunneling excavation, ensuring no interference with the Sanctuary. However, the representation is silent on the locations of the dam/ barrage/diversion structure and the intake structure to HRT.EAC noted that as per the RBS report, the diversion structure, intake structure, etc.were falling within the Manali Wildlife Sanctuary. Further, it was clarified that the underground component (tunnelling, etc.) of the project is a part of forestland and Manali WLS and accordingly as per the guidelines

permissions underForest (Conservation) Act, 1980 and Wildlife (Protection) Act, 1972 to be obtained.

After detailed deliberation, it has been decided that let the State Govt. shall submit the details of the locations of the project features of the Manalsu HEP *vis-a-vis* the boundary of the Manali WLS for further consideration of the EAC.

- 3. **Bujling HEP (20 MW)** -Beas Basin Study has recommended this project for dropping as the project falls in Dhauladhar Wildlife Sanctuary. GoHP was asked to re-plan the project to ensure that revised project should be completely outside the protected area as well as proposed eco-sensitive zone. GoHP has requested more time, as the ESZ of Dhauladhar Wildlife Sanctuary has not been finalized as yet. EAC accepted the request and observed that basin study should record that all the components of revised Bujling project should be outside the protected area as well as ESZ.
- 4. **Makori HEP (20.8 MW)** Beas Basin Study has recommended this project for dropping as the project falls in Dhauladhar Wildlife Sanctuary. EAC has taken a note of it and accepted the recommendation in 13th meeting. GoHP agreed with the recommendation of the report and confirmed that the allotment of project will be cancelled.
- 5. Palchan Bhang HEP (9 MW) and Bhang HEP is located at 2246m to2035m and Bhang HEP levels are2240m to2104m. Due to conflicts in levels, only one project is possible. However, GoHP has mentioned that these are two parallel schemes, one on Kothi Khad, a tributary of river Beas and another on Beas river and there is no level conflicts between these two schemes. Therefore, as such GoHP may be allowed to go ahead with both the schemes.EAC discussed the matter and concluded that if there is no level conflict, both the schemes can be developed, as they are independent schemes. EAC asked the GoHP to submit a clear location map showing the layouts of both the projects components and levels.GoHP presented map.However, it was not very clear. EAC asked the GoHP to submit a clear location map produced by a GIS showing contours in the region. This map may be included in the basin study report.
- 6. Four projects on Parbati River viz.Parbati HEP (12 MW), Sharni HEP (9.6 MW), Sarsadi HEP (9.60 MW) & Sarsadi-II HEP (9 MW) Beas basin study has flagged these projects as these projects are proposed on Parbati river in Cascade in about 15 km of river stretch without any significant inter project free flow stretch. Further this river stretch is rich in fish fauna and trout is known to migrate upstream in Parbati riverfrom Beas along this stretch. Development of this stretch would hamper trout's movementsand also during construction phase the road to Manikaran Sahib will be severely affected. GoHP has submitted that they will redefine the projects to ensure the free flowing river stretch is maintained between projects in cascade and shall also ensure fish movement by provisions of well-designed fish passages. Further location of fish passages should be studied well to ensure proper migration of the fish species. In addition, a

member urged that the breeding grounds of trouts must be identified in the proposed river stretch and conservation of these sites should be ensured. The client also confirmed that project construction will be taken up in phased manner. EAC accepted the submission and recommended that GoHP will redefine these projects by ensuring minimum 1 km of free flowing river stretch between FRL and TWL of projects in cascade. GoHP presented that they have revised the project configurations and now only two projects are being planned on this stretch to ensure adequate free stretch between these two projects.

7. **Nakhtan HEP (460 MW)** - Beas Basin study has flagged the project on two counts viz. the proposed Nakthan HE project is located on the boundary of Khirganga National Park and falls within the proposed notification declaring ESZ of Great Himalayan National Park Conservation Area (Khirganga National Park is a part). The project falls within the proposedESZ as it is just touching the boundary of the National Park, ESZ is about 1.8 km wide on this part of the park. Second, the matter related to diversion of Tosh Nalla for Nakthan HEP is sub-judice. Therefore, report recommended that whenever the project is considered by EAC for appraisal after court order, it is to ensure that all the project components and pondage, up to the tip of submergence should be well outside the ESZ of Great Himalayan National Park Conservation Area.

GoHP submitted that an out of court settlement is being done with the developer of Tosh project under which Nakhtan HEPs Tosh diversion will be dropped altogether. Instead, capacity of the existing projects on Tosh will be increased as follows:

Tosh I HEP from 10 MW to 20 MW Tosh II HEP from 5 MW to 25 MW Tosh III HEP from 5 MW to 25 MW

EAC asked the GoHP to provide the details of revised capacities of projects alongwith agreement on Tosh projects so that they can be included in the basin study report.

8. **Kanda Pattan HEP** - GoHP submitted that a new project has been conceived in Beas basin and it was earlier not covered in the study. This falls between Thana Plaun HEP and Triveni Mahadev HEP and will have an installed capacity of about 40 MW. EAC asked the GoHP to provide the details so that they can be appropriately included in the basin study report.

9. Environment Flow Release Recommendations

EAC noted that regarding environment flow recommendations, GoHP was asked to submit the energy calculation and tariff loss for existing/under construction projects where environment flow has been recommended to be increased from the present releases. GoHP has submitted calculations for 4 operational projects only and remaining data is yet to be submitted. EAC noted that data submitted is not legible and incomplete and therefore

asked GoHP to provide full detail as requested for all the projects which are under construction and under operation.

Recommendations of e-flows release of Dhaulasidh HEP

In earlier meeting, EAC asked consultant to review the E-flow release recommendation with respect to Dhaulasidh HEP (66 MW), because 90% dependable year as per the approved DPR and as taken in Beas basin study appears to be different. Consultant presented that the recommendation was reviewed and 90% DY is not found to be different in basin study from that of EIA study/DPR of Dhaulasidh HEP. Difference is in seasons, how they were considered in EIA study and in basin study and data was re-examined to re-represent the seasons as –

- Monsoon June to September
- Lean Season November to April
- Other Months May and October

This has resulted in slight change in the recommendation and the revised e-flows recommendation for Dhaulasidh HEP are:

- Monsoon (June to September) 30% (90.80 cumecs)
- Lean Season (November to April) 20% (6.24 cumecs)
- Other Months (May and October) 20% (8.30 cumecs)

Being a dam toe powerhouse based project, e-flows can be released from the turbines as long as continuity of release can be maintained. EAC accepted the revised e-flow recommendation for Dhaulasidh HEP.

Item No. 19.3 Eastern Rajasthan Canal Project (ERCP) at Sawai Madhopur, Rajasthan by M/s ACE WR Zone Jaipur, Rajasthan- reg. Fresh ToR (File No.J-12011/23/2018-IA.I(R)& online No.IA/RJ/RIV/80561/2018)

The project proponent made a detailed presentation of the project and *inter-alia* provided the following information:

The project envisages construction of 6 barrages and 1 dam, viz. Kunnu barrage on river Kunnu, Ramgarh barrage on river Kul, Mahalpur barrage on river Parbati, Navnera barrage on river Kalisindh. Mez barrage on river Mez and Dongri dam on river Banas to provide irrigation facility in 2,02,500 ha of land in Dholpur (72,500 ha) and Sawai Madhopur (1,30,000 ha) Districts of Rajasthan with an irrigation intensity of 120%. About 2.81 crores population will be provided drinking water facility. About 80,000 ha of command area in 13 districts will be stabilized. Total length of the water conductor system is about 1268 km consisting of gravity canal, pumping main and tunnels. The main canal from proposed Dongri dam in Sawai Madhopur Command area is located at a distance of 1 km from Ranthambhore Wildlife Sanctuary. Total submergence of forest area is about 9081.40 ha, out of which 3,703 ha is

Minutes of the 20th Meeting of the Expert Appraisal Committee for River Valley & Hydroelectric Projects held on 27.11.2018 at Teesta Meeting Hall, First Floor, Vayu Wing, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi-3.

The 20th meeting of the re-constituted EAC for River Valley & Hydroelectric Projects was held on 27.11.2018 with the Chairmanship (Acting) Dr. D.K. More in the Ministry of Environment, Forest & Climate Change at Teesta Meeting Hall, First Floor, Vayu Wing, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi-3. The following members were present:

- 1. Dr. D.M. More
- 2. Shri Sharvan Kumar
- 3. Shri N.N. Rai
- 4. Dr. J.A. Johnson
- 5. Shri T.P. Singh
- 6. Prof. S.R. Yadav
- 7. Dr. S. Kerketta

- Chairman (Acting)
- Representative of CEA
- Representative of CWC
- Representative of WII
- Member
- Member
- Member Secretary

Dr. S.K. Jain, Shri Chetan Pandit, Dr. A.K. Sahoo, Dr. Vijay Kumar, Prof. S.K. Kohli and Dr. (Mrs.) Poonam Kumria could not be present due to preoccupation.

The deliberations held and the decisions taken are as under:

Item No. 20.0 Confirmation of minutes of 19th EAC meeting.

The Minutes of the 19^{th} EAC (River Valley & Hydroelectric Projects) meeting held on 26.10.2018 were confirmed.

Item No. 20.1 Cumulative Impact Assessment and Carrying Capacity Study of Beas River Basin, Himachal Pradesh-Reconsideration of the study report before the EAC

Further to discussion on Cumulative Impact Assessment and Carrying Capacity Study of Beas River Basin, Himachal Pradesh in 19th EAC meeting, where Directorate of Energy, Government of Himachal Pradesh had made a presentation on the pending concerns of EAC. EAC deliberated in detailed and sought further information from Directorate of Energy to which they made presentation before EAC on the pending issues. As per the presentation including the facts presented by the Director of Energy, the Committee discussed the following:

Jobrie HEP (12 MW) – Govt. of Himachal Pradesh (GoHP) confirmed that as recommended by EAC, the HEPs will be developed as per the applicable norms and restrictions of project development in protected areas and Eco-sensitive Zones.

Manalsu HEP (21.9 MW) - A newly identified project falls within Manali WLS and was therefore recommended for dropping. However, on representation by the PP, EAC had asked State Govt. to submit the details of the locations of the project features of the Manalsu HEP *vis-a-vis* the boundary of the Manali WLS for further consideration of the EAC. Government of Himachal Pradesh submitted that diversion structure as well as part of tunnel falls within the Manali WLS while the rest of the components including powerhouse is outside the WLS. The project

envisages a drop type trench weir structure in the protected area thus involves minimum construction in the protected area. GoHP further submitted that it will be ensured that while executing the construction of intake structure, utmost care will be exercised to avoid any infringement to wildlife, etc. under any circumstances.

The matter was discussed in detailed by the EAC. It was deliberated that generally during the basin studies, consideration of overall impact of development of HEPs in the entire basin is taken and, projects falling in protected areas are out rightly dropped and therefore, Manalsu HEP was also recommended to be dropped and was accepted by EAC & Govt. of H.P. It was further discussed that while the project is considered on the request of the state government, the project will require wildlife clearance. It has been opined that let the matter be discussed in the State Board of Wildlife whether the portion of the project coming in the WLS be permissible activities and accordingly Wildlife Clearance be obtained from the Standing Committee on National Board of Wildlife. Accordingly, it has been opined that let the project be placed before the NBWL for its viability.

Bujling HEP (20 MW) – GoHP has submitted that they have accepted the recommendation that all the components of revised Bujling project should be outside the protected area as well as ESZ and it will be finalized after the final notification of ESZ of Dhauladhar WLS is notified.

Makori HEP (20.8 MW) - GoHP agreed with the recommendation of the report and confirmed that the allotment of project will be cancelled.

Palchan Bhang HEP (9 MW) and Bhang HEP (9 MW) - EAC asked the GoHP to submit a clear location map produced by a GIS showing contours in the region. GoHP has submitted the map as required for inclusion in the basin study report.

Four projects on Parbati River viz. Parbati HEP (12 MW), Sharni HEP (9.6 MW), Sarsadi HEP (9.60 MW) and Sarsadi-II HEP (9 MW) – GoHP presented that they have revised the project configurations and now only two projects are being planned on this stretch to ensure adequate free stretch between these two projects. As per the revised schemes, HEP I is 15 MW with a trench weir across Parbati river at around 600 m downstream of confluence of Baladi Nallah with Parbati river at Elevation of 1365 m and powerhouse on right bank at elevation of 1273 m. HEP II will be 20 MW with a diversion barrage across Parbati river downstream of HPPWD RCC bridge at elevation of 1245 m where the good rock is available on right bank. Powerhouse at elevation of 1135 m on right bank opposite to the village Jachani. This arrangement will ensure a minimum of 1 km of free flowing river stretch between FRL and TWL of projects in cascade manner. Once, all the information are provided for both the projects, the e-flow, etc. will be recalculated again and included in the River Basin Study.

Nakhtan HEP (460 MW) – GoHP submitted that an out of court settlement is being worked out, under which Nakhtan will not have diversion of Tosh Nalla. Diversion of Nakthan project will be only on Parbati river where it should fall outside the boundary of Khirganga National Park as well as ESZ of Great Himalayan National Park Conservation Area (Khirganga National Park is a part). Based on the final project configuration, it will be considered by the EAC during environment clearance process.

Tosh Nalla will have independent schemes as:

Tosh I HEP (20 MW), presently 10 MW from 2280 m to 2480 m.

Tosh II HEP (25 MW), new project from 2490 m to 2690 m.

Tosh III HEP (32 MW), new project from 2700 m to 2960 m.

EAC discussed the matter and concluded that there is no objection to development of such schemes as long as at least 1 km free flow river stretch is available between FRL and TWL of projects in cascade and the projects on Tosh as well as on Parbati remain outside the ESZ of Khirganga National Park.

Kanda Pattan HEP - GoHP submitted that a new project, Kanda Patan HEP has been conceived in Beas basin which was not included in the study. The scheme will maintain the required riparian distance of about 1 to 1.5 km from TWL of upstream project and FRL of downstream project. The diversion site is proposed at around 600 m upstream of Neri bridge on Dharampur-Jogindernagar Road and powerhouse on the right bank at around 11 km downstream of the diversion site. EAC discussed the matter and concluded that the scheme can be considered in the basin study as long as the minimum of 1 km distance of free flow stretch is ensured from FRL of downstream project and TWL of upstream project.

E-Flow:

Based on the observation of EAC, GoHP has now worked out energy loss calculations due to implementation of environment flow recommendations by existing and under construction projects. GoHP has also submitted that some of the older projects do not comply even to the state government norms and are also not complying with NGT's order applicable to all rivers in the country for release of minimum environment flow by HEPs. GoHP requested EAC not to recommend environment flow as assessed in the basin study report for existing and under construction projects and they should be allowed to continue to follow the state government/NGT guidelines, which are comparable.

EAC deliberated the matter in detailed and concluded that environment flow in basin study has been worked out taking basin as a whole and irrespective of the fact whether there exists a project or a project is under construction or a project is proposed in future. It is based on scientific study and such recommendation should remain independent of the legal issues involved in implementation. Therefore, environment flow recommendation as per basin study should be applicable to all projects irrespective of their status of implementation. If GoHP finds it difficult to implement, GoHP can approach NGT or central government and deal with the matter separately.

EAC finally concluded all the discussions on Beas River Basin study and directed the Consultant to update/finalize the basin study report, keeping in view the matter discussed and recorded in various EAC meetings. The final Beas RBS report shall be placed again in the EAC meeting/s for finalization of the various recommendations therein.

--